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ABSTRACT

TCP-targeted low-rate distributed denial-of-service (LDDoS) at-

tacks have created an opportunity for attackers to reduce their

total attaking rate (and hence, the detection probability of the at-

tacks) while inflicting the same damage to TCP flows as traditional

flooding-based DDoS attacks. CPR-based approach has been pro-

posed by Zhang et al. to detect and filter this kind of DDoS attacks,

but its performance in terms of TCP throughput under attack is

shown to be limited by the way it calculates CPR for each flow. In

this paper, we will propose some modifications to the CPR-based

approach in order to increase its performance. Simulation results

show that the modifications can increase performance significantly.
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1 INTRODUCTION

The Internet was built several decades ago and has become very

popular everywhere in the world. Although the performance of

the Internet in terms of network delay, throughput, or network

congestion has been improved significantly since its inception so far,

its operational principle remains nearly unchanged, that is, it is still

operating based on two cornerstones: best-effort service and end-to-

end paradigm. In the center of the Internet, routers are responsible

for relaying packets from source to destination. These source and
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destination are actually end computers where packets are sent and

received. Best-effort service means that the intermediate routers

simply perform the task of storing and forwarding packets. All

other tasks, for example and most prominently, network congestion

control, are left for end computers. So end-to-end paradigm, and

especially end-to-end congestion control, plays an indispensable

role in avoiding and mitigating network congestion in the current

Internet.1 Currently, TCP is still the dominant transport protocol

in the Internet and so does its congestion control. Without TCP

congestion control, the Internet can become severely congested

and unusable as in October 1986 when the Internet suffered a series

of congestion collapses [5].

But the problem has not stopped there yet. If a computer be-

comes malicious by continually sending packets into the network

at a very high rate or just simply fails to use end-to-end congestion

control, it will hurt other computers that are comunicating as some

resources, such as network bandwidth, computer’s or router’s pro-

cessor cycles, memory, are exhausted. In the meanwhile, interme-

diate network still passively transmits packets to their destination

and does nothing to prevent traffic from the misbehaving computer.

This well-known phenomenon is called denial-of-service (DoS) at-

tack. If there are more than one computers involved in the attack,

it is called distributed denial-of-service (DDoS) attack. Internet can

bring us a convenient way to access information, communicate with

each others but it also carries within its functional architecture the

origin of the DDoS threat.

The problem of DDoS attacks has finally been recognized and

there has been an increasing agreement that additional mechanisms

are needed at routers to protect the Internet from DDoS attacks

and computers that send more than their fair share. Since 1998, the

IETF has suggested the deployment of active queue management

(AQM) algorithms, such as Random Early Detection (RED) [4], in

network routers for congestion avoidance purposes and in order to

replace traditional drop-tail queue management algorithm [3]. RED

has almost no bias against bursty traffic2 and also offers an overall

reduction of network delay resulted from its packet dropping policy

1In recent years, due to the tremendous growth of traffic demand, a technique called
time-dependent pricing (TDP) is being developed to reduce network congestion further.
TDP provides incentives for delay-tolerant, price-sensitive users to shift their traffic
demand from congested (with high price) to less-congested (with lower price) periods,
thereby reducing network congestion. Besides, there are some new paradigms, such as
software-defined networks (SDNs) or network functions virtualization, which enable
end-to-end QoS guarantee. To see a combination of TDP and SDN in cellular networks,
please refer [10].
2In [4] the authors refer to bursty traffic as traffic from a connection where the amount
of data transmitted in one roundtrip time is small compared to the delay-bandwidth
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based on statistical probabilities where the exact probabilities are

computed as a function of the average queue size. By adding the

randomness factor in packet dropping decisions, RED routers help

TCP flows to avoid global synchronization as happened with drop-

tail routers in which TCP flows enter timeout and then recover

from timeout simultaneously every time packet queue is full. The

advantages of RED are also the shortcomings of the combination

model between TCP congestion control and the use of traditional

drop-tail algorithm at routers.

RED is designed to accompany a transport-layer congestion

control protocol, such as TCP, and is shown to be better than drop-

tail algorithm in cooperation with TCP flows, but the design has

been done with the lack of considering RED’s performance under

DDoS attacks. In [9], the authors showed that TCP throughput

across a bottleneck link is still decreased sharply under low-rate

DDoS (LDDoS) attacks, a new kind of DDoS attacks, even if RED is

used at routers. LDDoS attacks have been introduced for the first

time by A. Kuzmanovic and E. Knightly in [7]. By exploiting TCP’s

retransmission timeout mechanism, a LDDoS attacker can reduce

his total attacking traffic rate manyfold while inflicting the same

damage as traditional flooding-based DDoS attacks on TCP flows,

so his traffic flows are very much like well-behaved TCP flows,

even better with respect to some metric (e.g., sending rate, bursty

characteristic) and in a large-scale LDDoS attack.

Recently, CPR-based approach [8] has emerged as an effective

algorithm to counter LDDoS attacks. It is a flow-based technique

in the sense that it calculates Congestion Participation Rate (CPR)

metric for each flow passing a router. CPR-based approach is de-

ployed in front of the RED module in routers. If a flow having

CPR greater than a CPR threshold, it will be classified as an attack

flow and consequently, all of its arriving packets will be dropped,

product, but where multiple packets from that connection arrive at a router in a short
period of time.

otherwise the flow will be classified as a normal TCP flow and all

of its packets won’t be dropped by the approach, but can still be

dropped by the RED module. The approach can effectively detect

and filter LDDoS flows in the presence of a LDDoS attack, but its

performance in terms of TCP throughput under attack is limited by

the way it calculates CPR (see [6] for more details). In this paper,

we will introduce some modifications to the CPR-based approach in

order to increase its performance. Simulations with NS-2 simulator

[1] will be used to demonstrate our comparison. The rest of this

paper is organised as follows. In section 2, we discuss in details

about the current problem and then present our ideas to solve this

issue. Section 3 is the simulation results. We conclude this paper in

Section 4.

2 CURRENT PROBLEM AND OUR IDEAS

CPR-based approach divides time into consecutive small non-over-

lapped periods. Consider a particular period of time and assume

that at the starting of the period a flow has CPR smaller than the

current CPR threshold (e.g., when it traverses the router for the

first time), its packets can definitely add to the queue length of

the router without being filtered by the approach until the period

ends. This is due to the fact that CPR of a flow is always updated

at the end of each sampling period. This shortcoming of the CPR-

based approach can lead to a full queue at the router after only one

sampling period and the queue remains full thereafter if an attacker

arranges a large-scale LDDoS attack and keeps the total sending

rate sufficiently high (higher than the rate at which the bottleneck

link can serve). We think that an improvement to the performance

of the CPR-based approach can be lied in updating CPR for each

flow not only at the end of each period, but also at the time when a

packet is dropped. This updating technique can prevent an attack

flow from flooding router during a period when its CPR is less than

the current CPR threshold.

Figure 1: Calculation of the CPR metric.



Techniques for Improving Performance of the CPR-Based Approach SoICT ’18, December 6–7, 2018, Da Nang City, Viet Nam

Figure 2: Calculation of the CIR metric.

To accomplish the idea above, in this paper we propose Congestion

Interval Rate (CIR) metric. The CIR of a flow Fi is calculated by:

ζi = |T ∗ |
/
|T | (1)

where |T ∗ | and |T | are notations for the number of elements in the

set T ∗ and T respectively. T ∗ is the set of sampling periods when

flow Fi is active and the outgoing link is congested. T is the set of

sampling periods when flow Fi is active. A flow is considered to

be active in a sampling period if it has at least one packet arriving

at router during this period. The outgoing link is considered to

be congested in a sampling period if there is at least one packet

dropped at the packet queue during this period. If the outgoing link

is congested in a sampling period, the period is called congested

period. Each period of time can be represented by [t , t + d], in
which t is the starting time and d is the duration of the period and

is empirically chosen to be 1 ms.

Difference between the CPR and CIR metrics is shown in Figures

1 and 2. The Figure 1 shows that CPR of every flow is only updated

at the end of each period (using Equation 1 in the original paper

[8]) and then all of its counters, e.g. counter for storing the number

of packets that have been arrived since the starting time of the

current period, are cleared. With CIR metric shown in the Figure

2, if there is at least one packet dropped during a sampling period,

then CIRs of all currently active flows (considered from the starting

time of the period to the arrival time of the first packet dropped)

are updated at the time of the first packet dropped (using Equation

1 in this paper). These active flows do not have to wait until the

end of the period to update their CIRs. For convenience, we name

this technique as early update. Next, the counters for these flows

are not erased, they are marked to indicate that the flows’ CIRs are

already updated. With subsequent incoming packets, the CIRs of

their associated flows will be updated only if these values have not

been already updated. At the end of the period, all counters will be

erased to reuse in the next period. In the case of a period with no

packet drop, updating CIRs and clearing counters all happen at the

end of the period.

Detailed algorithm for CIR-based approach is presented in Figure

5 inwhich the CIR threshold is still denoted by τ as in the CPR-based
approach. The CIR-based approach operates as follows. When a

packet, denoted bypkt , arrives at router, its associated flow, denoted
by f , will be computed using hash function. If the current sampling

period is not congested (conдested = 0) and f is not active then

f is marked as active. If the current sampling period is congested

(conдested = 1) and f .CIR has not been updated then f .CIR is

updated and marked as updated. Next, f .CIR is compared to τ . If
f .CIR is greater than or equal to the threshold, f will be classified

as an attack flow and pkt will be dropped, otherwise the flow will

be classified as a normal TCP flow andpkt will be passed to the RED
block (pkt can still be dropped by the RED block). When RED block

drops one packet and the current sampling period is not congested,

the period is set to be congested by setting the congested variable

to 1. After that, all CIRs of currently active flows will be updated

and marked as already updated. CIR-based approach has a routine

running at the end of every sampling period. At that time, if the

current sampling period is congested, indicating that CIR of all

flows has been updated and we only have to clear the counters to

mark all flows as inactive and their CIRs as not updated for the next

sampling period. If the current sampling period is not congested, we

have to update CIR for all active flows and then clear the counters.

The last action of the routine is setting congested variable back to 0.

3 SIMULATION RESULTS

3.1 CIRs of TCP flows in normal time

To examine the CIRs of normal TCP flows in normal time (i.e.

when there is no LDDoS attack), in this subsection we perform
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a simulation with the platform in [2] in which instead of using CPR-

based approach we use CIR-based approach with a CIR threshold

still denoted by τ . The simulation starts at time 0 and ends at time

120, using the network topology as in Figure 3.

Figure 3: Network topology.
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Figure 4: CIRs of 30 normal TCP flows going through the

bottleneck link.

There are 30 long-lived TCP flows, each originates at one of the

leftmost computers from User 1 to User 30 and terminates at Server,

using FTP application with unlimited data to send. The TCP version

is of NewReno with packet size of 1000 bytes. TCP flows all start

transmitting packets at time 20 and stop at time 120. All links from

the net have bandwidth of 10 Mbps and one-way propagation delay

of 2 ms, except the link between router R0 and router R1 that has

a bandwidth of 5 Mbps and one-way propagation delay of 6 ms,

making it the point of congestion. The queue size of the congested

link is 50 packets. RED with the CIR-based approach3 is deployed

at router R0 on the queue of the link, whereas other links use drop-

tail queues. The sampling frequency of the approach is 1000 Hz,

the same as [8], resulting in sampling periods of 1 ms. To store

information of various flows passing through router R0, we use

Bloom filters technique that is similar to one in RRED algorithm

[9]. In our simulation, we set the number of levels L = 1, the bins in

3In this simulation CIR threshold is a constant and is set to 2. With this threshold the
CIR-based approach does not drop packets during simulation time because CIR of
every flow is always less than or equal to 1, thereby dropping packets is only managed
by RED algorithm.

For each incoming packet pkt:
f is the associated flow of the packet
   If congested == 0 then

If f is not active then
   f is marked as active;
End if

   Else
If f.CIR has not been updated then
   update f’s CIR;
   f.CIR is marked as updated;
End if

   End if
   If f.CIR ≥ τ then

drop(pkt);
   Else

pass pkt to the RED block;
If RED drops pkt && congested == 0 then
   congested := 1;
   update CIR of all currently

         active flows;
   mark all their CIRs as updated;
End if

   End if

At the end of each sampling period:
   If congested == 1 then

mark all flows as inactive and
      their CIRs as not updated;
   Else

update CIR of all active flows;
mark all flows as inactive and

      their CIRs as not updated;
   End if
   congested := 0;

Parameters:
congested: the congestion status of the
current sampling period
τ: the CIR threshold
sampling period: time; 1 miliseconds

Figure 5: Detailed algorithm for CIR-based approach.

each level N = 4200, and we use a perfect hash function mapping

each flow to a different bin of the only level.
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Figure 4 shows that the CIR of each normal TCP flow converges

to an equilibrium point, with a slight change in value from one to

another, but all points are below 0.2.

3.2 CIR difference between normal TCP flows
and LDDoS flows

In this subsection we will investigate the difference between CIRs

of normal TCP flows and CIRs of LDDoS flows. We perform three

sets of simulations called Attack Frequency Intensification (AFI),

Attack burst Width Intensification (AWI), and Attack burst Rate

Intensification (ARI) with parameters shown in Table 1 (please refer

[8] for more details about how to model LDDoS attacks). There are

20 attack flows, each originates at one of the 20 attacking computers

from Attacker 1 to Attacker 20 and terminates at Server (see Figure

3). All attack flows send UDP packets with packet size of 50 bytes.

In each set of simulations, for each single attack flow, we vary one

parameter and fix two others. All simulations start at time 0 and

end at time 240 in which TCP flows are configured the same as in

previous subsection, except that they stop at time 240 instead of time

120. LDDoS attacks start at time 120 and stop at time 220. At time 240

of each simulation, we record the minimum, maximum, and average

CIRs of normal TCP flows and those of LDDoS flows. The results

are shown in Figure 6 in which the blue lines depict the average

CIRs of normal TCP flows and the red lines depict the average CIRs

of LDDoS flows. These lines are extended (depicted by orange and

green colors respectively) to the minimum and maximum lines that

connect minimum CIRs and maximum CIRs of the corresponding

groups of flows. The central and rightmost subfigures of Figure

6 don’t plot the points corresponding to LDDoS flows with Tb =
0 ms and Rb = 0 Mbps because these values are just 0. In the

rightmost subfigures, the average line of LDDoS flows seems to be

not extended. In fact, we still plot the minimum and maximum lines

and fill the area between them with orange color but the lines are

very close to each other. The reason behind this is that in the set ARI

where Rb is varied, 20 attacking computers are scheduled to start

transmitting packets at the same time and with the same rate, so the

attack flows’ CIRs are nearly equal. From Figure 6 we can conclude

that the CIR metric can differentiate LDDoS flows from normal TCP

flows. It also shows that when an attack becomesmore aggressive by

reducing attack cycleTa or by increasing attack burst widthTb , the
maximum and average CIRs of normal TCP flows tend to increase

while their minimum CIRs are more stable. As Rb increases, the

maximum and average CIRs of normal TCP flows increase slightly.

Table 1: Parameters of LDDoS attack.

Categories
LDDoS attack Single flow Aggregate flow

n g m σ Ta (s) Tb (ms) Rb (Mbps) T+a (s) T+
b

(ms) R+
b
(Mbps)

AFI 20 20 1 Ta
/
20 [4, 40] 200 5 [0.2, 2] 200 5

AWI 20 20 1 Tb 1 [0, 50] 5 1 [0, 1000] 5

ARI 20 1 20 0 1 200 [0, 0.5] 1 200 [0, 10]

4 12 20 28 36 40
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Figure 6: CIR difference between normal TCP flows and LDDoS flows.
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The minimum CIR tends to decrease as Rb increases because at

time 220 when the attacks finish, there is a small number of TCP

flows (fewer than 30) recovering from timeout state and competing

to utilize the bottleneck link’s bandwidth while other TCP flows are

still in timeout state with the CIRs nearly unchanged, so during the

time period from time 220 to time 240 when simulations finish, the

flows can get smaller CIRs than before when there are 30 competing

TCP flows, and the higher the attack rate is the fewer the number

of the flows is, thereby the minimum CIR of TCP flows is decreased.

3.3 Performance comparison of CPR-based
approach and CIR-based approach

To compare the performance of the approaches, in this subsection

we perform two sets of simulations, each corresponds to the use of

one of the approaches at router R0. Each set consists of 9 simulations

corresponding to the use of τ with values ranging from 0.1 to 0.9.

All simulations start at time 0 and end at time 240. The setting for

TCP flows is the same as in the previous subsection. We create a

LDDoS attack scenario with parameters n = 20, д = 20, m = 1,

σ = 1 second. Each LDDoS flow originates at one of 20 attack

computers from Attacker 1 to Attacker 20 and also terminates at

Server, sending UDP packets of 50 bytes, and having parameters

Ta = 20 seconds, Tb = 200 ms, Rb = 5 Mbps. The attack starts at

time 120 and stops at time 220. We only allow the two approaches

to drop packets after time 120,4 leaving the TCP flows to share

the link’s bandwidth freely until the attack starts. This intends to

isolate the effect of setting τ only on TCP throughput under attack,

making no affect to TCP flows in normal time from time 20 to time

120. TCP throughput in the attack period from time 120 to time

220 is normalized to the link’s bandwidth to obtain the result as in

Figure 7.
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Figure 7: TCP’s normalized throughput under LDDoS attack.

In this figure, the blue and red lines respectively represent the

performance of the CIR-based and CPR-based approaches with

different values of τ . The blue line is always lying on the red line,

except the two marginal values of τ , τ = 0.1 and τ = 0.9. This

shows that the performance of the CIR-based approach is higher

than that of the CPR-based approach.

4This is done by setting the threshold τ to a value smaller than 1 at time 120, before
that τ is assigned to a value greater than 1, in this case, 2. This is due to the fact that
the CPR and the CIR of a flow are always smaller than or equal to 1.

4 CONCLUSION

In this paper, we have shown that the performance of the CPR-

based approach in terms of TCP throughput under attack can be

improved. Derived from the CPR metric in [8], we have proposed

a new metric, called CIR, for differentiating LDDoS attack flows

and normal TCP flows and a technique called early update to help

the CPR-based approach to achieve an increased performance. The

simulation results show that our modifications to the approach

can improve its performance significantly under a regular LDDoS

attack scenario where each attack flow from 20 attack flows takes

on a stage of one second in every cycle of 20 seconds in the attack.

Our future work will be discovering relationship between link’s

drop rate and the CIR metric.
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