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Abstract. In remote sensing data analysis and computer vision, aerial
image segmentation is a crucial research topic, which has many appli-
cations in environmental and urban planning. Recently, deep learning is
using to tackle many computer vision problem, including aerial image
segmentation. Results have shown that deep learning gains much higher
accuracy than other methods on many benchmark data sets. In this work,
we propose a neural network called NASNet-FCN, which based on Fully
Convolutional Network - a frame work for solving semantic segmenta-
tion problem and image feature extractor derived from state-of-the-art
object recognition network called Neural Search Network Architecture.
Our networks are trained and judged by using benchmark dataset from
ISPRS Vaihingen challenge. Results show that our methods achieved
state-of-the-art accuracy with potential improvements.

1 Introduction

Semantic segmentation is a task of predicting dense-pixel maps from original
input images. Each pixel is mapping with predefined classes such as car, tree,
building. This is the fundamental research topic in remote sensing data anal-
ysis and has many applications in real-life for example urban planning, forest
management and environmental modelling. Although having been extensively
researched for about two decades, there is still no fully automated method used
in practice. The main challenge of this task is the heterogeneous appearance and
high intra-class variances of objects e.g buildings, streets and cars on very high
resolution images [1].

In the past, [2H5] used the hand-crafted feature extracted from one pixel or
a window of small size of aerial image as the input feature for classification al-
gorithm e.g Support Vector Machine, Random Forest, AdaBoost to learn the
non-linear decision boundary between classes. Other researches [6,/7] used unsu-
pervised feature learning algorithm to create input feature for neural network
learning on road detection task. The unsupervised feature learning algorithm is
proved that it can learn filters similar like oriented edge detectors and Gabor
wavelets and possibility choose the right filters for given task.

Recently, deep learning, especially deep convolutional neural network(CNN),
has been used to tackle many problems in computer vision and boost the accu-
racy of these problems and achieved state-of-the-art results compared with other
methods. For semantic segmentation task, Fully Convolutional Network(FCN)



[8] is the first works try to use CNN to build pixel-to-pixel prediction. FCN used
object recognition neural network architectures as feature extraction step and
the feature map is upsampled by using fractional stride convolution or deconvo-
lution layer.

In this work, we build up our semantic segmentation network based on the
state-of-the-art object recognition network called Neural Architecture Search
Network(NASNet) [9] and FCN framework. We evaluate our model performance
on the challenging ISPRS dataset [1] and compare to other state-of-the-art re-
sults. We also investigate the effect of stronger image feature extractor on the
semantic segmentation results. To the best of our knowledge, our work is the
first applying NASNet [9] to semantic segmentation task.

Section IT will describe the research using CNN in object recognition and se-
mantic segmentation of aerial image. In the following, section III we will explain
our model in detail. The experiment results on the dataset of ISPRS challenge
are demonstrated in section IV. Our paper ends with conclusion in section V.

2 Related Work

In this section, we will briefly review some works using CNNs for object recog-
nition and semantic segmentation task.

Currently, deep convolution neural network has dominated the ImageNet
Large Scale Visual Recognition Competition(ILSVRC) since 2012, when the
eight-layer CNN named AlexNet [10] was proposed. In ILSVRC 2014 compe-
tition, the VGGNets |11] consists of 19-layers or 16-layers, having smaller filter
size than the filter size of AlexNet [10] but still get the same effective recep-
tive field as large kernel size in AlexNet. GoogleLeNet [12] has more layer than
the two previous, but using less parameters than AlexNet [10] 12 times. The
idea of adding more layers for increasing accuracy became a revolution when
ResNet [13] - a 152-layer network with top 5-error better than human perfor-
mance was introduced. ResNet |13] used residual connection to ease the training
of the networks. Inspired by residual connection in ResNet [13], DenseNet [14]
established connection with other layer in each dense block to take advantage of
feature reuse and reduce vanishing gradient problem. Usually, each novel archi-
tecture as in [10}/12H14] requires a great amount of time to design architecture
and do experiments. To ease the process of finding new neural network archi-
tecture, AutoML [15] has been developed and used by Google Brain to find the
new CNN models achieving the highest accuracy in object recognition task.

Semantic segmentation task usually uses the object recognition network as
feature extractor part before learning the prediction map for each pixel in dif-
ferent ways. In [8], FCN proposed by Long used the feature map from final and
intermediate layers to learn the upsample feature map. Meanwhile, [16,/17] cre-
ated a symmetric encoder-decoder architecture and residual connection is added
from feature extractor part to enhance detail features. Instead of upsampling
small feature map to get the original size, [18-21] use dilated convolution [22] to
keep the size of feature map unchanged and reduce the impact of field-of-view



problem in normal convolution kernel. Other works [23] use prediction map at
multiple scale to learn the model parameters.

In the past, neural network applied to aerial image segmentation by using
patch-based approach. Neural network is considered as a classification for pixel
in the center of a fixed-size window of pixels extracted from original high res-
olution images. Recent works based on the method that has gained successful
results in semantic segmentation. [24] modified the FCN architecture by using no
downsampling layer and increasing the kernel and padding size of pooling layer
in the VGG network to reduce the computational cost but still achieved the same
accuracy compare to FCNs. Ensemble prediction is also employed as in [25}[26].
In [26], an ensemble of SegNet model is constructed by using multi - kernel con-
volution size at the last decoder layer to combine predictions at various scale,
resulted in smoothing predictions. Additional channels such as Digital Surface
Model (DSM), Normalized Difference Vegetation Index (NDVT), Normalize DSM
(nDSM) are employed to the model to boost the accuracy. In [27], author pro-
posed a method to increase the boundary-detection accuracy by using additional
edge information extracted from boundary-detector network HED [28] to create
edge-channel for image, achiving state-of-the-art results on ISPRS dataset.

3 Method

3.1 Neural Architecture Search Network (NASNet)

Finding a neural network architecture achieving the state-of-the-art results re-
quires a great effort of designing and training from researchers. Different with
other previous architectures, NASNet architecture is found automatically by Au-
toML system [15]. The main components of NASNet are two types of cell: Normal
Cell and Reduction Cell. Reduction Cell will reduce the width and height of fea-
ture map by a half after forwarding the input feature map through. In contrast,
Normal Cell will keep these two dimension the same as the input feature map.
The general structure of NASNet is built by stacking N Normal Cell between
Reduction Cell as in Fig[I] There are two types of NASNet model, NASNet-large
with N equal to 6 aims to get maximum possible accuracy and NASNet-mobile
with N equal to 4 focus on running on limited resources devices.

Each cell in Normal Cell or Reduction Cell is composed of a number of
blocks. Each block is built from the set of popular operations in CNN models
with various kernel size e.g: convolutions, max pooling, average pooling, dilated
convolution, depth-wise separable convolutions. Finding best architecture for
Normal Cell and Reduction Cell with 5 blocks is described details in [9]. The
best structure of Normal Cell and Reduction Cell is described in Fig [3]

3.2 Fully Convolution Network(FCN)

FCN [§] is the pioneering work in applying CNN to semantic segmentation by
taking advantage of succeed object recognition model. To satisfy the pixel-dense



prediction requirement of semantic segmentation, FCN replace the last fully-
connected layer in the object recognition network by convolution layer. By using
convolution layer with kernel size 1 by 1, it can squash the number of channels in
the last convolution layer to the number of classes. The feature map then is up-
sampled by using deconvolution layer or bilinear upsampling operation. We can
get the desired dense-pixel feature map from the previous predicted map, but
the predicted label are too coarse. In order to overcome these issue, the authors
combine the output prediction map with lower layers by summing feature maps
of the same size, thus allow models make the local prediction that respect global
structure. Also, it requires smaller stride step during deconvolution process, thus
improves the details and accuracy of dense prediction.
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Fig. 1. NASNet general structure [9].
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Fig. 2. Normal Cell and Reduction Cell architecture @

3.3 Owur proposed model

The idea of FCN [8] can be applied to other CNN for object recognition to solve
pixel-dense classification task. As in , authors experiment with three differ-
ent architectures: AlexNet , GoogleLeNet and VGG . The VGG
model achieved the best performance over these three models. For the aerial im-
age segmentation, there are some works using FCN framework and ResNet ,
VGG as the feature extractor and achieved competitive results. But none
of the works apply NASNet ﬂgﬂ model as feature extractor part and compare
results with other methods using FCN idea. Also as stated in ﬂgﬂ, the accuracy
of Faster-RCNN model for object detection and localization task is boosted
when plugin NASNet model to the Faster-RCNN. With all of that reasons, we
want to investigate the effect when using NASNet model for aerial image seg-
mentation task.

Our model follows the same design of FCN-8s as in [§]. By excluding the fully
connected layer from the network and add the deconvolution layer with kernel



size and stride equal to 4 and 2 respectively, we can double the feature map size.
After that, we fuse the upsampled feature map with all of the output in Normal
Cell of NASNet having the same size to encourage finer details in prediction map.
The process of doubling feature map size and fusing them is continued in the
same fashion as described before. For the last upsampling operation, we use the
deconvolution layer with kernel size equal to 16 and stride equal to 8 to produce 8
times upsample feature map. Now the feature map has the same width and height
as with the original input. The predicted feature map is then passed through a
softmax function, resulting prediction probability vector for each pixels. The loss
function is calculated by using average sum cross-entropy across dense-pixel of
ground truth and the probability map. Back-propagation algorithm is employed
for optimizing the loss function as usual. In this work, we use two verisons of
NASNet: NASNet-large and NASNet-mobile to create semantic segmentation
models called NASNet-large-FCN and NASNet-mobile-FCN respectively. The
next section will describe experiments and results in details.
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Fig. 3. Original FCN model based on VGG [3g].

4 Experiment

4.1 Dataset

Our models are evaluated using ISPRS Vahingen 2D semantic segmentation
dataset as in . There are 33 patches, each of them contains very high resolution
(more than 5 million pixels) true ortho photo (TOP) and Digital Surface Model
(DSM) data with 9-cm ground sampling distance. Each TOP image contain three
information in three channels : infrared, red, green (IRRG). The goal of these
challenges is to label each pixel of the image with one of six classes: building, low
vegetation, tree, car, clutter and impervious surface. There are 16 images with
groundtruth provided for training purpose out of all 33 patches. Illustration
of data can be found in Fig [4 This task is challenging because of complex
appearance of objects e.g buildings, streets, trees and cars in very high-resolution
data.
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Fig. 4. Example of the dataset. (a) IRRG image, (b) DSM image, (c) Groundtruth
image

4.2 Environment setup

For training and prediction, we used a cluster with 2 x Intel(R) Xeon(R) CPU E5-
2697 v4@ 2.30GHz, 64GB of RAM and Nvidia Tesla K40m GPU. The operating
system is Cent-OS 7. For implementation, we use Python 2.7, Keras frame-
work with Tensorflow backend.

4.3 Implementation details

From the very high-resolution image, we randomly extract 1000 square regions
of 224 by 224 from each TOP images. The extracted data is divided to two
set: training set and validation set. Eighty-percent of data is used for training,
the others is used for validation process. Model is trained from scratch, using
Adam optimization algorithm with fixed learning of 0.0001, batch size of
10, and stop learning when model starts overfit. We do not put much effort to
find the best hyper-parameter set due to computation resources limitation. For
the prediction phase, we slide a square window of 224 by 224 through the test
image and generate prediction map for each window image. We used overlap
prediction to smooth the prediction map at boundary of extracted windows.
The python code for training process can be found at https://github.com/
thinh2/NASNet_FCN.

4.4 Results

The pixel-dense prediction maps are judged by the benchmark organizers. The
competition website public the results and methods each team used in their
submissions. For evaluation metric, the F1 score for each classes overall test set
is derived, together with the overall accuracy as described in .
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Table 1. Results on ISPRS Vaihingen dataset.

Submission Imp suf Building Low Tree Car Overall

veg Acc
RIT_L8 89.6% 92.2% 81.6% 88.6% 76.0% 87.8%
ADL.3 89.5% 93.2% 82.3% 88.2% 63.3% 88.0%
BKHN_9 90.7% 94.4% 81.8% 88.3% 80.9% 88.8%
DLR.9 92.4% 95.2% 83.9% 89.9% 81.2% 90.3%
BKHN 4 92.7% 95.1% 84.7%  89.8% 86.6%  90.7%
VNU1 89.2% 92.6% 80.1% 88.0% 74.6% 87.5%
VNU2 89.8% 92.0% 81.3% 88.2% 67.7% 87.8%
VNU4 91.2% 93.6% 81.5% 88.5% 77.7% 89.0%

Table[l] shows our prediction results over ISPRS Vaihingen dataset and some
selected results from challenge website. We have three models named VNUI,
VNU2, and VNU4 which used the original FCN-8s model [8], NASNet-mobile-
FCN and NASNet-large-FCN respectively. As we can see, with deeper layers for
learning image features, NASNet-large-FCN achieved higher accuracy than the
two others. Meanwhile, the NASNet-mobile-FCN achieved the same accuracy
with original FCN-8s model, but using fewer parameters (5 millions vs 134 mil-
lions). The NASNet-mobile-FCN model also surpass the performance of RIT_LS,
which used an ensemble of FCN and random forest with the hand-designed fea-
ture. The NASNet-large-FCN model achieved slightly higher accuracy than the
BKHN_9 and ADL_3 results, which used Fully Convolutional DenseNet [33] and
patch-based prediction [34].

Compare with other methods achieved state-of-the-art results, our methods
do not outperform the top accuracy e.g DLR_9 and BKHN _4. Both of these meth-
ods used the additional data channel and ensemble learning, achieved greater
than 1% compare with our current best overall accuracy prediction. While DLR._9
uses edge information extracted from original image as additional input channel
for learning and prediction, BKHN 4 ’s method uses height information from
nDSM and DSM data for learning ensemble of the FCN models. Our models do
not use the height data, it leads to some mis-classified region where buildings are
covered by shadow and is classified as clutter class. Examples of our prediction
and other team prediction can be found in Fig

5 Conclusions

In this work, we employed the state-of-the-art object recognition model NASNet
and FCN framework to tackle the aerial image segmentation problem. Experi-
ment results show that the NASNet model boost the accuracy of original FCN-8s
models and achieved state-of-the-art results with potential improvments. In the
future, we will apply NASNet to other semantic segmentation framework and
use post-processing technique e.g Conditional Random Field to boost the per-
formance of our models.



Fig. 5. Some prediction results from test set.Left: IRRG image, Middle: Our NASNet-
large-FCN prediction, Right: BKHN_4 predictions.
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