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Abstract

The real social network and associated communities are
often hidden under the declared friend or group lists in
social networks. We usually observe the manifestation
of these hidden networks and communities in the form
of recurrent and time-stamped individuals’ activities in
the social network. Inferring the underlying network
and finding coherent communities are therefore two key
challenges in social networks analysis.

In this paper, we address the following question:
Could we simultaneously detect community structure

and network infectivity among individuals from their ac-

tivities? Based on the fact that the two characteristics
intertwine and that knowing one will help better reveal-
ing the other, we propose a multidimensional Hawkes

process that can address them simultaneously. To this
end, we parametrize the network infectivity in terms of
individuals’ participation in communities and the pop-
ularity of each individual. We show that this modeling
approach has many benefits, both conceptually and ex-
perimentally. We utilize Bayesian variational inference
to design NetCodec, an efficient inference algorithm
which is verified with both synthetic and real world
data sets. The experiments show that NetCodec can
discover the underlying network infectivity and commu-
nity structure more accurately than baseline method.

1 Introduction

The exponential growth of recorded social activities has
inspired many interesting research directions. From in-
dividual activities, a curious analyzer would like to infer
more about the social networks as a whole. For exam-
ple, how contagious individuals’ activities are on each
other? Are people forming coherent groups or com-
munities in their activities? What is a person’s role
in his/her perceived community? Is it possible to pro-
cess the massively available data to answer these crucial
questions? These are naturally very interesting and im-
portant research questions. The answers to these ques-
tions are already having significant impact in practice.
For example, in viral marketing, one would like to max-
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imize influence of product advertisement with the least
cost. To that end, it is highly beneficial to correctly de-
tect social communities and pinpoint popular individu-
als whose popularity assures maximized product adop-
tion [8].

Both network infectivity inference and commu-
nity detection from activities have been addressed ex-
tensively. While they are usually studied separately
[22, 12, 2], event cascades and clusters are natural duals:
clusters block the spread of influence, i.e., whenever a
cascade of events comes to a boundry, there is a cluster
that can be used to explain why [6]. On the other hand,
if a cluster can justify a cascade comes to a stop, then
past chain of events can find out something about the
clusters.

Based on this fact, we propose a modeling approach
that takes into account both network infectivity and
community structure in modeling individual activities.
Our modeling approach leverages a key observation
that these characteristics of a social network intertwine
and knowing one would help better understanding and
revealing the other. As a result, it is possible to
simultaneously infer network infectivity and to detect
community structure from individual activities. The
proposed method also benefits from having fewer model
parameters than existing approaches in literature. This
is highly useful as one usually only has limited event
data and having fewer model parameters often implies
less variance and less algorithmic complexity.

In particular, we propose NetCodec (NETwork
COmmunity DEteCtion), a scalable variational infer-
ence algorithm for simultaneous network infectivity in-
ference and community detection from individual ac-
tivities or events. The key idea of the algorithm is
to factorize network infectivity into community partic-
ipation and individual popularity and to leverage the
mean field variation inference framework to estimate
the community participations. Our algorithm can esti-
mate the network infectivity and community structure
of a network with I nodes, G groups with O(kNG+IG)
computations per iteration, where N is the number of
recorded events in a certain time frame, and k is the av-
erage number of relevant historical events (k � N). We
validate NetCodec in various simulated and real-world
situations.
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I number of individuals/nodes
G number of groups
N number of events

λi(t) intensity at time t of user i
μi spontaneous rate of user i
βi the celebrity index of user i

Zi ∈ R
G
+ group participation vector of user i

αij infectivity rate from user j to user i
κ(t) triggering kernel

K(t) the integral
∫ t

0
κ(τ)dτ

ag, bg Gamma distribution parameters
�, n event indices, � < n if both present

Table 1: Notations

1.1 Problem settings We assume that there are I
identities (e.g. individuals, users, sources) that could
be grouped into G groups and that their activities
are contagious following some network infectivity rate.
The community structure and network infectivity are
unknown to us. Instead, we only know the time and
the identity of events (e.g. posts, comments, purchases,
earthquakes) occurred in a time frame. The natural
question is that “Could we recover both community
structure and network infectivity simultaneously from
their activities?”.

Specifically, let the time and identity of events form
a set of C cascades {(tcn, i

c
n)n=1...Nc

}c=1...C , where t’s
are the time of events and i’s are the identities. The
observation time frame for the c-th cascade is [0, Tc].
We would like to find a participation matrix Z = [zig] ∈
R

I×G
+ where zig represents how strong the i-th node

associates to the g-th group. We also want to find an
infectivity matrix F = [αij ] ∈ R

I×I
+ where αij represents

how the j-th node influences the i-th node. In the
following, the terms “identity”, “user”, “node” have the
same meaning.

In Section 2, we discuss our approach and the
modelling technique in more details. In Section 3
we derive NetCodec, a variational inference algorithm
that efficiently infers network infectivity and detects
coherent communities. In Section 4, we report the
experiment results where we apply the model on various
simulated and real world situations. In Section 5, we
conclude the paper with some remarks on the proposed
method and future directions. Before proceeding, let us
discuss the related literature on the proposed problem.

1.2 Related Works. Recently, there has been a
growing interest in network inference from event data.
Authors in [9] were one of the first who tackle the prob-
lem of inferring network from the event data. Given the
times when nodes adopt pieces of information or be-
come infected, they approximate the optimal network
that best explains the observed infection times. Perry

et al. [19] introduced a model for treating directed inter-
actions as a multivariate Cox intensity model with co-
variates that depend on the history of the process and
learned the parameters using partial likelihood. Au-
thors in [15] proposed a probabilistic model that com-
bines mutually- exciting point processes with random
graph models to infer latent networks. These models,
while not being closely related, try to answer how nodes
in the network are generally connected or how they in-
fluence each other. In contrast our model, directly in-
volves community structure in the modeling.

More closely, authors in [1] proposed a generative
model, Community-Cascade Network, based on mixture
membership that can fit, at the same time, the social
graph and the observed set of cascades. This model,
nicely elaborates on the community detection and net-
work inference, however, the nature of events data ob-
served is too far from real applications. They require
the data has been observed along with the chain of in-
fluence, i.e., which event causes this event. Further-
more, [14] aims at a similar problem, however, as the
previous work the definition of event is far from the real
data in hand. The event, contains some nodes partic-
ipating in an event (eg. a party) along with the edges
(friendships) between them. In their promising work,
Zhou et al. [23], considered the community structure of
the network in point process data via adding a regular-
ization term based on nuclear norm. The community
structure is only captured indirectly via regularization
to enhance parameters estimation and thus cannot find
the underlying modules in the network.

After Hawkes [10] originally proposed this
mutually-exciting process it has been proved to
be useful in various areas such as finance [7], seismology
[18, 16], crime [20], and recently causal militant conflict
events [13]. For social and influence networks, there
are also recent uses of variants of Hawkes processes for
analyzing Youtube movies [3], news websites [11, 23],
and book sales [5].

2 Modeling Network Activities

In this section, we will discuss our approach to the prob-
lem set out in Section 1. We will first review the mul-
tidimensional Hawkes process as the basis for modeling
event data. We then discuss our modeling technique
where one could leverage community structure to help
better revealing network infectivity. The readers could
refer to Table 1 for the notations used in this paper.

2.1 Multidimensional Hawkes processes. The
Hawkes process is an important model for time-stamped
events. In its simplest form, the one-dimensional

Hawkes process is a point process N(t) with its con-
ditional intensity being [10]
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λ(t) = μ+ α

∫ t

−∞

κ(t− s)dN(s) = μ+ α
∑
t�<t

κ(t− t�),

where μ > 0 is the spontaneous (base) intensity, Ht =
{t� < t} are the timestamps of historical events before
time t and κ(t) is the decay triggering kernel. We
focus on the exponential kernel κ(t) = he−ht

I(t ≥ 0)
where I(·) is the indicator function and h is the mean
parameter. The intensity λ(t) is the rate at which new
event happens in a infinitesimal interval after t.

The multidimensional Hawkes process is a multi-
dimensional point process that models time-stamped
events from multiple individuals/entities. It allows ex-
plicit representation of network infectivity among indi-
viduals. The intensity function for the i-th dimension
depends on past events as followings

(2.1) λi(t) = μi +
∑

t�<t
αii�κ(t− t�),

where μi > 0 is the spontaneous intensity for the i-
th dimension and i� is the dimension identity of the
�-th event. The nonnegative coefficient αij captures
the mutually-exciting property between the i-th and
the j-th dimensions. It shows how much influence the
events in j-th dimension has on future events in i-th
dimension. Larger values of αij indicates that events in
j-th dimension are more likely to trigger an event in the
i-th dimension in the future.

In the next section, we will discuss our modeling
technique that takes into account the community struc-
ture of the networks. We propose that the community
structure helps not only better revealing the network
infectivity but also reducing the number of parameters
of the models.

2.2 Modeling network activities. From the mod-
eling perspective, we would like to incorporate as many
key characteristics of network infectivity as possible.
Regarding within-community infectivity, naturally, in-
dividuals affiliated with same communities would have
more influence on each other than individuals affiliated
with different communities. This natural and key ob-
servation inspires us to make an assumption that net-
work infectivity among users’ activities depends on how
strongly each individual participates in his/her commu-
nity activities. The network infectivity matrix is also
asymmetric in that a node could have strong influence
on another node but not vice versa. These popular
nodes’ activities tend to trigger a wider wave of events.

Regarding cross-community infectivity, individuals
in a community often share some common understand-
ings about individuals in other communities. For exam-
ple, people in a country X have some stereotype about
people in country Y. Therefore, a post by a person in

(a) Cross-group infectivity

(b) Core group and peripheral nodes

Figure 1: Different network scenarios and the corre-
sponding infectivity matrices.

country Y or about country Y will trigger certain com-
mon responses from people in country X. This situation
happens regularly in chat rooms, blogs, and comment
sections in the World Wide Web. The marginalization
effect of the latent group identity therefore implies a
low-rank structure of network infectivity. We also would
like to incorporate this crucial observation in our mod-
eling approach.

To proceed, let Zi = (zi1, . . . , ziG) > 0 be user i’s
degree of participation to the G groups. Furthermore,
let βi > 0 represents how popular user i is on the
network, a celebrity index. We propose the following
factorization of the infectivity of user j to another user
i’s activities

αij = βj〈Zi,Zj〉 = βj

∑G

g=1
zigzjg, i �= j.

As one could see, the more user i and user j participate
in the same communities, the stronger the infectivity
is. Besides, the popularity of user j also boosts his/her
influence on user i’s activities. The decomposition also
shows the asymmetry as well as the low-rank implica-
tion of network infectivity. Note that, we only enforce
the low-rank structure on the off-diagonal elements of
network infectivity. This is a crucial difference in com-
parison to methods in matrix factorization literature.

Regarding the self-exciting property, we propose
that one should not decompose the self-exciting rate αii

and that one should consider it as a model parameter
to infer from observed data. The reason is that self-
exciting characteristic is an intrinsic property of each
individual that is unrelated to his/her relation with
other individuals. To keep the notation clear, we denote
αi = αii, i = 1 . . . I.

To summarize, the previous reasoning leads to the
following decomposition of the intensity function
(2.2)

λi(t) = μi +

i� �=i∑
t�<t

G∑
g=1

βi�zigzi�gκ(t− t�) + αi

i�=i∑
t�<t

κ(t− t�).

Before we proceed, let us discuss some properties
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and advantages of this modeling approach. First, the
most obvious advantage is that the number of parame-
ters to infer from observed data is O(I ×G) instead of
O(I2) in the case of the original Hawkes process. This
reduction is very beneficial given the fact that one often
does not have infinite data. The reduction in number
of parameters tends to make inference less variant. Be-
sides, fewer number of parameters implies less complex-
ity per iteration of the inference algorithm. Second, the
decomposition of network infectivity αij still has more
space for extensions. For example, in social networks,
one could defines another decomposition that takes into
account other activity’s feature such as the post con-
tent and/or ratings. The interested reader could find
some extensions to our model in the supplemental ma-

terial. Another interesting observation is that one could
factorize F into

F− diag(F) = ZZTdiag(β)− diag(ZZTdiag(β)).

This is a non-negative matrix factorization (NMF) of
the off-diagonal elements of F into the off-diagonal ele-
ments of ZZTdiag(β). Thus, one could view our mod-
eling approach as an implicit factorization of the infec-
tivity matrix where the infectivity matrix is unknown
but we know the timestamps of users’ activities. One
could easily see that depending on the structure of the
community participation Z, this point of view allows
many interesting scenarios on network infectivity F. For
example, cross-group infectivity (Figure 1b); dominant
rows/columns for a core group and that peripheral in-
dividuals only connect via this core group (Figure 1c).
Note that, in these scenarios, network infectivity has a
low-rank structure if we only consider the off-diagonal
elements. This factorization perspective opens more re-
search directions to investigate in the future.

The above reasoning inspires us to propose that one
should conceptually views network infectivity and com-
munity structure being two sides of the same problem.
We postulate that these characteristics intertwine and
that knowing one characteristic of the network should
help better revealing the other. In the subsequent sec-
tions, we will focus on the technical aspects of the pro-
posed model. We will start with joint likelihood defini-
tion.

2.3 Joint likelihood. In this section, we will define
the joint likelihood of the event data. First, we choose a
conjugate prior for the community participation matrix
Z. As it turns out later, we can choose a Gamma

distribution, Gamma(a0g, b
0
g), as conjugate prior for each

of zig, i = 1 . . . I, g = 1 . . . G.
Let us assume that we observed set of C cascades

{(tcn, i
c
n)}, n = 1 . . . Nc, c = 1 . . . C, where t’s are the

time of events and i’s are the identity of users. Given

Figure 2: The simplified graphical model of the pro-
posed Hawkes process: solid circle indicates observed
time-stamped data.

Z, the likelihood of this set of cascades is [4]

L(t|Z) =
C∏

c=1

[
Nc∏
n=1

λc
icn
(tcn)× exp

(
−

I∑
i=1

∫ Tc

0

λc
i (t)dt

)]
,

where λc
i (t) is defined in Eq. (2.2) using history of events

up to time t in the c-th cascade. The joint likelihood,
the basis of all derivations that follow, is1

L(Z, t) ∝ L(t|Z)×
∏I

i=1
P(Zi).

In Figure 2, we present the simplified graphical model
corresponding to the proposed Hawkes process. In later
derivations of the proposed method, we will mainly work
with the log-likelihood (detailed expression in supple-
mental material). We will first develop a method for
inferring community participation Z from the observed
cascades, i.e. finding the posterior distribution P(Z|t).

3 Variational Inference

As the posterior distribution P(Z|t) does not have a
nice factorized form, in order to proceed, one could
apply the mean field variational inference framework
[21]. Specifically, we use an approximation distribution
q to the posterior distribution on Z such that Zi’s are
independent,

q(Z) =
∏I

i=1
qi(Zi).

Remarkably, this is the only assumption that one needs
on the approximation distribution q. The goal here
is to find a distribution q as close as possible to the
true posterior distribution P(Z|t). To that end, one
could utilize the following famous decomposition of the
likelihood of observed data

lnP(t) = Eq [L(Z, t)] + E [q] + KL (q‖P(Z|t)) ,

1It is possible to put prior distributions on μ,α,β and to work
in full Bayesian fashion. However, in this work, we only consider
these parameters fixed for clarity.
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where E [q] is the entropy of q and KL (q‖p) =
Eq [ln(q/p)] is the Kullback-Leibler divergence between
two distribution q and p. As one could see from this de-
composition, the better Eq [L(Z, t)]+E [q] approximates
the evidence of observed data, the closer q is to P(Z|t).

3.1 Evidence lower bound. In the followings, we
will bound the the expectation of the joint log-likelihood
Eq [L(Z, t)] from below so that the inference of Z is
tractable.

Theorem 3.1. (ELBO) The expectation of joint log-

likelihood Eq [L(Z, t)] is lower-bounded by

∑I

i=1

∑G

g=1
(a0g − 1)Eq [ln zig]− b0gEq [zig]

+
C∑

c=1

{
Nc∑
n=1

[
ηcn ln

μicn

ηcn
+ γc

n ln

(
αicn

∑ic�=in
�<n κ(tcn − tc�)

γc
n

)

+

ic� �=icn∑
�<n

G∑
g=1

ηgc�n
{
Eq

[
ln(βic

�
zicngzic�gκ(t

c
n − tc�))

]
− ln ηgc�n

}⎤⎦

− Tc

I∑
i=1

μi −

I∑
i=1

∑Nc

n=1
icn �=i

G∑
g=1

βicn
Eq

[
zigzicng

]
K(Tc − tcn)

−
∑I

i=1

∑Nc

n=1
icn=i

αiK(Tc − tcn)

}
,

in which for the n-th event in the c-th cascade, we have

non-negative auxilliary variables ηcn, η
gc
�n, γn such that

ηcn +
∑ic� �=in

�<n

∑G

g=1 η
gc
�n + γc

c = 1.

The proof could be found in supplemental material.
Next, we will optimize the distribution q(Z) and other
model parameters (i.e. μ,α,β). As we are going to see,
the optimal approximation to the posterior distribution
turns out to have a nice factorization form.

3.2 Inferring community participation. Follow-
ing the procedure in [21] for mean field variation infer-
ence, given the lower bound in the previous section, the
optimal distribution q�i (Zi) satisfies

ln q�i (Zi) = Eq
−Zi

[L(Z, t)] + const,

where the expectation is over all Zj , j �= i.
From the expression of ln q�i (Zi) (details in supple-

mental material), one could easily verify that the opti-
mal distribution for Zi has a nice factorization into G
Gamma distributions. This is remarkable because we
do not make any assumption on the parametric form of
the distributions qi(Zi)’s other than their independence.
For each zig, g = 1, . . . , G, one could update its Gamma
distribution parameters as followings

(3.3)

aig = a0g +
∑C

c=1

∑Nc

n=1

∑
�<n

ηgc�nδ
ic
�n,

big = b0g +
∑C

c=1

[∑Nc

n=1
icn �=i

βicn
Eq

[
zicng

]
K(Tc − tcn)

+
∑

j �=i

∑Nc

n=1
icn=i

βiEq [zjg]K(Tc − tcn)

]
,

where δic�n =

{
1, icn = i, ic� �= i or icn �= i, ic� = i,

0, otherwise
.

The definition of δic�n represents the influence of both
past and future events on the posterior distribution.
The other terms involving K(·) come from the normal-
ization term (also known as the survival term in the
field of survival analysis) of the likelihood.

3.3 Updating auxilliary variables. After each up-
date of q, one could further tighten the bound by the
following update formulas2

(3.4)
ηcn ∝ μicn

, γc
n ∝ αicn

∑ic�=icn

�<n
κ(tcn − tc�),

ηgc�n ∝ βic
�
κ(tcn − tc�)e

Eq[ln zicng]+Eq

[
ln zic

�
g

]
.

Note that, one needs to normalize these auxiliary vari-
ables so that their sum is equal to 1. From Eq. (3.4), one
could interpret these auxiliary variables as the respon-
sibilities of spontaneous rate μicn

, the previous events
from other users (i.e. the infectivity αicni

c
�
), and the

self-exciting rate αicn
. In other words, these auxiliary

variables are the probabilities that the n-th event is trig-
gered by these characteristics of the network.

3.4 Inferring individual parameters. For each in-
dividual, we need to estimate the spontaneous rate, self-
exciting rate, and the celebrity index. As it turns out,
these parameters also have the following nice closed-
form updates3
(3.5)

μi =

∑C

c=1

∑Nc

n=1
icn=i

ηcn∑C

c=1 Tc

, αi =

∑C

c=1

∑Nc

n=1
icn=i

γc
n∑C

c=1

∑Nc

n=1
icn=i

K(Tc − tcn)
,

βi =

∑C

c=1

∑Nc

n=1
icn �=i

∑
�<n
ic�=i

∑G

g=1 η
gc
�n∑C

c=1

∑
j �=i

∑Nc

n=1
icn=i

∑G

g=1 Eq [zjgzig]K(Tc − tcn)
.

Fortunately, one could compute the expectations in the
updates (3.3), (3.4), and (3.5) efficiently as z’s are
Gamma random variables4. To summarize, Algorithm

2Given
∑

i xi = 1 and xi ≥ 0, ∀i, the function
∑

i aixi −∑
i xi lnxi attains maximum at x�

i = eai/
∑

j e
aj , ∀i.

3We use the general result
a

b
= argmax

x≥0

a lnx− bx, ∀a, b > 0.

4Specifically, if z ∼ Gamma(a, b), E[z] = a
b
, E[ln z] = ψ(a) −

ln b, where ψ(·) is the digamma function.
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3.1 outlines the steps of our proposed community de-
tection algorithm, NetCodec. In the output step, we
output the mean of Gamma distributions Z = A∅B

where ∅ is the element-wise division operator.

Algorithm 3.1. (NetCodec)

1. Input: Set of cascades {(tcn, i
c
n)n=1...Nc

}c=1...C .

2. Initialization: A,B ∈ R
I×G
+ , μ,α,β ∈ R

I
+.

3. While not converged

(a) For all user i

i. Update i-th row of A and B using (3.3).

ii. Update auxiliary variables using (3.4).

(b) Update μ,α, and β using (3.5).

4. Output: μ,α,β,Z = A∅B.

3.5 Implementation issues.

Stopping criteria. The convergence detection in-
volves computing the evidence lower bound, ELBO, to
Eq [L(Z, t)] + E [q], where E [q] is the entropy of the cur-
rent approximation distribution q. In our implementa-
tion, we stop the iterations when the relative change
of ELBO is below a threshold (e.g. 10−4). In our ex-
perience, the algorithm often stops after less than 40
iterations.

Number of data sweeps. From Algorithm 3.1, we
could see that, for every update of Zi (i.e. the update
of the i-th row of A and B), one needs to update the
auxiliary variables. This results in one sweep over the
data for every update of Zi. However, to scale to large
number of individuals and lengthy cascades, one could
leverage a key observation on the evidence lower bound.
That is, the lower-bound is valid for any set of auxiliary
variables. Using careful book-keeping technique, one
could reduce the number of data sweeps to one in order
to update all Gamma distributions of all users.

Number of relevant historical events. The compu-
tation of the auxiliary variables and the accumulation
of the denominators and numerators of model parame-
ters (i.e. μ,α,β) involves a nested loop over indices �
of events that happened before the n-th event leading
to undesirable O(N2) complexity. This results in the
complexity of each iteration being proportional to N2,
where N is the number of events in a cascade. Luck-
ily, one could skip irrelevant historical events where the
kernel value κ(tn − t�) is small because the correspond-
ing auxilliary variables would also be very small. This
greatly reduces the complexity of the computation to
O(kNG+IG) per iteration where k is the average num-
ber of relevant historical events.

Speed up with parallelization. The computation of
auxiliary variables for each event is completely indepen-
dent of each other. The accumulation of Gamma distri-
bution parameters as well as individual parameters are
also independent. These observations are great sources
for a parallelized implementation.

4 Experiment results

4.1 Performance Evaluation. We evaluate the
performace of the proposed method using the following
criteria

• Normalized Mutual Information (NMI): We com-
pare the estimated clusterings Ω with the ground
truth clusterings Γ using the NMI score

NMI(Ω,Γ) =

∑
k

∑
j P(Ωk ∩ Γj) log

P(Ωk∩Γj)
P(Ωk)P(Γj)

(E [Ω] + E [Γ])/2
,

where Ωk,Γj is the k-th and j-th clusters in Ω and
Γ, respectively, and E [Ω], E [Γ] are their entropies.
The NMI score is a value between 0 and 1, with
1 representing perfect cluster matching. To assign
users to clusters, we use the maximum elements in
each row of Z.

• Kendall Rank Correlation (RankCorr): We com-
pare the estimated celebrity index β with the
ground truth using the following score

RankCorr(x,y) =
Nconcordant −Ndiscordant

I ∗ (I − 1)/2
,

where Nconcordant is the number of pairs of indices
(i, j) that xi > xj and yi > yj , or xi < xj and
yi < yj . The RankCorr score is a value between -1
and 1, with 1 representing perfect rank matching.

• Relative error (RelErr): We compare the infectiv-
ity matrices F using the average relative errror of
their elements. Specifically, we have

RelErr(F1,F2) =
1

I2

∑I

i,j=1
|α2

ij − α1
ij |/|α

1
ij |

• Predictive log-likelihood (PredLik): We also com-
pute the log-likelihood of a hold-out test data set
in order to show the predictive power of the com-
pared models.

Note that, because of the factorization, at best, one
could only recover Z and β up to a constant factor.
Therefore, the NMI and RankCorr scores are more
suitable criteria than the absolute error or squared
error when comparing the participation matrices and
the vectors of celebrity indices.

4.2 Synthetic data. We start with experiments
with simulated data where we know the ground truth
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network infectivity. We generate the ground truth pa-
rameters Z,μ,α,β randomly to satisfy certain stabil-
ity conditions5. The parameters form a network of 500
nodes. We then generate event cascades with different
time frame length settings and also generate a hold-out
set of the same size to use as test set. The time frame
lengths are (103, 5× 103, 104, 5× 104, 105, 5× 105, 106).
In total, there are about 3× 105 events when T = 106.
We run each experiment 10 times and take the aver-
age of the scores over all the 10 runs. We then verify
the convergence of the proposed method by varying the
time frame of the simulations.

We generate data according to two scenarios:

• The nodes form 10 clusters and there are some
cross-group infectivity.

• There is a core group and the remaining nodes only
connect via this core group.

In Figure 3 and 4, we report the performance of the
proposed method in comparison with the Hawkes MLE
solver (denote HAWKES in the figures) in [23] in the two
aforementioned scenarios. The figures show that both
NetCodec and HAWKES are able to increase their per-
formance when the time frame length increases. How-
ever, in comparison to the ground truth, NetCodec out-
performs HAWKES in all performance measures given
the same time frame length. This could be attributed
to the fact that NetCodec models the low rank assump-
tion directly and as a result, it needs to estimate fewer
parameters, hence the better performance in both area.
Especially in the case that there is a core group (Figure
4), there are a lot of near zero elements in the infectivity
matrix making accurate recovery of these elements very
difficult. This explains the high RelErr that both al-
gorithms encounters. However, when there are enough
data, NetCodec is able to recover the infectivity matrix
much better than HAWKES.

In Figure 3d, we show that NMI score of NetCodec
and HAWKES with respect to the ground truth cluster-
ings. As HAWKES provides no clustering, its cluster-
ings are computed via a spectral clustering [17] of the
infectivity matrix. One could see that while both algo-
rithms are able to recover the clusterings with enough
data, NetCodec outperforms HAWKES when data are
insufficient.

4.3 Real-world event data.

MemeTracker. We extract events of the most active
sites from the MemeTracker dataset6. This dataset
contains the times that articles are published in various
websites/blogs from August 2008 to April 2009. We

5The spectral norm of F is less than 1.
6http://www.memetracker.org/data.html

select most active 500 sites with about 8 million events
from these sites.

We use the MemeTracker data provided links be-
tween articles to establish an estimated ground truth of
the clusters. To this end, we count the number of links
between all pairs of sites to build a similarity matrix.
We then run a spectral clustering algorithm [17] on this
similarity matrix with different settings on the number
of clusters. While one could choose the number of clus-
ters based on model scores (i.e. data log-likelihood plus
model complexity) such as Bayesian or Akaike informa-
tion criterion, here, for demonstration purpose, we set
the number of clusters to be 10 and 20. We then run
NetCodec and HAWKES on the timestamped data only
(i.e. without the link information) to find out if these al-
gorithms could recover the estimated ground truth clus-
terings. As mentioned in the experiments on synthetic
datasets, the clusterings for HAWKES are computed via
spectral clustering on the estimated infectivity matrix.

In Figure 5b and Figure 5b we shows the NMI scores
of these algorithms with respect to the ground truth
estimated from the similarity (count) matrix when the
number of clusters set to 10 and 20. One could see that
in both settings NetCodec is able to recover part of the
clusterings while HAWKES fails on this dataset.

In Figure 5c, we visualize the clustering result (i.e.
the participation matrix Z). Detailed examination of
the clusters produced by NetCodec shows some con-
sistent clusters spanning common categories. Exam-
ples of clusters found by NetCodec and their respec-
tive popular websites having with high celebrity in-
dex are news (reuters.com, npr.org), business (business-
week.com, forbes.com, cbsnews.com), and technology
(hardwarezone.com, digitalcamerareview.com). There
are consistent clusters with nationality identity such as
Brazilian sites, Japanese sites, Italian sites. One should
note that the clusters are formed using purely times-
tamps of activities/events happened on this sites. The
results show that the activities on these sites allow us
to group them into meaningful clusters.
Earthquake. The next dataset that we investigate is
the Earthquake dataset7. We download 16000 earth-
quakes that have minimum magnitude 4 in the 12
months from Oct. 2013 to Oct. 2014. The earth-
quake information contains location (i.e. longtitude,
lattitude) and timestamps in seconds (see Figure 6, red
dots are big cities, colored bigger dots are earthquake
locations). In this experiments, we only use the times-
tamps of the earthquakes (divided by 3600 to convert
to hours) as input to the inference algorithms to inves-
tigate if timestamped information results in a coherent

7http://earthquake.usgs.gov/earthquakes/
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Figure 3: Cross-group infectivity scenario: comparison to ground truth (left) average RankCorr of columns of
network infectivity matrix; (middle) average RelErr of elements of the infectivity matrix; (right) predictive log-
likelihood on test data.
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Figure 4: Core group scenario.

10
4

10
5

10
60.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
M

I

Time frame length

NetCodec
HAWKES

(a) NMI (10 clusters)

10
4

10
5

10
60.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
M

I

Time frame length

NetCodec
HAWKES

(b) NMI (20 clusters) (c) 20 clusters (NetCodec)

Figure 5: Clustering results on MemeTracker dataset.

clustering. To establishes the identities of events (i.e.
the i’s variables), we draw a longtitude/lattitude grid
on the global map and all earthquakes that occur in a
grid square (of size 2 × 2) will have same identity. In
total we have 1021 identities and our goal is to classify
these identities into clusters. We run NetCodec with
exponential kernel (λ = 0.04) and report the clustering
result in Figure 6. One could see that there are geo-
logical regions where earthquakes form clusters. This
is remarkable as we use only timestamped information.
The location information are used only to form identies
and then discarded. More detailed discussion could be
found in the Appendix. A future experiment direction
would be incorporating location information, possibly
by using a kernel that takes location of events into ac-

Figure 6: Clustering results on Earthquake dataset.

count.

5 Conclusion

In this work, we propose that one could infer the net-
work of social influence along with its community struc-
ture from the observed recurrent events in the social

98 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

3/
16

 to
 1

12
.1

37
.1

29
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



networks. To that end, we utilize the key observation
that regular activities often raise influence among users
in the same group. The proposed model based on the
Hawkes model is designed to take into account this ob-
servation and other assumptions such as the low-rank
structure. The inference algorithm following the mean-
field variational principle nicely consists of closed form
updates that could be sped up by various implementa-
tion techniques including parallelism. The experiments
on simulated dataset show that the proposed model
could estimate both network infectivity and and com-
munity structure and produce better predictive model
with less training samples than the baseline methods.
Experiments on real dataset show that the proposed
method are able to produce meaningful clusters using
only activities from websites.

There are interesting paths to extend this study:
First, we plan to investigate the extensions that cover
other features of an event, for example, document
content and ratings. The content and ratings effects
on community structure could be expressed in the
factorization of the influence between events. Moreover,
it is also interesting to incorporate the memes/trends
and community structure in one model.
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NSF/NIH BIGDATA 1R01GM108341-01.
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