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UFBoot2: Improving the Ultrafast Bootstrap Approximation
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Abstract

The standard bootstrap (SBS), despite being computationally intensive, is widely used in maximum likelihood phyloge-
netic analyses. We recently proposed the ultrafast bootstrap approximation (UFBoot) to reduce computing time while
achieving more unbiased branch supports than SBS under mild model violations. UFBoot has been steadily adopted as an
efficient alternative to SBS and other bootstrap approaches. Here, we present UFBoot2, which substantially accelerates
UFBoot and reduces the risk of overestimating branch supports due to polytomies or severe model violations.
Additionally, UFBoot2 provides suitable bootstrap resampling strategies for phylogenomic data. UFBoot2 is 778 times
(median) faster than SBS and 8.4 times (median) faster than RAXML rapid bootstrap on tested data sets. UFBoot2 is

implemented in the IQ-TREE software package version 1.6 and freely available at http://www.iqtree.org.

Key words: phylogenetic inference, ultrafast bootstrap, maximum likelihood, model violation, polytomies.

Standard nonparametric bootstrap (SBS) (Efron 1979;
Felsenstein 1985) is widely used in maximum likelihood
(ML) phylogenetic analyses to estimate branch supports of
a phylogenetic tree inferred from a multiple sequence align-
ment (MSA). To achieve this, SBS generates a large number of
resampled MSAs and reconstructs an ML-tree for each boot-
strapped MSA. The resulting bootstrap ML trees are then
used either to compute branch supports for the ML-tree
reconstructed from the original MSA or to build a consensus
tree with support values.

Although fast ML-tree search algorithms exist for large data
sets (Vinh and von Haeseler 2004; Stamatakis 2006; Guindon
etal. 2010; Nguyen et al. 2015) SBS is still very computationally
intensive. To improve computing time, rapid bootstrap (RBS;
Stamatakis et al. 2008) and the ultrafast bootstrap (UFBoot;
Minh et al. 2013) were developed. Although RBS resembles the
conservative behavior of SBS (i.e,, underestimating branch sup-
ports), UFBoot provides relatively unbiased bootstrap esti-
mates under mild model misspecifications.

The key idea behind UFBoot is to keep trees encountered
during the ML-tree search for the original MSA and to use
them to evaluate the tree likelihoods for the bootstrap MSAs.
To speed up likelihood computation even further for boot-
strap MSAs, IQ-TREE employed the resampling estimated
log-likelihood (RELL) strategy (Kishino et al. 1990). For each
bootstrap MSA, the tree with the highest RELL score (RELL-
tree) represents the ML-bootstrap tree. Contrary to SBS,
UFBoot does not further ML optimize this tree. The discrep-
ancy in branch supports between UFBoot and SBS emerges as
bootstrap trees inferred by UFBoot and SBS might be different.

Here, we present UFBoot2 that substantially speeds up
UFBoot and reduces the risk for overestimated branch sup-
port due to polytomies or severe model violations. We also
discuss several resampling strategies for phylogenomics data
recently implemented in UFBoot2. In the following, we will
outline these improvements.

Accelerating UFBoot

The likelihood computation is the major runtime bottleneck
of all ML software because it lies at the core of all analyses. The
pruning algorithm (Felsenstein 1981) efficiently computes the
likelihood of phylogenetic trees, but still does not scale well for
large data sets. Therefore, we adopted a modification to
Felsenstein’s algorithm (see supplementary method,
Supplementary Material online), first introduced in RAXML.
The modification exploits the reversible property of models of
sequence evolution typically used in phylogenetic analysis,
which led to a theoretical speedup of 4 (for DNA) or 20 (for
protein data) when estimating branch lengths. Moreover, we
employed the SIMD (single instruction, multiple data) feature
to concurrently compute the likelihood of two MSA sites with
streaming SIMD extensions or four MSA sites with advanced
vector extensions, thus leading to a theoretical speedup of two
or four compared with a non-SIMD implementation. IQ-TREE
code was further optimized to avoid redundant computations.

We benchmark the runtimes on 70 DNA and 45 protein
MSAs (DOI 10.5281/zenodo.854445) from TreeBASE, previ-
ously analyzed in Nguyen et al. (2015). The command-lines
used to perform bootstrap methods are provided in

© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
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supplementary table S1, Supplementary Material online.
UFBoot?2 achieved a median speedup of 2.4 times (maximum:
77.3) compared with UFBoot version 0.9.6 (released on
October 20, 2013).

Correction for Polytomies

Polytomies refer to multifurcating nodes in the tree that
cannot be resolved due to low phylogenetic signal in the
data. However, phylogenetic reconstruction always assumes
strictly bifurcating trees. When resolving polytomies, there
might be multiple equivalently optimal bifurcating trees
(Whelan and Money 2010). As UFBoot (and other boot-
strap approaches) saves only a single optimal bifurcating
tree for each bootstrap MSA, it might cause overoptimistic
bootstrap supports for short branches (Simmons and
Norton 2014).

To correct for this shortcoming, UFBoot2 implemented
the following technique. Instead of assigning the bootstrap
tree with the highest RELL for each bootstrap MSA, UFBoot2
will randomly select one of the trees encountered during tree
search, whose RELL score is less than &y, (default: 0.5) away
from the highest RELL. As a result, UFBoot2 will not give high
supports for branches resolving the multifurcations.

It was shown with a star tree simulation that SBS and RBS
sometimes led to false positives (bootstrap supports >95%
for nonexisting branches), whereas with this technique
UFBoot never supported such branches (support values
<88%) (Simmons and Norton 2014). We repeated the star
tree simulation for UFBoot2 with the same setting as pro-
posed in (Simmons and Norton 2014). We used Seq-Gen
1.3.2x (Rambaut and Grass 1997) to evolve 100 DNA MSAs,
each of 15,000 sites, along a 4-taxon star tree with four ter-
minal branch lengths of 0.05, under JC model. For each MSA,
we performed UFBoot2 runs under JC and GTR+I, each
with 1,000 bootstrap replicates and up to 1,000 search iter-
ations (invoked in IQ-TREE via “-bcor 1” option). The simu-
lation results show that UFBoot2 resembles the original
UFBoot in that it never supports nonexisting branches (sup-
port values <88%).

Reducing the Impact of Model Violations

Minh et al. (2013) showed that severe model violations inflate
UFBoot support values. To resolve this issue, UFBoot2 pro-
vides an option to conduct an additional step once the tree
search on the original MSA is completed. Here, the best
RELL-trees are further optimized using a hill-climbing near-
est-neighbor interchange (NNI) search based directly on the
corresponding bootstrap MSA. Thus, this extra step operates
like SBS, but with a quick tree search to save time. Bootstrap
supports are then summarized from the resulting corrected
bootstrap trees. In the following, we called this UFBoot2 +
NNI, which can be invoked in IQ-TREE via “-bnni” option.
We repeated the PANDIT simulations (Minh et al. 2013) to
compare the accuracy of UFBoot2 and UFBoot2 + NNI with
SBS (1,000 replicates using IQ-TREE) and RBS (RAXML boot-
stopping criterion). The simulations include 5,690 DNA MSAs
(DOl 10.5281/zenodo.854445) generated by Seq-Gen

(Rambaut and Grass 1997), where the model parameters
and the tree (which we will call the true tree in the following)
were inferred from the original MSAs downloaded from the
PANDIT database (Whelan et al. 2006). The accuracy of a
bootstrap method M is defined by fi (x), the percentage of
branches with support value x (across all reconstructed trees)
that occur in the true tree (Hillis and Bull 1993). Thus, fi (x)
reflects the probability that a branch with support x is a true
branch. Figure 1 shows the results [y-axis depicts fy (x)]. If the
sequence evolution model used to infer the ML-tree agrees
with the model used for simulations, then SBS, RBS, and
UFBoot2 + NNI underestimated branch supports, the lat-
ter to a lower degree (fig. 1A; curves above the diagonal).
This conservative behavior of SBS and RBS corroborates
previous studies (Hillis and Bull 1993; Minh et al. 2013).
Whereas UFBoot2 obtained almost unbiased branch sup-
ports (fig. 1A; curve close to the diagonal), that is, closely
matching the true probability of branches being correct.
Thus, UFBoot2 resembles the behavior of the original
UFBoot (Minh et al. 2013).

Severe model violations do not influence SBS (fig. 1B; RBS not
shown because RAXML does not support simpler models).
However, UFBoot2 (like UFBoot) overestimated the branch
supports (fig. 1B; curve below the diagonal), whereas
UFBoot2 + NNI only slightly underestimated the bootstrap val-
ues (fig. 1B; curve closest to the diagonal). Thus, UFBoot2 + NNI
helps to overcome the problem of unduly high supports by
UFBoot?2 in the presence of severe model violations.

In terms of computation times based on the analysis of 115
benchmark MSAs, UFBoot2, and UFBoot2 + NNI showed a
median speedup of 778 (range: 200-1,848) and 424 (range:
233-749) compared with SBS, respectively. Compared with
RBS, UFBoot2, and UFBoot2 + NNI are 8.4 (range: 1.5-51.2)
and 5.0 (range: 0.8—32.6) times faster, respectively. Therefore,
UFBoot2 + NNI is two times (median) slower than UFBoot2.
Supplementary Figures S1-S3, Supplementary Material on-
line, show the distributions of runtime ratios between SBS/
RBS/UFBoot and UFBoot2/UFBoot2 + NNI.

We conclude that UFBoot2 and UFBoot2 + NNI are fast
alternatives to other bootstrap approaches. Under no or mild
model violations, UFBoot2 has the interpretation of unbiased
bootstrap support as suggested for UFBoot (Minh et al. 2013).
That is, one can trust branches with UFBoot2 support > 95%.
Users are advised to apply model violation detection methods
(Goldman 1993; Weiss and von Haeseler 2003; Nguyen et al.
2011) before bootstrap analyses. UFBoot2 + NNI should be
applied if severe model violations are present in the data set
at hand.

Resampling Strategies for Phylogenomic
Data

Recent phylogenetic analyses are typically based on multiple
genes to infer the species tree, the so-called phylogenomics.
To facilitate phylogenomic analysis, UFBoot2 implements sev-
eral bootstrap resampling strategies: i) resampling MSA-sites
within partitions (denoted as MSA-site resampling as the
default option), ii) resampling genes instead of MSA-sites

519
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Fic. 1. Accuracy of the standard bootstrap (SBS), RAXML rapid bootstrap (RBS), ultrafast bootstrap (UFBoot2) and UFBoot2 with correction
(UFBoot2 + NNI) for (A) correctly specified models and (B) severely misspecified models. The y-axis depicts the percentage of all branches with
support value x (across all reconstructed trees) that occur in the true tree. Curves above the diagonal indicate underestimation of branch supports
whereas curves below the diagonal indicate overestimation. For each point (x,y) in the curve representing the accuracy of bootstrap method M, x
is an inferred bootstrap value by method M whereas y measures the probability of branches assigned by M with support value x to be true branches,
that is, occurring on the true tree. Specifically, let X (X™) be the set of branches with support value x in all trees and present (absent) in the true

tree. The y value is computed as the ratio between |X*| and |X

Branchiostoma floridae

, where [X] = [X*| + [X~|.

Strongylocentrotus purpuratus

0.3
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Fic. 2. Maximume-likelihood tree inferred under the edge-unlinked partition model. Numbers attached to the branches show the UFBoot2
bootstrap supports using MSA-site, gene, and gene-site resampling strategies (omitted when all three supports are 100%).

(gene-resampling, invoked via “-bsam GENE” option), and iii)
resampling genes and subsequently resamples MSA-sites
within each gene (gene-site resampling, invoked via “-bsam
GENESITE” option) (Gadagkar et al. 2005). Strategy (i) pre-
serves the number of MSA-sites for all genes in the bootstrap
MSAs, whereas strategies (i) and (iii) will lead to different
number of sites in the bootstrap MSAs.
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To investigate the impact of the three resampling strate-
gies, we reanalyzed the metazoan data with 21 species, 225
genes, and a total of 171,077 amino-acid sites (Salichos and
Rokas 2013). Figure 2 shows the ML tree inferred with 1Q-
TREE under edge-unlinked partition model (Chernomor et al.
2016), which allows separate sets of branch lengths across
partitions. The tree replicates previous results (Salichos and
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Rokas 2013) and shows the Protostomia clade (Telford et al.
2015). However, discrepancies between resampling strategies
are observed: while MSA-site and gene-resamplings obtained
high supports (>>95%) for branches along the backbone of
the tree (fig. 2; bold lines), lower supports (80%) were esti-
mated by gene-site resampling.

By further examining 14 other empirical data sets
(Bouchenak-Khelladi et al. 2008, Fabre et al. 2009;
Stamatakis and Alachiotis 2010; van der Linde et al. 2010;
Pyron et al. 2011; Nyakatura and Bininda-Emonds 2012;
Springer et al. 2012; Hinchliff and Roalson 2013; Salichos
and Rokas 2013; Dell’Ampio et al. 2014), we observed more
discrepancies between resampling strategies (data not
shown). Exceptionally, for some data sets, a number of
branches showed almost no support (<10%) for one resam-
pling but high supports (>95%) for the other two resampling
strategies. However, there is no tendency toward systemati-
cally lower supports obtained by one resampling strategy.

Taking into account the above findings, we recommend to
apply all alternative resampling strategies. If similar bootstrap
supports are obtained, then one can be more confident about
the results.

Conclusions

UFBoot2 significantly improves speed and accuracy of boot-
strap values compared with UFBoot. It also offers new func-
tionalities in the presence of model violations and in its
applicability to phylogenomic data. In general, since SBS,
RBS, and UFBoot2 -+ NNI share a disadvantage of being con-
servative, more research is necessary to understand the dif-
ferent biases introduced by the available phylogenetic
bootstrap estimation methods.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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