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Abstract—Phylogenetic trees inferred from protein 
sequences are strongly affected by amino acid substitution 
models. Although different amino acid substitution models 
have been proposed, only a few were estimated for specific 
species such as the FLU model for influenza viruses. Among 
the most dangerous viruses for human health, dengue is always 
on top and the cause of dengue fever up to 100 million people 
per year. In this study, we built a specific amino acid 
substitution model for dengue protein sequences, called DEN. 
The dengue protein sequences were obtained from the NCBI 
dengue database and the model was estimated using the 
maximum likelihood method. Experiments showed that the 
new model DEN helped to build better phylogenetic trees than 
other existing models. We strongly recommend researchers to 
use the DEN model for analyzing dengue protein data. 

Keywords— dengue virus, amino acid substitution model, 
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I. BACKGROUND  
Amino acid substitution models (models for short) have 

an important role in many protein analyses such as 
measuring the genetic distance among protein sequences or 
building phylogenetic trees. The standard amino acid 
substitution model consists of two components: a 20 x 20 
instantaneous substitution rate matrix, in which element at xth 
row and yth column (except entries on the main diagonal) 
represents the substitution rate between amino acid x and  y 
per time unit,  and a vector of 20 amino acid frequencies 
[1][2].  

There are two main approaches to estimate amino acid 
substitution models, the distance-based approach and the 
maximum likelihood approach. The distance-based approach 
assumes that the exchangeability probability from amino 
acid x to y over a period is linear to the number of amino acid 
substitutions between x and y. Thus, the rates are directly 
estimated from data. The two most widely used models 
deriving from the distance-based method are PAM and JTT 
[3][4]. The advantage of this approach is the fast estimation 
time, however, it is only applicable to closely related amino 
acid sequences (i.e., the similarity among sequences is 
greater than or equal to 85%). The maximum likelihood 
method was proposed by Felsenstein [1] with the goal to 
estimate both phylogenetic trees and amino acid models 
together in order to maximize the likelihood of data [1][5]. 
Though, the estimation process is much more time-
consuming, but it does not constrain sequences to be highly 
similar. The models estimated from general protein 
sequences are usually called general models. LG is one of 

those general models as it was estimated from general 
protein sequences in the Pfam database [2]. Currently, LG is 
usually considered as the best general amino acid 
substitution model. 

Although a number of general models have been 
calculated from diverse databases, the evolutionary processes 
of different species vary considerably. As a result, the 
general models might not fit for a specific species. A number 
of models have been built for different viruses. Among 
dangerous viruses, HIV viruses, retrovirus and influenza 
viruses have been carefully examined [6][7][8]. Specifically, 
the HIV-specific models [6] indicate an outstanding fit when 
applied to the HIV data in comparison to other general 
models. The influenza-specific model [8] was introduced by 
Dang et al., learned from millions of residues. Experimental 
results demonstrated a significant better in analyzing 
influenza protein sequences than other models. Similarly, 
rtREV [7] model was estimated for retroviruses. 

Dengue virus (DENV), the cause of the life-threatening 
dengue hemorrhagic fever, re-emerged in the past decades, at 
a dangerous level, especially in tropical and subtropical 
regions [9]. According to a report from WHO [10], there are 
a total 390 million dengue infections per year and 
approximate 3.9 billion people in 128 countries are at risk of 
infection with dengue viruses. Because of the severity and 
emergency of the virus, intensive studies at the molecular 
level of Dengue viruses have been being deployed 
[11][12][13][14][15].  

Our work focused on estimating an amino acid 
substitution model that best fits the evolution of dengue 
protein sequences and hence should be used for studies of 
dengue virus proteins. The rest of the paper is organized as 
follows: Theoretical background of amino acid substitution 
models is represented in the section II (Method). Section III 
(Results) describes the experiment results and the 
comparison among models. Conclusions and perspectives are 
given in the last section. 

II. METHODS 
Generally, amino acid sites are assumed to be 

independently substituted and the rate of substitution is 
remaining stable over time. We normally use a 
homogeneous, continuous, and stationary Markov process to 
model the substitution process between amino acids [16][17]. 
The model is characterised by an instantaneous substitution   
rate 20x20 matrix, denoted by   𝑄 = #𝑞%&'  where 
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𝑞%&	(%*&)	 is the number of amino acid x change into y per 
one unit of time and 𝑞%% is assigned to satisfy the stationary 
condition, i.e., ∑𝑞%& = 0  for any x. The frequencies of 
amino acids are also assumed to be stationary and 
represented by an equilibrium 20-element vector 𝜋 = (𝜋%), 
where 𝜋% is the frequency of amino acid x.  

As usual, we also assume that the substitution process is 
time-reversed, thus we can formulate 𝑄as follows: 𝑞%& =
𝜋&𝑟%& and 𝑞%% = −∑ 𝑞%&%*&  where 𝑟%&is the exchangeability 
coefficient between amino acids 𝑥 and 𝑦 . The coefficient 
matrix is symmetric, that is 𝑟%& = 𝑟&%. 

The frequency vector 𝜋 has 19 free parameters and can 
be directly approximated from the data, however, the rate 
matrix 𝑄 has 190 free parameters and much more difficult to 
be estimated from the data. In this study, we applied the 
maximum likelihood method to estimate 𝑄. The estimation 
process consists of four main steps: Data pre-processing, 
Tree reconstruction, Model estimation, and Model 
comparison (see Fig. 1). 

 

Fig. 1. The maximum likelihood-based process to estimate an amino acid 
substitution model for protein sequences of dengue viruses. 

Step 1: Data pre-processing 

The dengue viruses are members of the Flaviviridae 
family [11]. They have been first isolated in 1943 and stored 
at the NCBI (National Center for Biotechnology 
Information) since 1987. There are four different dengue 
virus types named DEN-1, DEN-2, DEN-3, and DEN-4. 
These four types are similar (share about 65% common 
genomes) and present all over the tropical and subtropical 
regions [11]. Their genomes contain a positive-sense RNA of 
about 11 kbs. This RNA encodes 3 structural proteins (C, M, 
E) and 8 non-structural proteins (NS1, NS2A, NS2B, NS3, 
NS4A, 2K, NS4B, NS5). To estimate an amino acid 
substitution model for dengue viruses, we downloaded all 
available amino acid sequences from 
https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Data

base/nph-select.cgi?taxid=12637. There are more than 20000 
sequences in the database but many of these are identical. 
After removing the duplicated sequences, we obtained 10958 
distinct sequences in which type 1 and type 2 take the major 
parts (39% and 32% respectively). To estimate a substitution 
model, the sequences of each virus type are divided into 
training and testing data sets containing 90% and 10% 
number of sequences, respectively. Table 1 describes the 
summary of data. 

TABLE I.  THE NUMBER OF DENGUE VIRUS AMINO SEQUENCES FOR 
FOUR TYPES AND 11 PROTEINS. 

 DEN-1 DEN-2 DEN-3 DEN-4 

C 1722 1432 936 356 

M 1867 1614 1035 410 

E 1739 1436 917 375 

NS1 1678 1343 885 343 

NS2A 1691 1345 883 338 

NS2B 1671 1344 882 339 

NS3 1669 1338 883 334 

NS4A 1672 1341 887 328 

NS2K 1673 1339 886 329 

NS4B 1669 1316 885 327 

NS5 1640 1298 867 325 

 

Amino acid sequences were aligned using MUSCLE 
program [17]. Note that large alignments, containing of 
thousands of sequences, were divided into sub-alignments of 
at most 16 sequences using the tree-based splitting algorithm 
proposed in [18]. The splitting algorithm allows to estimate 
amino acid substitution models from large datasets. 

Step 2: Tree reconstruction 

We followed the maximum likelihood method described 
in [18] to estimate phylogenetic trees from multiple sequence 
alignments in the training dataset. Specifically, we used IQ-
TREE program [19] to construct phylogenetic trees using the 
model Q. Note that LG model was assigned as the initial Q 
model. 

Step 3: Model estimation 

We employed an expectation–maximization algorithm, 
XRATE [20], to estimate a new model Q’ using protein 
alignments and phylogenetic trees obtained from the 
previous steps. 

Step 4: Model comparison 

We compare the current model Q and newly estimated 
model Q’. If the difference between the new model Q’ and 
the current model Q is not significant, then Q’ is considered 
as the final best model estimated. Otherwise, Q is assigned 
by Q’ and go to step 2. Experiment results show that the 
algorithm usually stops after three iterations. 
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III. RESULTS 
We named the new amino acid substitution model for 

dengue viruses as DEN. We evaluated the fit of DEN on the 
training set and assessed the performance of DEN on the 
testing dataset in comparison to five other current models. 
The five models include four models for other viruses (FLU 
of influenza viruses, HIVb and HIVw of HIV viruses and 
rtREV of retro viruses) and LG (the current best general 
model [1]). We measured the difference of the log-likelihood 
and tree topologies constructed with DEN (M1) and each of 
five models (M2). We also used Pearson correlation to 
evaluate the correlations between the exchangeability 
matrices  (frequency vectors) of M1 and M2 models. 

A. The fit of DEN model on training set 
Table 2 represents the likelihood improvements during 

the model training process. The values show a sharp rise of 
54685 log likelihood unit after the first iteration. At the third 
iteration, the log likelihood only slightly increases, and the 
two matrices have a nearly 1 correlation, hence we stop the 
training at this point.  

Look at the AIC (Akaike information criterion) 
measurement - an estimator of the relative quality of 
statistical models for a given set of data [21] it is obvious 
that AIC improvement of the final model (DEN) over  the 
initial model (LG) is significant (i.e., 131162). It guarantees 
the worth of the DEN model over the penalty of 208 free 
parameters[21]. 

TABLE II.   LOG-LIKELIHOOD OF THE TARGET FUNCTION ON  THE 
TRAINING DATASET.  

LG (initial model) -6157890 
First iteration -6106205 
Second iteration -6093870 
Third iteration (final model) -6092301  
AIC improvement 131162 

B. Likelihood improvement on testing dataset 
We evaluated the performance of DEN and other five 

models FLU, HIVb, HIVw, rtREV and LG by comparing the 
log-likelihood of trees which were inferred from testing 
alignments but with different models. To this end, IQ-TREE 
[19] was used to infer trees from 86 testing alignments. Fig. 
2 shows the average log-likelihood difference per alignment 
between trees inferred with FLU, DEN, HIVb, HIVw, rtREV 
and those inferred with LG. Obviously, DEN is the best 
model while HIVw is the worst one. HIVb is the second best 
model (50 log-likelihood points lower than DEN model per 

alignment). 

 
Fig. 2. Log-likelihood difference per alignment between LG model and 

other models. DEN is the best model on the testing dataset. 
We also employed the Kishino-Hasegawa (KH) test [22] 

to check the statistical significance of the log-likelihood 
difference between trees constructed with two different 
models (denoted by M1 and M2). Table 3 represents the test 
results: The third column shows the number of alignments 
that M1 is better (i.e., higher log-likelihood) than M2; the 
fourth column shows the number of alignments that M1 is 
significantly better than M2 under KH test; the last column 
shows the number of alignments that M2 is significantly 
better than M1. We observed that DEN is significantly better 
that other models in most of the test alignments. For 
example, DEN is significantly better than LG and rtREV for 
all 86 alignments. 

TABLE III.  KISHINO-HASEGAWA (KH) TEST RESULT OF DEN AND 
OTHER MODELS WITH P-VALUE < 0.05  

M1 M2 #M1 > M2 #M1 > M2 
(p < 0.05) 

#M2 > M1 

(p < 0.05) 
DEN LG 86 86 0 
DEN FLU 86 85 0 
DEN HIVb 86 83 0 
DEN HIVw 86 85 0 
DEN RtREV 86 86 0 

C. Model analysis 
We measured the correlations between DEN and other 

models. Table 4 shows that Dengue has an evolutionary 
pattern that considerably differs from other viruses such as 
HIV or Influenza due to the low correlation between their 
models (the highest correlation is only 0.884% which is 
between DEN and rtREV models). 
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Fig. 3. Amino acid frequencies of DEN, LG and HIVb models 
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TABLE IV.  THE PEARSON CORRELATIONS BETWEEN DEN AND OTHER 
MODELS 

Model Exchangeability 
matrix 

Frequency 
vector 

LG 0.954 0.908 
RtREV  0.884 0.853 
HIVb 0.878 0.896 
FLU 0.846 0.803 
HIVw 0.775 0.642 

 
Figure 3 shows the difference between amino acid 

frequencies of DEN, LG and HIVb models. We observe 
some notable differences between frequencies of these 
models. For instance, the frequency of W (Tryptophan) in 
DEN (3%) is three times higher than that in LG (1%), while 
Q (Glutamine) frequency is only 3% in DEN, just over a half 
of that in HIVb.  

The exchangeability coefficients of DEN, LG and HIVb 
models were plotted in Figure 4. In general, most values 
distributed in a similar trend due to biological constraints. 
For instance, isoleucine is frequently substituted by valine, 
methionine, leucine, threonine and phenylalanine, while 
other amino substitutions rarely happen as their 
corresponding coefficients are relatively small. Nevertheless, 
there are some remarkable differences. For example, the 
coefficients on T (Threonine) row are notably different 
among models. More specifically, the rate of amino acid T 
(Threonine) to amino acid A (Alanine) in HIVb model is 
about four times higher than that  in DEN and LG models. 
Overall, exchangeability matrix and frequency vector of 
DEN are different from those of existing models. 

D. The robustness of DEN model 
The DEN model was estimated  from the training dataset 

containing 90% of the dengue protein sequences. To 
examine the robustness of the DEN model, we estimated 

additional models from three other training datasets. 
Specifically, 

• DENG: The model estimated from the training 
dataset consisting of all dengue protein sequences. 

• DEN1: The model estimated from the training 
dataset containing the first half of all dengue protein 
sequences. 

• DEN2: The model estimated from the training 
dataset containing the second half of all dengue 
protein sequences. 

Table 5 shows extremely high correlations between 
exchangeability matrices of the four models. The smallest 
correlation value is 0.992 between DEN1 and DEN 
whilst DEN, DENG and DEN2 correlations are close to 
1. Thus, the dengue dataset is sufficient enough to 
estimate a stable model. 

TABLE V.  CORRELATION BETWEEN EXCHANGEABILITY MATRICES OF 
DEN, DENG, DEN1, AND DEN2 MODELS 

 
DEN DENG DEN1 DEN2 

DEN  1.000 0.992 0.999 
DENG 1.000 

 
0.992 0.998 

DEN1 0.992 0.992 
 

0.996 
DEN2 0.999 0.998 0.996  

IV. CONCLUSIONS 
Dengue virus infections are dangerous over the world 

with huge effect to public health. Despite thousands intensive 
studies of the virus at the genetic level have been conducted, 
challenging questions still remains. In this study, we 
proposed a new amino acid substitution model for dengue 
viruses. Experiments showed that DEN model is 
considerably different from existing models, and 

Fig. 4. The exchangeability coefficients in DEN, LG and HIVb models. 
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significantly outperforms other models when analyzing 
dengue protein sequences. We encourage researchers to use 
this new model for analyzing protein sequences of not only 
dengue viruses, but also other viruses in the Flaviviridae 
family. 
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