2018 10th International Conference on Knowledge and Systems Engineering (KSE)

Comparison of Three Deep Learning-based
Approaches for IoT Malware Detection

Khanh Duy Tung Nguyen', Tran Minh Tuan?, Son Hai Le!, Anh Phan Viet!,
Mizuhito Ogawa®, and Nguyen Le Minh?

"Le Qui Don Technical University, Hanoi

Email: tungkhanhmta@gmail.com,

lehaisonmath6@gmail.com,

anhpv@mta.edu.vn

2University of Engineering and Technology, Vietnam National University, Hanoi
Email: tranminhtuan@vnu.edu.vn

3Japan Advanced Institute of Science and Technology
Email: {mizuhito, nguyenml}@jaist.ac.jp

Abstract—The development of IoT brings many op-
portunities but also many challenges. Recently, increas-
ingly more malware has appeared to target IoT devices.
Machine learning is one of the typical techniques used
in the detection of malware. In this paper, we survey
three approaches for IoT malware detection based on the
application of convolutional neural networks on different
data representations including sequences, images, and
assembly code. The comparison was conducted on the
task of distinguishing malware from nonmalware. We
also analyze the results to assess the pros/cons of each
method.

I. INTRODUCTION

Malware threat becomes more serious every year.
According to the McAfee report in the first quarter of
2018 [1], the averages are 45 million malicious files,
57 million malicious URLSs, and 84 million malicious
IP addresses per day. We focus on IoT malware, which
is doubled each year since 2015.

For PC malware, commercial antivirus software
investigates syntax patterns that are analyzed from
known malicious samples, often with machine learning
techniques, e.g., finding characteristic bytes n-gram
[2]. However, recent PC malware evolved with ad-
vanced obfuscation techniques [3], [4], which make
difficult to identify semantical similarity from syntax
patterns [5]. Actually, Symantec confessed that anti-
virus software can detect only 45% of PC malware
on May 2015. Dynamic analysis in the sandbox, e.g.,
CWSandbox [6], ANUBIS !, is another typical ap-
proach, which observes the behaviors on registers [7],
API calls [8], and the memory [9]. However, anti-
debugging and anti-tampering techniques may recog-
nize the sandbox, and the trigger-based behavior, e.g.,
malicious actions occur at the specific timing, will be
rarely detected. One of the authors developed a binary
code analyzer BE-PUM based on dynamic symbolic

Thttp://anubis.seclab.tuwien.ac.at

978-1-5386-6113-0/18/$31.00 ©2018 IEEE

execution on x86 [10]. It overcomes obfuscation tech-
niques and provides precise disassembly of malware.
The drawback is the heavy load by the nature of
dynamic symbolic execution.

Compared to PC malware, [oT malware often does
not use obfuscation techniques. Thus, we can apply
quite immediately statistical methods like machine
learning and easily disassemble by using commercial
disassemblers, such as IDApro.

This paper compares three different convolutional
neural networks on 1,000 real IoT malware samples
for x86, collected by ToTP 0T? of Yokohama National
University.

The first model adapts the features of fixed-sized
byte sequences, which is basic and easy to imple-
ment. The second uses the features of fixed-sized
color images on AlexNet CNN. From the entropy
feature of a binary code, the image is generated by
the Hilbert curver. The last model adapts the features
of the assembly instruction sequences, which is gener-
ated by objdump. Different from the standard CNN,
this model accepts variable-sized sequences. Thus, the
training requires more time and effort. We compare
the effectiveness among models by experimental and
address the future directions.

The rest of the paper is as follows. Section 2 is for
preliminaries. Three CNN modeling for detecting IoT
malware are presented in Section 3. The experiments
are presented in Section 4. Section 5 concludes with
the discussion.

II. PRELIMINARIES

A typical convolutional neural network (CNN) in-
cludes three types of layers including convolution,
pooling, and fully-connected. Wherein, the success of
the network mostly depends on convolutional layers

Zhttps://github.com/ToTPOT/IcTPOT

382

2018 10th International Conference on Knowledge and Systems Engineering (KSE)

that are responsible to automatically learn data features
from the low level to high level of abstraction. Next,
we will describe a simplest CNN from the input to the
output layer.

A. Feature extraction and data structures

There are many kinds of features to detect
whether the file is malicious. File features
can be extracted from contents and execution
traces/logs, and stored in the data structure,
which is classified into either fixed-sized or
variable-sized data structures.

Fixed-sized data structure means that different
files are represented in the data structure of the
same size, e.g., vectors with the same dimension
and images. Variable -sized data structure means
that different files are left in various sizes, e.g.,
sequences, trees, and graphs. With variable-sized
data structure, classical machine learning models
need to be adapted to fit them.

B. Convolutional layer

All three models use a layer called the con-
volutional layer, which is the core block of a
Convolutional Neural Network (CNN) [11], [12].
CNN is known to be effective, especially on
the image classification. The basic idea of the
convolutional is to combine the neighborhoods to
emphasize local characteristics. The idea is that
localized concepts among points close to each
other will share more correlations. For example,
in the image, pixels next to each other will be
likely similar unless there is an edge, and an edge
is an important feature.

According to [13], many studies have tried to
generalize CNN on other data structures, such
as acoustic data [14], videos [15] and Go boards
[16].

The convolution layers are composed either se-
quentially or parallelly. The sequential composi-
tion transfers the output of a convolution layer
to the input of the next layer in the network but
in [17]. The parallel composition combines the
outputs of several convolution layers to the single
output, which intends to avoid the vanishing
gradient problem caused by sigmoid activation
functions.

C. Pooling layer

A convolutional layer is often followed by a
pooling layer, whose function summarizes the
neighborhoods to reduce the size of the repre-
sentation and the number of parameters in the
network, and to control over-fitting. Examples of
the neighborhoods are close pixels of an image,
adjacent nodes of a graph, and close time regions

There are two typical types of the pooling lay-
ers: a local pooling layer and a global pooling
layer. The operation of the local pooling layer
is depicted in Fig. 1, in which the output size
depends on w, h, the size of sliding window, and
the padding. Recently, the global pooling layer is
considered to minimize overfitting by drastically
reducing the number of the parameters in the
model. For example, Fig. 2 shows the reduction
of the dimensions h *xw *xd to 1 *1x*d in a
global pooling layer. It reduces by mapping each
hxw features to their mean value. It is often used
at the backend of a CNN with dense layers to
get a shape of the data, instead of the flattening.
Another example of the global pooling layer is to
transform the variable-sized data into the fixed-
sized data as in Fig. 2, in which the size of the
output is always 1 * 1 % d independent from w
and h.

Fig. 1.

Fig. 2. The summerization of the global pooling layer

D. Fully-connected layer

The output from the convolutional layers repre-
sents high-level features in the data. While the
output can be flattened and connected to the
output layer, adding a fully-connected layer is a
cheap way to learn these features. Neurons in the
fully connected layer have the full connections
to all activations in the previous layer, as regular
Neural Networks. The fully-connected layer is
often associated with a softmax layer, which
outputs the probability of each class.

III. THREE APPROACHES

A. CNN on byte sequences (CNN_SEQ)
Fig. 3 shows CNN_SEQ, inspired by MalConv [18].

of acoustic data. CNN_SEQ is simple and easy to implement and scale.

383

2018 10th International Conference on Knowledge and Systems Engineering (KSE)

[0, 1]

Fully Connected

Temporal Max
Pooling

204

fo 4

Convolutional Layer Convolutional Layer

Embedding Layer

hy {
-

Fig. 3. Architecture of CNN_SEQ for IoT malware detection

1) Feature extraction and data representation: Let
X = 0,...,255 be the integer representation of a
byte. A binary code is composed of the k bytes data
(21, .,z € X),

o if the binary code is shorter than k bytes, zeros

are padded as the suffix until k bytes.

« if the binary code is larger than k bytes, they are
selected from the section with the executable and
the writable permissions, e.g., (.init, .text, .data),
and set lower priority for read-only data segments,
e.g., (rrodata, .bss). They are extracted by the
“readelf -section” tool (Fig. 4). Each byte z; is
weighted as z; = ®(x;) (where the mapping ®
is learned by the network during training), and
composes a matrix Z.

greadelf —sections IoTMalwares/88bBe12b915de87a87235190e311d147
There are 21 section headers, starting at offset Bx2c478:

Section Headers:

[Nr] Name Type Addr Off size ES Flg Lk Inf AL
[8] NULL 68000660 0AGBRE 0ADEEO 6B a o @
[1] .reginfo MIPS_REGINFO 00400@b4 80004 000G18 18 A @ & 4
[2] .init PROGBITS 684806CC 80@BCC BAGBEC 88 AX @ 0 4
[3] .text PROGBITS 68480168 809168 B1b118 88 AX @ 0 16
[4] .fini PROGBITS 2041b270 @1b270 00085C 80 AX @ 0 4
[5] .rodata PROGBITS 8841b208 81b2d8 BA%46L 88 A @ B 14
[6] .eh_frame PROGBITS 88424734 824734 BAGBBL B8 A @ B 4
[7] .ctors PROGBITS 88464738 824738 0AAGES 68 WA @ 8 4
[8] .dtors PROGBITS 88464740 824740 0ODGES 80 WA @ @ 4
[9] .jor PROGBITS 8B464748 824748 0AGBBL 88 WA @ @ 4
[18] .data.rel.ro PROGBITS 8B46474C B2474c BABBC BB WA @ B 4
[11] .data PROGBITS 00465120 825100 004810 80 WA @ 0 16
[12] .got PROGBITS 88469178 829176 BABS74 84 WAp @ 8 16
[13] .sbss NOBITS 88469764 829764 BABB20 83 WAD @ B 4
[14] .bss NOBITS 88449798 829764 BA63bL 88 WA @ 8 16
[15] .comment PROGBITS 60000680 829764 000C1E B0 e o 1
[16] .mdebug.abiaz PROGBITS 68000C18 82a37c 0ABEO 80 a 8 1
PROGBITS 60000688 82a37c BA2660 08 a 8 4

STRTAB 00000000 82c3dc 000893 89 e o 1

SYMTAB 60800688 82c7c8 BA3BTH 18 20 319 4

rab STRTAB 60000688 82fBhA BA244c BB @ 8 1

W (write), A {alloc), X (execute), M (merge), S (strings), I linfo),
L (link order}, 0 (extra 0S processing required), G (group), T (TLS),
(compressed), x (unknown), o (0S specific), E (exelude),
(

c
p (processor specific)

Fig. 4. Example of the data segment extraction

2) Description model architecture: Two parallel
convolutional layers are prepared for processing the
matrix Z, in which the activation functions are

flz) = { ReLU (Rectified Linear Unit) max(0,)

Sigmoid e
They are combined through the gating [17], which
multiplies element-wise the matrices computed by the

two layers. This avoids the vanishing gradient problem
caused by sigmoid activation function. The result is
forwarded to a temporal max pooling layer, which
performs a 1-dimensional max pooling, followed by
a fully-connected layer with the ReLU activation. This
results a 2-dimensional vector (xq, x1). To avoid over-
fitting, we follow [18] that applies DeCov regulariza-
tion [19] to minimize the cross-covariance. The last
step, the softmax activation, evaluates the probability
a; (for i+ = 0,1) as follows, where ay and a; are the
probablity of being goodware and malware, respec-
tively. If a; > 0.5, we conclude malware.

a; = czp(z:) fori=0,1 (1)

exp(zo) + exp(xq)

We use tensorflow [20] and keras [21] to deploy the
above network.

B. CNN on the color images (CNN_IMG)

For IoT malware detection, previously the conver-
sion to a greyscale image is tried and the accuracy has
reached 94% [22]. Instead, we convert a binary code
into a fixed-sized color image and AlexNet is used for
the data classification.

1) Feature extraction and data representation:

A. Calculate the entropy of a binary file: Similar to
SEQ_SEQ, let X =0, ..., 255 be the representa-
tion of a byte. First, we compute the sequence
of the entropy of a byte sequence. The entropy
shows how much the data is disordered, and we
use Shannon entropy

255
H(z) ==Y P(zi)log, P(z;) (2)
i=1
where x is a sliding window, z; is the number
of occurrences of 7 in x, and P is the ratio (i.e.,
I\?I‘)' We set the size of the sliding window to
be 32x32 and the base b to be 10.

B. Convert entropy to RGB color: The entropy is

converted to a color by following to BINVIS?,

r=255%(F(z—0.5)), b = 255 % 2

3)

where x is the entropy, F(r) = (4o — 4x?)4,

r, g, b are the red, the green, and the blue values,
respectively.

C. Convert color sequence to image: A space-filling

curve fulfills the 2-dimensional unit square by a

bent line, e.g., Zigzag, Z-order, Hilbert (Fig. 5).

g =0,

We choose Hilbert curver for the locality preser-
vation, i.e., keeping the close elements in 1-
dimensional as nearer as possible in 2 dimen-
sions. The function drawmapsquare in BIN-
VIS is used as Hilbert curve by setting options:
parameter map = square, size (of the image) =

3https://github.com/cortesi/scurve

384

2018 10th International Conference on Knowledge and Systems Engineering (KSE)

Fig. 5. Curvers (a) Zigzag, (b) Z-order, (c) Hilbert

224, color = entropy. Fig. 6 shows an example
visualization of busybox in Ubuntu.

Fig. 6. Visualize the binary file busybox with Hilbert curve

2) Description model architecture: After converting
a binary file to a square color image, AlexNet is applied
[23]. The architecture and the details of each layer in
the AlexNet is shown in Fig. 7 and 8, respectively. We
use tensorflow [20] and keras [21] to deploy the above
network.

Input data Conv3 Convd Convs

Convl Conv2
. 13x13x384 13 13 % 384
27X 27 % 256
E

5% 55 % 96

FC6 FC7 FC8

13x 13 X 256

227% 227 %3 2096 4096

Fig. 7. Alexnet architecture
Layer Type Maps Size Kernel size Stride Padding Activation
Out Fully Connected — 2 - - - Softmax
F9 Fully Connected — 4,096 - - - RelLU
F8 Fully Connected — 4,096 - - - RelLU
c7 Convolution 256 13x13 3x3 1 SAME RelU
c6 Convolution 384 13x13 3x=3 1 SAME RelU
c5 Convolution 384 13x13 3x3 1 SAME RelU
54 Max Pooling 256 13x13 3x3 2 VALID -
c3 Convolution 256 27x27 5%5 1 SAME RelLU
s2 Max Pooling 96 27%x27 3x3 2 VALID -
c1 Convolution 96 55x55 Ux1 4 SAME RelU

In Input 3(RGB) 224%224 — - - -

Fig. 8. Details of the layers in AlexNet

C. CNN on assembly sequences (CNN_ASM)

For IoT malware detection, previous studies use
handcrafted features (e.g., n-grams and API calls)
and different machine learning algorithms. Instead, we
directly analyze the assembly code, obtained by a
commercial disassembler. The disassembled code is
abstracted on register names and memory addresses
(which are often changed by the offset) and is tailored
as a variable-sized vector. Fig. 9 shows the overview
of the processes, which was inspired by [24].

1) Feature extraction and data representation:

e Disassembling binary files: The first step dis-
assembles binary executable files to assembly
codes. By reading the file header, all of our IoT
malware samples are in the ELF file format on
multiple CPU architectures (Table I). To disas-
semble them, we use the ob jdump command in
Ubuntu, which is a multi-architectural disassem-
bler. Among them, we target only on x86 in the

experiments.
TABLE I
CPU ARCHITECTURE STATISTICS
Architecture | Number
MIPS 2814
ARM 2774
1386 2353
PowerPC 1247
sh-linux 1199
x86 1196
m68k 1153
SPARC 1140

o Vector Representations: An instruction may vary
the name and operands, in which some may
change by the offset and the use of different regis-
ters. To abstract such differences, the operands of
block names, the register names and the literal
values are simplified by the symbols “name”,
“reg”, and “val”, respectively. For instance, the
instruction addg $32, %rsp, is converted to
addqg, value, reg. As in NLP techniques,
we encode each word to a 30-dimensional real-
valued vector, which is choosen randomly. Then,
the i-th instruction is encoded to

1 &
T = bol jzzlfi,j, “4)

where C' is the number of the words and Z; ; is
the encoding of the j** word in the i-instruction,
and the sum is computed element-wise. Then,
an assembly sequence with n instructions is the
contatenation ., = Z1.Z2. - .Zp.

2) Description model architecture: Convolutional
layers The convolutional layers automatically learn the
defect features from instruction sequences. We design
a set of the feature detectors (filters) to capture local
dependencies in the original sequence. Each filter is
a convolution with the sliding window to produce a
feature map, i.e., at position ¢, the feature value cﬁ of
the [*" filter is:

= fWi - Ziign1 + 1) (5)

where VV[€]Rth, ii:i—&-h—l = fi-ji—l-l- e ~i'i+h—1v
f is an activation function, and b; is a bias.

In general, deeper neural networks potentially
achieve better performance [12]. However, using many
layers leads to more parameters, which require large

385

2018 10th International Conference on Knowledge and Systems Engineering (KSE)

addl
Tt G
N N movl 1 -
BIN
o110 | = |ISH => cmpl
10101
4 il SR N
Disassembler i M

Convolutional
Layer 1

Vector
Representations

| ﬂ ‘\ /D
T e O
[
| | <O Softmax
Fully-
ted
Pooling Convolutional Global coE:ezre
Layer 2 Pooling 4

Fig. 9. CNN on assembly instructions for IoT malware detection

datasets for training networks. In this work, two layers
of convolutions are prepared for our 1,000 IoT malware
samples compiled for x86.

Pooling layers Often, a pooling layer is inserted
between successive convolutional layers to reduce the
dimensions of feature maps. In our case, the input
sequence has up to thousands of instructions, and the
feature map length is similar. We choose the max
pooling, expecting works better [25].

In the model, the intermediate convolutions are
followed by the local max-pooling with the filter size
of 2. For the last convolution, the global max-pooling
is applied to generate the vector representation for the
corresponding view, in which each element is the result
of pooling the feature map. We use tensorflow [20] and
keras [21] to deploy the above network.

IV. EXPERIMENTS
A. Dataset

We prepare the dataset for experiments, both IoT

malware and goodware in the ELF format.

e 15,000 IoT malware samples are supplied by
Prof Katsunari Yoshioka (Yokohama National
University). They run on various platforms, such
as the ARM, MIPS, and x86. For experiments, we
select 1,000 malware samples of x86 binaries.

e 1,000 goodware samples are taken from x86 bi-
naries of Ubuntu 16.04.

We mix all of them in the single dataset. Then, we
randomly select 5 parts and evaluate by the 5-fold
cross-validation.

B. Comparision and discussion

Three approaches are compared by several aspects:
the pre-processing, the training data and the execution
time, the extensibility, and the accuracy.

o Pre-processing: CNN_SEG and CNN_IMG are
quite simple as they only perform data extrac-
tion. However, in CNN_ASM, the disassemble
process depends heavily on CPU architectures.
Fortunately, IoT malware rarely uses obfuscation
techniques compared to PC malware.

o Training data generation and execution time: The
byte sequences and the color images are the fixed-
sized data structures, and we can set the size for

inputs, which is under the tradeoff between the
accuracy and the execution time for the training.
For instance, CNN_SEG has the balanced tradeoff
at 2M bytes length.

Length of Bytes | Accuracy | Training Time
5M bytes 91.6% > 2 hours
2M bytes 90.58% ~ 1 hour
IM bytes 83.86% < 1 hour

In contrast, the assembly code sequence is a
variable-sized data structure. Instead of setting the
input size, we set the number of the convolution
layers, which is under the tradeoff between the
accuracy and the execution time for the training
(equivalently the number of parameters to train).
Since current data set for our preliminary experi-
ments is 1,000 (thus 800 samples for each layer),
we use fairly shallow models with two layers.

o Extensibility: All models can be easily adapted to
other malware datasets. We also try the model of
LSTM for byte sequences (in CNN_SEG), and
the result is lower than CNN. We observe that
LSTM seems working well for files < 0.5MB,
whereas the average size of IoT malware samples
is 1.0MB.

e Accuracy: We estimate the accuracy by the av-
erage hit rate. The accuracy of each method is
shown in Table II. CNN_IMG and CNN_ASM
achieve higher accuracy than CNN_SEQ, Fig. 10
shows the convergence of each method, which is
generally good.

We observe two more points among the results.

— As Fig. 11 shows, the color images of mal-
ware and non-malware are visually different,
and non-malware mostly looks darker. This
means that the entropy of malware is higher
than that of non-malware.

We take goodware samples from Ubuntu,
which are generally much smaller (the av-
erage is 0.07M B) than malware samples
(the average is 1.0M B). The accuracy of
SEQ_ASM may be biased by the size dif-
ference.

386

2018 10th International Conference on Knowledge and Systems Engineering (KSE)

TABLE 11
COMPARISON OF THE ACCURACY.

Fold CNN_SEQ CNN_IMG _CNN-ASM
NoOp Ops
1 863 100 100 100
2 82.8 100 100 100
3 97.5 100 100 9825
4 97.5 100 100 100
5 88.8 100 100 100
Ave. 90.58 100 100 99.65

A~ AN
AN AR \/\\/

NN ASM Noy

Fig. 10. Average accuracy transition during training process.

V. CONCLUSION

This paper compared three CNN-based approaches
for IoT malware detection on 1,000 IoT malware
samples for x86. The approaches vary with the input
data structures, i.e., byte sequences, color images, and
assembly instruction sequences. Among them the first
two data structures are fixed-sized, and the last is
variable-sized. Experimental results showed that either
approach works quite well, probably partially because
IoT malware does not use obfuscation techniques. We
also observe and compare them from several criteria,
e.g., the complexity of the pre-processing step, the
training data and the execution time, the extensibility
and the accuracy. Our experiments are preliminary and
we would like to try on larger sets of malware (as well
as other platforms different than x86) to confirm our
current observation.

REFERENCES

[1] “Mcafee labs threat report,” Tech. Rep., March 2018.

[2] J. O. Kephart et al., “A biologically inspired immune system
for computers,” in Artificial Life IV: proceedings of the fourth
international workshop on the synthesis and simulation of
living systems, 1994, pp. 130-139.

[3] M. Sharif, A. Lanzi et al., “Automatic reverse engineering of
malware emulators,” in Security and Privacy, 2009 30th IEEE
Symposium on. 1EEE, 2009, pp. 94-109.

[4] P. O’Kane, S. Sezer et al., “Obfuscation: The hidden malware,”
IEEE Security & Privacy, vol. 9, no. 5, pp. 41-47, 2011.

[5] K. A. Roundy and B. P. Miller, “Binary-code obfuscations
in prevalent packer tools,” ACM Computing Surveys (CSUR),
vol. 46, no. 1, p. 4, 2013.

[6] C. Willems, T. Holz et al., “Toward automated dynamic
malware analysis using cwsandbox,” IEEE Security & Privacy,
vol. 5, no. 2, 2007.

[71 M. Ghiasi, A. Sami et al., “Dynamic malware detection using
registers values set analysis,” in Information Security and
Cryptology (ISCISC), 2012 9th International ISC Conference
on. IEEE, 2012, pp. 54-59.

[8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

387

020 folds. 920 folds.
o o

(a) set of malware (b) set of goodware

Fig. 11. Dataset (a) malware and (b) goodware

C. Ravi and R. Manoharan, “Malware detection using windows
api sequence and machine learning,” International Journal of
Computer Applications, vol. 43, no. 17, pp. 12-16, 2012.

X. Jiang, X. Wang et al., “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in
Proceedings of the 14th ACM conference on Computer and
communications security. ACM, 2007, pp. 128-138.

N. M. Hai, M. Ogawa et al., “Obfuscation code localization
based on cfg generation of malware,” in International Sym-
posium on Foundations and Practice of Security. ~ Springer,
2015, pp. 229-247.

Y. LeCun, L. Bottou et al., “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

Y. LeCun, Y. Bengio et al., “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

Y. Hechtlinger, P. Chakravarti et al., “Convolutional neural
networks generalization utilizing the data graph structure,”
2016.

G. Hinton, L. Deng et al., “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four
research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82-97, 2012.

Q. V. Le, W. Y. Zou et al.,, “Learning hierarchical invari-
ant spatio-temporal features for action recognition with inde-
pendent subspace analysis,” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. 1EEE, 2011,
pp. 3361-3368.

D. Silver, A. Huang et al., “Mastering the game of go with
deep neural networks and tree search,” nature, vol. 529, no.
7587, pp. 484-489, 2016.

Y. N. Dauphin, A. Fan et al., “Language modeling with gated
convolutional networks,” arXiv preprint arXiv:1612.08083,
2016.

E. Raff, J. Barker et al., “Malware detection by eating a whole
exe,” arXiv preprint arXiv:1710.09435, 2017.

M. Cogswell, F. Ahmed et al., “Reducing overfitting in deep
networks by decorrelating representations,” arXiv preprint
arXiv:1511.06068, 2015.

M. Abadi, A. Agarwal er al, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: https:
/Iwww.tensorflow.org/

F. Chollet et al., “Keras,” https://github.com/fchollet/keras,
2015.

J. Su, D. V. Vargas er al., “Lightweight classification of
iot malware based on image recognition,” arXiv preprint
arXiv:1802.03714, 2018.

A. Krizhevsky, I. Sutskever et al., “Imagenet classification with
deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097-1105.

A. V. Phan and M. Le Nguyen, “Convolutional neural networks
on assembly code for predicting software defects,” in Intelli-
gent and Evolutionary Systems (IES), 2017 21st Asia Pacific
Symposium on. 1EEE, 2017, pp. 37-42.

A. Conneau, H. Schwenk et al., “Very deep convolutional
networks for text classification,” in Proceedings of the 15th
Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, vol. 1,
2017, pp. 1107-1116.

