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Abstract: Modelling of large structures by using the quantum-mechanical approach is still not 

accessible, especially for many heavy atoms complexes, as these tasks require vast computational 

resources that are not often available. This article introduces a procedure for modelling of large 

structures using a structural approach usually referred to as a bond-valence method. This empirical 

method minimalizes the computation costs and facilitates the contruction of complex 3D images of 

thermally dependent electron density even for very large periodic structures. This method also 

provides a convenient way to visualize the carrier density, defect locations, and valence dynamics 

under thermal fluctuation. 
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1. Introduction

 

The reconstruction of electric field gradient and valence structure plays an important role in 

understanding the properties of materials at microscopic level. Unfortunately, the modelling 

illustration is not available for many large structures due to complexity in computation. As known, 

there are many different field-dependent gradient-based methods for illustration purposes but one 

among the most efficient ones is a method called a bond-valence method, which was proposed by I. D. 

Brown [1] decades ago. As this method requires an a priori known crystal structure of materials - the 

information that was not often available for many compounds in the past, its application was limited to 

some simple structures and metalo-organic compounds where such data are accessible. The recent 

renaissance of this method follows from its wide application range and simplicity in use for large 

structures. According to its definition, a chemical valence, or may be called a chemical valence 

gradient (de facto electron density per length) which is related to a particular bond {i} is called a bond-
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valence vi and is modelled as a exponent function of the bonding distance Ri. The final atomic valence 

is defined as a sum of overlapping exponential functions [2, 3]: 
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where n is the coordination number surrounding a given atom, R0 is an equidistance, v0i is a 

equivalence, and B is a constant. For each particular atomic types, the constant v0i and B are tabulated 

[1]. These empirical values were obtained on the basis of the linear fitting of extensive set of data for 

this atomic type. As reported, the accuracy of this method exceeds 95% for the metalo-organic 

compounds. The recent studies showed that it can be used to reverse a model (crystal) structure 

obtained by the other techniques such as the Monte-Carlo into a valence band structure [4, 5]. In its 

deep theoretical concerns, the decomposition of atomic valence into the bond valences is a special case 

of de Prony's problem of spectral analysis of overlapping exponential functions which is well-known 

in many other areas of experimental physics [6, 7]. This paper attempts to extend the use of bond-

valence method for a construction of colour 3D valence map, and related electric gradient, to 

demonstrate the valence dynamics under temperature fluctuation. 

Evidently, the electric field gradient defined by a relation (1) is not an exact field gradient as 

obtained by the lower level theories like the Density Functional Theory, but for its simplicity it can be 

used for very large structures. For periodic structures we require that a valence given by (1) will 

satisfy also a condition of periodicity (T


 is a real lattice translation vector): 

    RvTRv


  (2) 

2. Valence and electric field under thermal fluctuation 

To estimate a valence, or a bonding electron density, at arbitrary fixed point in a space between 

two atoms, we assume that a thermal fluctuation of atoms at certain temperature T follows a 

symmetric isothermal mode, i.e. there is only one constant BISO that determines the average width of a 

Gaussian distribution of atomic positions (Fig. 1). For this purpose, let us define a valence density as a 

valence per length unit 
iii rvv /)(  . Now consider a thermal fluctuation of atoms around their 

crystallographic positions. Let denote a probability of an atom 1 to occur at a position a by p1(a) and 
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Fig.1. A fluctuation of interatomic distances determines all possible valence values 

(alias electron density) at arbitrary point X in the space between two atoms. 



H.N. Nhat / VNU Journal of Science: Mathematics – Physics, Vol. 34, No. 3 (2018) 85-89 87 

of atom 2 at a position b by p2(b). The probability that both atoms occur simultaneously at a and b 

positions will be given by a product of these probabilities, i.e. by P12(a,b) = p1(a)p2(b). In a simplest 

case, p1(a) and p2(b) are the Gaussian functions whose half width is set by the particular isotropic 

temperature factors BISO retrieved from the structural analysis. Therefore a density v(X) at a given 

point X in the space between two atoms also follows a probability distribution p[v(X)] = p1(a)p2(b).  

In 3D illustration (see Fig.1), all the lines connecting two atoms lie within a cone whose top is a 

point X. Since the valence is a function of length, these lines determine all possible valence values 

between the two given atoms, so an electron valence density at X. A typical distribution for the two 

atoms case is showed in Fig. 2. 

Because the particular probabilities p1(a) and p2(b) are the quantities smaller than 1, the final 

product probability p[v(X)] is usually small for X not lying along the position vectors (position vectors 

are the connecting lines between the two atoms). However, as interatomic distances may reduce 

radically during the thermal fluctuation, the values of v(X) may be far greater than the nominal value 

of valence which is associated with the length of position vectors. 

Fig. 2. The exponential distrubutions of v(X) for the two atoms case 

showing a low probability for higher valencies. 
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Fig.3. (Left) The 2D valence contours constructed for ZnO: there are 3 different areas of 

valence density: 1-bond intersection, 2-position vector and 3- dark region 

 (no valence). (Right) Enhancement of electric field over the silicon carbide (SiC) 

surface layer due to organic solvent. 
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Another important factor is that the probability p[v(X)] depends on location of X, so it will vary 

between different points. To illustrate, we show in Fig. 3 the static 2D construction of valence map for 

ZnO where the different values of v(X) are distinguished by colours. As seen, there are 3 interesting 

areas: (i) the first corresponds to the intersections where Zn-O bonds overlap, this effect raises the 

valence density above its nominal value and gives a certain way to imagine the dimension of atomic 

radius; (ii) the second area is lying along a position vector Zn-O whose valence itself is not large but 

due to a higher probability the average density is better visible; (iii) and the third area covers the blank 

space between the atoms where a little or no valence was encountered.  

By their nature, the elecron density in these blank areas is near 0 so the areas are neither negative 

nor positive with no trapping function. The 2D images themselves are dynamic images according to 

temperature as a half width of probability distribution of position fluctuation depends on temperature. 

For a simplicity, we assume a linear dependence of BISO(T) on temperature. 

As seen in Fig. 3 the areas with same colors feature the same electron densities, so we can reveal a 

part of the band structure related to the Brillouin zone, if the vectors of the reciprocal lattice are drawn. 

However, the valence density images cannot differentiate between the valence bands densities and this 

is a main drawback of this method. 

Another example of the application of the method is showed in Fig. 4, where the occurence of 

lattice vacancies depending on the activation energy of creating pairs of positive and negative ionic 

sites according to the Boltzmann probability distribution TkE BVNen
2/

 is shown (N is a total number 

of positions, n is the number of vacancy pairs, kB stands for the Boltzmann constant). The 

reconstructed valence map for CaCl2/KCl shows that such occurence changes valence distribution 

among atoms and causes deformation of neighbouring bonding spheres. This relocation of valence has 

a recognizable effect in reducing the charge imbalance creating by K
+
 vacancies, so that the total 

positive charge over K
+
 center is lower than +1 and over Ca

2+
 center is lower than +2. As a 

consequence, the trap capacity of vacancies (i.e. detectable trap concentration) is lower than their 

theoretical value. The calculation for a case in Fig. 4 resulted in about 30% lower trap concentration 

than that given by TkE BVNen
2/

 . 

Fig. 4. K
+
 vacancy in CaCl2/KCl. The blank areas show the vacancies whose electron 

density is around +0.25. The valence over Ca
2+

 sites is +1.75. The neighbors of the 

vacancy sites are merely deformed. 
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3. Conclusion 

The bond-valence method for modelling valence structure can be used in a wide class of materials. 

This allows us to illustrate the dynamics of valence relocation due to various factors, including 

structure deformation, temperature fluctuation and forming of vacancies. The advantage of this 

method is two fold: it offers the statistical average fits for valences and full information about 

probability distribution of valences at each point in coordination space, so opens up the way for a real-

time simulation of dynamics of valence relocation process under thermal fluctuation. Among the main 

disadvantages belongs the fact that its densities are only position-related but not band-related values. 
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