

Study of Information Extraction in Resume

Van Vinh Nguyen
€
, Van Long Pham

*
, Ngoc Sang Vu

¶

VNU University of Engineering and Technology,

E3 Building, 144 Xuan Thuy Street, Cau Giay, Hanoi, Vietnam
€
vinhnv@vnu.edu.vn,

 *
phamvanlong021096@gmail.com,

¶
ngocsangnd259@gmail.com

Abstract

This paper deals with the parsing application developed for the resumes (or CV) received in

multiple formats like doc, docx, pdf, txt. These resumes can be automatically retrieved and

processed by a resume information extraction system. Extracted information such as name,

phone / mobile number, e-mail id, qualification, experience, skill sets etc., can be stored as a

structured information in a database and then can be used in many different areas. Our system

consists of 4 phases: Text Segmentation, Name Entity Recognition using Rule-based, Find Name

Entities using Deep Neural Network and Text Normalization. Our work is conducted on a

medium-sized collections of CV files in Vietnamese. We archived promising results with over

81% F1 for NER and also compared our model with other systems.

Keywords: Resume Parser, Convolutional Neural Network, Long Short-Term Memory,

Conditional Random Fields.

1. Introduction

Big enterprises and head-hunters receive

hundreds of resume from job applicants

every day. Automatically extracting

structured information from resume of

different styles and formats is needed to

support the automatic construction of

database, searching and resume routing. The

definition of resume information fields

varies in different applications. Normally,

resume information is described as a

hierarchical structure with two layers. The

first layer is composed of consecutive

general information blocks such as Personal

Information, Education etc. Then within

each general information block, detailed

information pieces can be found, e.g., in

Personal Information block, detailed

information such as Name, Address, Email,

etc. can be further extracted.

Extracting information from resume with

high precision and recall is not an easy task.

In spite of constituting a restricted domain,

resume can be written in multitude of

formats (e.g. structured tables or plain texts),

in different languages (e.g. Vietnamese and

English) and in different file types (e.g.

Text, PDF, Word etc.). Moreover, writing

styles could be very diversified.

Extracting the Named Entity (or Named

Entity Recognition – NER) in the resume is

very necessary and beneficial. It allows

employers to compare two candidates or

automatically fill the candidate information

into the database. Consequently, a large

number of approaches have been designed

for performing NER, see [16] for a survey.

One simple approach to extract Named

Entity in resume is to use a list of gazette,

for example, a gazette for the Named Entity

“Degree” would consist of all known

educational degree names, such as

“Bachelor of Arts”, “B.A.”, “PhD”, etc. The

gazette-based approach results in fast and

high precision NER, since one simply looks

for occurrences of any entries in the gazette.

However, this method requires a large

predefined gazette, and does not completely

solve the semantic ambiguity problem. For

example, “Tôn Đức Thắng” is the name, but

in sentence “Đại học Tôn Đức Thắng”, it is

the university, and in sentence “Số 12 đường

Tôn Đức Thắng”, the meaning of the word

is the address.

This paper deals with the Named Entity

Recognition in resume data, using Rule-

based and Deep Learning approach. Our

Deep Learning model is combination of

Convolutional Neural Networks, Bi-

directional Long Short-Term Memory and

Conditional Random Field, to label the

sequence in resume and then extract Name

Entities from this labeled sequence.

2. Related work

Recent advances in information

technology such as Information Extraction

(IE) provide dramatic improvements in

conversion of the overflow of raw textual

information into structured data which

constitute the input for discovering more

complex patterns in textual data collections.

Resume information extraction, also

called resume parsing, enables extraction of

relevant information from resumes which

have relatively structured form. Although,

there are many commercial products on

resume information extraction, some of the

commercial products include Sovren

Resume/CV Parser [22], Akken Staffing,

ALEX Resume parsing [1], ResumeGrabber

Suite and Daxtra CVX [7]. There are four

types of methods used in resume

information extraction: Named-entity-based,

rule-based, statistical and learning-based

methods. Usually a combination of these

methods is used in many applications.

 Named-entity-based information

extraction methods try to identify

certain words, phrases and patterns

usually using regular expressions or

dictionaries. This is usually used as a

second step after lexical analysis of a

given document [4, 21]. Rule-based

information extraction is based on

grammars.

 Rule-based information extraction

methods include a large number of

grammatical rules to extract

information from a given document

[21].

 Statistical information extraction

methods apply numerical models to

identify structures in given

documents [21].

 The learning-based methods employ

classification algorithms to extract

information from a document.

Many Resume Named Entity extraction

systems employ a hybrid approach by using

a combination of different methods.

However, until now, there are no systems

which use Deep Learning approach and

apply for Vietnamese.

3. The method

The design of Information Extraction

System consists of 4 phases: Text

Segmentation, Name Entity Recognition

using Rule-based, Find Name Entities using

Deep Neural Network and Text

Normalization. In the first phase, a resume is

segmented into blocks according to their

information types. In the second phase,

information are found by using special rules

for each information type. In the third phase,

we used a combination of Bi-directional

Long Short-term Memory – Convolutional

Neural Networks – Conditional Random

Field to extract Named Entities information.

In the fourth phase, normalization methods

are applied to the text.

3.1. Text Segmentation

Text Segmentation phase do work on the

fact that each heading in a resume contains a

block of related information following it. So

in that case our resume will separate out into

segments named as contact information,

education information, professional details

and personal information segment as shown

in Table 1.

Table 1. Segment containing extracted

Information Types.

 A data-dictionary is used to store

common headings in a resume which are

definitely occurring in the resume. These

headings are searched in a given resume to

find segments of related information. All of

the text information between the heading

and the start of the next heading is accepted

as a segment. One exception will possible or

may occur is the first segment which

contains the name of the person and

generally the contact information. It is found

by extracting the text between the top of the

document and the first heading. For each

segment there is a group of named entity

recognizers, called chunkers, that works

only for that segment. This improves the

performance and the simplicity of the

system since a certain group of chunkers

only works for a given segment.

Segmentation is a crucial phase. If there is

an error in the segmentation phase, chunkers

will run on a wrong context. This will

produce unexpected results.

Figure 1. Segmentation in the Resume by

Segmenter.

3.2. Named Entity Recognition

using Rule-based

The tokenized text documents are fed to

a Named Entity Recognizer using Rule-

based. The term Named Entity refers to

noun phrases (type of token) within a text

document that have some predefined

categories like Person, Location,

Organization, expressions of times,

quantities, monetary values, percentages,

etc. Numeric values like phone numbers and

dates are also Named Entities.

Resumes consist of mostly named

entities and some full sentences. Because of

this nature of the resumes, the most

important task is to recognize the named

entities. For each type of information, there

is specially designed Rule-based (also called

chunker). Information types are shown in

Table 1. Each Rule-based is run

independently as shown in Figure 2.

Rule-based use four types of information

to find named entities:

 Clue words: like prepositions (e.g. in

the work experience information

segment the word after “at” most

probably a company name)

 Well Known or Famous names:

Through data-dictionaries of well-

known institutions, well known

places, companies or organization,

academic degrees, etc.

 From prefixes and suffixes of word:

For institutions (e.g. University of,

College etc.) and companies (e.g.

Corp., Associates, etc.)

 Style of Writing Name of person:

Generally the name of the person is

written as First Letter capitalize then

we will guess that this word possibly

name of person.

Examples are "is-headquarter-of"

between an organization and a location, "is-

CEO-of" between a person and an

organization, "has-phone number" between

a person and phone number and "is-price-of"

between a product name and a currency

amount.

Figure 2. Chunkers extracting from Segment

Education.

 The chunkers produce an output that

contains information about named entities as

shown in Table 2.

Table 2. Found Named Entities along with

their Start & End position in the resume.

3.3. Find Name Entity using Deep

Neural Network

Although we use Rule-based, a lot of

Name Entities still can’t be found. To solve

this, we using a Deep Neural Network

(DNN), in this case DNN is the combination

of Bi-directional Long Short-term Memory

(LSTM) – Convolutional Neural Networks

(CNNs) – Conditional Random Field (CRF),

to label the sequence in resume and then

extract Name Entities from this labeled

sequence.

In this section, we describe the

components (layers) of our neural network

architecture. We introduce the neural layers

in our neural network one-by-one from

bottom to top.

3.3.1. CNN for Character-level

Representation

It has been shown that distributed

representations of words (words

embeddings) help improve the accuracy of a

various natural language models. In this

work, we investigate a method to create

word embeddings using a CNN model

(which is described in chapter 2).

Previous studies (Santos and Zadrozny,

2014 [5]; Chiu and Nichols, 2015 [9]) have

shown that CNN is an effective approach to

extract morphological information (like

prefix or suffix of a word) from characters

of words and encode it into neural

representations. For this reason, we

incorporate the CNN to the word-level

model to get richer information from

character-level word vectors. These vectors

are learnt during training together with the

parameters of the word models. The CNN

we use in this thesis is described in figure 3.

Figure 3. The CNN for extracting character-

level representations of words.

3.3.2. Bi-directional LSTM

Recurrent neural networks (RNNs) are a

powerful family of connectionist models

that capture time dynamics via cycles in the

graph. Though, in theory, RNNs are capable

to capturing long-distance dependencies, in

practice, they fail due to the gradient

vanishing/exploding problems (Bengio et

al., 1994; Pascanu et al., 2012).

LSTMs (Hochreiter and Schmidhuber,

1997) are variants of RNNs designed to

cope with these gradient vanishing

problems. Basically, a LSTM unit is

composed of three multiplicative gates

which control the proportions of information

to forget and to pass on to the next time step.

Figure 4 gives the basic structure of an

LSTM unit.

Figure 4. Schematic of LSTM unit.

Formally, the formulas to update an LSTM

unit at time t are:

where σ is the element-wise sigmoid

function and ʘ is the element-wise product.

xt is the input vector (e.g. word embedding)

at time t, and ht is the hidden state (also

called output) vector storing all the useful

information at (and before) time t. Ui , Uf ,

Uc, Uo denote the weight matrices of

different gates for input xt , and Wi ,Wf

,Wc,Wo are the weight matrices for hidden

state ht. bi , bf , bc, bo denote the bias vectors.

It should be noted that we do not include

peephole connections (Gers et al., 2003) in

the our LSTM formulation.

 For many sequence labeling task it is

beneficial to have access to both past (left)

and future (right) contexts. However, the

LSTM’s hidden state ℎ𝑡 takes information

only from past, knowing nothing about the

future. An elegant solution whose

effectiveness has been proven by previous

work (Dyer et al., 2015 [6]) is Bi-directional

LSTM (Bi-LSTM). The basic idea is to

present each sequence forwards and

backwards to two separate hidden states to

capture past and future information,

respectively. Then the two hidden states are

concatenated to form the final output.

Figure 5. Bi-directional LSTM.

3.3.3. CRF for predict the output

Conditional Random Field (CRF)

(Lafferty et al., 2001 [10]) is a type of

graphical model designed for labeling

sequence of data. Although the LSTM is

likely to handle the sequence of the input

data by learning the dependencies between

the inputs at each time step but it predicts

the outputs independently. The CRF,

therefore, is beneficial to explore the

correlations between outputs and jointly

decode the best sequence of labels. In NER

task, we implement the CRF on the top of

Bi-LSTM instead of the softmax layer and

take outputs of Bi-LSTM as the inputs of

this model. The parameter of the CRF is the

transition matrix 𝑨 where 𝑨𝑖,𝑗 represents the

transition score from tag 𝑖 to tag 𝑗. The score

of the input sentence 𝒙 along with the

sequence of tags 𝒚 is computed as follow:

𝑆(𝒙, 𝒚, 𝜃 ∪ 𝑨𝑖,𝑗) = ∑(𝑨𝑦𝑡−1,𝑦𝑡 + 𝑓𝜃(𝑦𝑡,𝑡))𝑇
𝑡=1

where 𝜃 is the parameters of Bi-LSTM, 𝑓𝜃 is

the score outputed by Bi-LSTM, and 𝑇 is the

number of time steps. Then the tag-sequence

likelihood is computed by the softmax

equation: 𝑝(𝒚|𝒙, 𝑨) = exp(𝑆(𝒙, 𝒚, 𝜃 ∪ 𝑨𝑖,𝑗))∑ exp(𝑆(𝒙, 𝒚′, 𝜃 ∪ 𝑨𝑖,𝑗))𝑦′∈𝑌

where 𝑌 is the set of all possible output

sequences. In the training stage, we

maximize the log-likelihood function:

𝐿 = ∑ log 𝑝(𝑦𝑖|𝑥𝑖; 𝑨)𝑁
𝑖=1

where 𝑁 is the number of training samples.

In the inference stage, the Viterbi algorithm

is used to find the output sequence 𝒚∗ that

maximize the conditional probability: 𝒚∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝒚 ∈𝑌 𝑝(𝒚|𝒙; 𝑨)

3.3.4. CNNs - Bi-LSTM - CRF

Figure 6 illustrates the architecture of

neural network in detail. For each word, the

character-level representation is computed

by the CNN in figure 3 with character

embeddings as inputs. Then the character-

level representation vector is concatenated

with the word embedding vector to feed into

the Bi-LSTM network. Finally, the output

vectors of BLSTM are fed to the CRF layer

to jointly decode the best label sequence. As

shown in figure 6, dropout layers are applied

on both the input and output vectors of Bi-

LSTM. Experimental results show that using

dropout significantly improve the

performance of this model.

Figure 6. The main architecture of deep

neural network.

3.3.5. Network training

Word Embeddings

 For Vietnamese, we use Facebook’s

publicly available pre-trained word vectors,

trained on Wikipedia using fastText. It can

be downloaded from:

https://github.com/facebookresearch/fastTex

t/blob/master/pretrained-vectors.md

Character Embeddings

Character embeddings are initialized with

uniform samples from [−√ 3𝑑𝑖𝑚 , +√ 3𝑑𝑖𝑚],
where we set 𝑑𝑖𝑚 = 30.

Weight Matrices and Bias Vectors

 Matrix parameters are randomly

initialized with uniform sample from [−√ 6𝑟+𝑐 , +√ 6𝑟+𝑐], where 𝑟 and 𝑐 are the

number of rows and columns in the structure

(Glorot and Bengio, 2010 [24]). Bias vectors

are initialized to zero, except the bias 𝑏𝑓 for

the forget gate in Bi-LSTM, which is

initialized to 1.0 (Jozefowicz et al., 2015

[19]).

Optimization Algorithm

 Parameter optimization is performed

with mini-batch stochastic gradient decent

(SGD) with batch size 10 and momentum

0.9. We choose an initial learning rate of 𝜂0

= 0.015, and the learning rate is updated on

each epoch of training as 𝜂𝑡 = 𝜂0/(1 + 𝜌𝑡),

with decay rate 𝜌 = 0.05 and 𝑡 is the

number of epoch completed. To reduce the

effects of “gradient exploding”, we use a

gradient clipping of 5.0 (Pascanu et al., 2012

[20]). We explored other more sophisticated

optimization algorithms such as AdaDelta

(Zeiler, 2012 [13]), Adam (Kingma and Ba,

2014 [8]) or RMSProp (Dauphin et al., 2015

[25]), but none of them meaningfully

improve upon SGD with momentum and

gradient clipping in our preliminary

experiments.

Early Stopping

 We use early stopping (Giles, 2001 [17];

Graves et al., 2013 [3]) based on

performance on validation sets. The “best”

parameters appear at around 50 epochs,

according to my experiments.

Fine Tuning

 For each of the embeddings, we fine-tune

initial embeddings, modifying them during

gradient updates of the neural network

model by back-propagating gradients. The

effectiveness of this method has been

previously explored in sequential and

structured prediction problems (Collobert et

al., 2011 [18]; Peng and Dredze, 2015 [14])

Dropout Training

 To mitigate over-fitting, we apply the

dropout method (Srivastava et al., 2014

[15]) to regularize my model. As shown in

figure 6, we apply dropout on both the input

and output vector of Bi-LSTM. We fix

dropout rate at 0.5 for all dropout layers

through all the experiments. We obtain

significant improvements on model

performance after using dropout.

Tuning Hyper-Parameters

 Table 3 summarizes the chosen hyper-

parameters for all experiments. We tune the

hyper-parameters on the development sets

by random search. Due to time constrains it

is infeasible to do a random search across

the full hyper-parameter space. We set the

state size of LSTM to 200. Tuning this

parameter did not significantly impact the

performance of my model. For CNN, we use

30 filters with window length 3.

Table 3. Hyper-parameters for all

experiments.

3.4. Text Normalization

In text normalization, some of the named

entities are transformed to make it

consistent. Table 4 shows some of the

transformations performed on several text

phrases.

In normalization phase, we expand some

of abbreviations using dictionaries similar to

the dictionary given in Table 5. For

example, the abbreviation “B.S.” is

expanded as “Bachelor of Science”. We also

convert some of the text into a new form.

For example, the first letters in a person’s

name is capitalized as shown in Table 4.

Table 4. Applying Text Normalization using

Data-Dictionary.

Table 5. Sample Data-Dictionary of the

degree chunker.

4. Experiments
4.1. Statistics of dataset

We collected about 1000 CV files and

then labeled to create dataset. The table 6

below shows the statistics of training data

labels, which includes the number of each

label in the dataset.

Table 6. Statistics of dataset.

Label Amount Percentage

(%)

Degree 488 3.20

Experience 645 4.29

Name 986 6.56

Address 3279 21.83

University 1055 7.02

Skill 8566 57.10

Here, for Address, each name of street,

city, district… corresponds to one entity. For
example, the sentence “105 Doãn Kế Thiện,

Cầu Giấy, Hà Nội” has 3 named entities,

they are “105 Doãn Kế Thiện”, “Cầu Giấy”

and “Hà Nội”. As you can see, the amount

of Skill label is biggest, with 8566 in total,

that because each candidate can have multi-

skill (skill in this work is programming

language, as we focus on IT domain). And

that of Degree label is smallest with only

986 entities in dataset.

4.2. Main results

The table 7 reveals the results on the test

set, train on above dataset. We evaluate 2

labels Degree and Experience on Rule-based

method and the remain labels on Deep

Learning method.

Table 7. Evaluation of our model.

Label Precision

(%)

Recall

(%)

F1

(%)

Degree 66.47 67.53 66.99

Experience 70.12 69.77 69.94

Name 82.06 70.51 75.86

Address 76.11 69.77 72.80

University 86.80 78.66 82.53

Skill 90.05 92.32 91.17

As you can see from the table, our model

can handle flexible-structure label quite

well, with 75.86% F1-score for Name label.

The performance on other labels is also

great with the accuracy over 80% for

University and Skill label. The rare data of

Address label, along with its flexible

structures, which consists of both numbers

and words, requires the model to generate a

unique vector for each number that leads to

the low accuracy.

4.3. Comparison with other Deep

Learning model

For Deep Learning method, we run

experiments to dissect the effectiveness of

each component (layer) of our neural

network architecture by ablation studies. We

compare the performance with three

baseline systems: the Bi-directional RNN

(BRNN), the Bi-directional LSTM

(BLSTM) and CNN-Bi LSTM (the

combination of BLSTM with CNN to model

character-level information). All there

models are run using the same parameters as

shown in section 3.3.5. Table 8 is the results

on both validation set and test set.

Table 8. Performance of our model on both the validation and test sets, together with three

baseline systems.

Model Validation Test

Prec. Recall F1 Prec. Recall F1

Bi-RNN 88.06 86.23 87.14 78.56 76.13 77.33

Bi-LSTM 89.21 90.67 89.93 79.88 76.75 78.28

CNN-Bi-LSTM 90.55 91.02 91.29 82.34 77.20 79.69

CNN-Bi-LSTM-CRF 91.46 92.06 92.77 83.80 78.85 81.25

According to the results shown in table

8, Bi-LSTM obtain better performance than

Bi-RNN on all evaluation metrics of both

validation set and test set. CNN-Bi-LSTM

models significantly outperform the Bi-

LSTM model, showing that character-level

representations are important for linguistic

sequence labeling task. Finally, by adding

CRF layer for joint decoding we achieve

significant improvements over CNN-Bi-

LSTM models on all metrics. This

demonstrates that jointly decoding label

sequences can significantly benefit the final

performance of neural network models.

5. Conclusions

In this research project, we applied Rule-

based method and Deep Learning method to

build a model in order to extract useful

information from resumes files. Our model

have achieved significant results with over

81% for Named Entity Recognition. We also

compared my model with other systems.

 However, we still recognize several

drawbacks of our work that could be

improved. The amount of data we use to

train our model is not big enough, so that the

bigger our training data is, the more accurate

our model is. In terms of LSTM model, we

can make use of the power of neural

networks with larger dataset. Also, the

model requires powerful computers for

calculation. we can enhance the hardware

systems to have better performance.

 There are several potential directions for

future work. First, we will focus on

analyzing and handling data to improve the

performance in this Information Technology

domain. We will collect more CV files, label

it and make a bigger set of data. This work

requires a huge amount of time and even

needs a lot of people if we want a really big

set of data, a big enough data set.

 Furthermore, we will improve our model

to detect and extract more information. We

not only extract the Named Entities as

defined in this work but also detect every

other necessary information such as

birthday, email, company, etc.

 Another interesting direction is to apply

our model to data from other CV domains.

In this work, we choose Information

Technology domain but there are still many

more domains that are promising like

Accounting, Banking and Finance, etc.

Solving problem in these domains can help

us to solve the big problem.

 Finally, we tend to extend our work in

other languages. It sounds interesting and

expects good results.

Acknowledgments

 We thanks to PhD. Xuan Hieu Phan -

Department of Information Systems, Faculty

of Information Technology, University of

Engineering and Technology, for his

guidance, motivation and continuous

support throughout the whole project and

reviewing.

References

[1] ALEX Resume Parsing,

http://www.hireability.com/ALEX/

(Accessed on Feb 2, 2012).

[2] Alan Graves, Abdel-rahman Mohamed,

and Geoffrey Hinton. 2013, “Speech

recognition with deep recurrent neural

networks”, In Proceedings of ICASSP-2013,

pages 6645–6649. IEEE.

[3] Bengio, Yoshua, Patrice Simard, and

Paolo Frasconi. "Learning long-term

dependencies with gradient descent is

difficult." IEEE transactions on neural

networks 5.2 (1994), pages 157-166.

[4] C. Siefkes and P. Siniakov, “An

Overview and Classification of Adaptive

Approaches to Information Extraction”,

Journal on Data Semantics, vol.4, Springer,

2005, pp. 172–212.

[5] Cicero D Santos and Bianca Zadrozny.

2014, “Learning character-level

representations for part-of-speech tagging”,

In Proceedings of ICML-2014, pages 1818–
1826.

[6] Chris Dyer, Miguel Ballesteros, Wang

Ling, Austin Matthews, and Noah A. Smith.

2015, “Transition-based dependency parsing

with stack long short-term memory”, In

Proceedings of ACL-2015 (Volume 1: Long

Papers), pages 334–343, Beijing, China,

July

[7] Daxtra CVX, http://www.daxtra.com/

(Accessed on Feb 2, 2012).

[8] Diederik Kingma and Jimmy Ba. 2014,

“Adam: A method for stochastic

optimization”, arXiv preprint

arXiv:1412.6980.

[9] Jason PC Chiu and Eric Nichols. 2015,

“Named entity recognition with bidirectional

lstm-cnns”, arXiv preprint

arXiv:1511.08308.

[10] John Lafferty, Andrew McCallum, and

Fernando CN Pereira. 2001, “Conditional

random fields: Probabilistic models for

segmenting and labeling sequence data”, In

Proceedings of ICML- 2001, volume 951,

pages 282–289.

[11] Krizhevsky, A., Sutskever, I., and

Hinton, G.E, “Imagenet classification with

deep convolutional neural networks”, In

NIPS, 2012.

[12] LeCun, Y., Boser, B., Denker, J. S.,

Henderson, D., Howard, R. E., Hubbard, W.,

and Jackel, L. D, “Backpropagation applied

to handwritten zip code recognition. Neural

Comput”, 1(4):541–551, 1989.

[13] Matthew D Zeiler. 2012, “Adadelta: an

adaptive learning rate method”, arXiv

preprint arXiv:1212.5701.

[14] Nanyun Peng and Mark Dredze. 2015,

“Named entity recognition for chinese social

media with jointly trained embeddings”, In

Proceedings of EMNLP-2015, pages 548–
554, Lisbon, Portugal, September.

[15] Nitish Srivastava, Geoffrey Hinton,

Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. 2014, “Dropout: A

simple way to prevent neural networks from

overfitting”, The Journal of Machine

Learning Research, 15(1):1929– 958.

[16] PALSHIKAR, G.K., 2011,

“Techniques for named entity recognition: a

survey”, TRDDC Technical Report.

[17] Rich Caruana Steve Lawrence Lee

Giles. 2001, “Overfitting in neural nets:

Backpropagation, conjugate gradient, and

early stopping”, In Advances in Neural

Information Processing Systems 13:

Proceedings of the 2000 Conference,

volume 13, page 402. MIT Press.

 [18] Ronan Collobert, Jason Weston, Leon

Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel Kuksa. 2011,

“Natural language processing (almost) from

scratch”, The Journal of Machine Learning

Research, 12:2493–2537.

[19] Rafal Jozefowicz, Wojciech Zaremba,

and Ilya Sutskever. 2015, “An empirical

exploration of recurrent network

architectures”, In Proceedings of the 32nd

International Conference on Machine

Learning (ICML-15), pages 2342–2350.

[20] Razvan Pascanu, Tomas Mikolov, and

Yoshua Bengio. 2012, “On the difficulty of

training recurrent neural networks”, arXiv

preprint arXiv:1211.5063.

[21] S.Sarawagi, “Information Extraction”,

Foundations and Trends in Databases, vol.

1, 2008, pp 261-377.

[22] Sovren Resume/CV Parser,

http://www. sovren.com/ (Accessed on Feb

2, 2012).

[23] Sepp Hochreiter and Jurgen

Schmidhuber. 1997, “Long short-term

memory. Neural computation”, 9(8):1735–
1780.

[24] Xavier Glorot and Yoshua Bengio.

2010, “Understanding the difficulty of

training deep feedforward neural networks”,

In International conference on artificial

intelligence and statistics, pages 249–256.

[25] Yann N Dauphin, Harm de Vries,

Junyoung Chung, and Yoshua Bengio. 2015,

“Rmsprop and equilibrated adaptive learning

rates for non-convex optimization”, arXiv

preprint arXiv:1502.04390.

