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Abstract 
 

In an effort to minimize operational expenses and supply users with more scalable services, 
distributed applications are actually going towards the Cloud. These applications, sent out 
over multiple environments and machines, are composed by inter-connecting independently 
developed services and components. The implementation of such programs on the Cloud is 
difficult and generally carried out either by hand or perhaps by composing personalized scripts. 
This is extremely error prone plus it has been found that misconfiguration may be the root of 
huge mistakes. We introduce AutoBot, a flexible platform for modeling, installing and 
(re)configuring complex distributed cloud-based applications which evolve dynamically in 
time. AutoBot includes three modules: A simple and new model describing the configuration 
properties and interdependencies of components; a dynamic protocol for the deployment and 
configuration ensuring appropriate resolution of these interdependencies; a runtime system 
that guarantee the proper configuration of the program on many virtual machines and, if 
necessary, the reconfiguration of the deployed system. This reduces the manual application 
deployment process that is monotonous and prone to errors. Some validation experiments 
were conducted on AutoBot in order to ensure that the proposed system works as expected. 
We also discuss the opportunity of reusing the platform in the transition of applications from 
Cloud to Fog computing. 
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1. Introduction 

1.1 Motivation 

Configuration errors account for a significant proportion of the causes of problems reported 
by users in both open source and commercial systems [1]. In addition, these errors are 
classified as highly serious and therefore require really quick reactions. Dynamic 
(re)configuration of distributed components is not an ordinary problem [2], and the growth of 
cloud computing in the recent years as well as its evolution such as Fog computing have 
created the issue more obvious. Cloud computing has resulted in the advancement of new 
highly added value services which aim at enhancing the time and cost effectiveness of 
enterprises’ IT departments. At its heart, virtualization has allowed service providers to use 
easily and transparently commodity hardware in an effort to offer scalable services with a 
reduced price. By merging loosely - coupled components, new applications can be deployed 
and updated if needed using the Cloud or Fog. Unluckily, cloud providers just supply a couple 
of practical mechanisms that only permit service providers to access the resources of theirs. In 
addition, tying to vendor-specific solutions might help make your life easier temporarily, but it 
can have a negative impact on the road in case the provider side suffers from disasters 
including a major outage [3]. Few vendor-neutral tools offer end-to-end features, from the 
application modeling to the addition of additional components on the fly. However, these tools 
often aim to provide holistic application management solutions requiring expert knowledge as 
well as consuming study time. 

Put simply, what is certainly lacking is really a simple, cloud-portable and flexible 
management design allowing service providers to automatically set up and configure their 
applications as well as allow future modifications on the application while always 
guaranteeing that these modifications do not interfere with the current configuration. We are 
first working on minimizing configuration mistakes that users make when implementing 
complex legacy systems in this article. Secondly, we wish to deliver consistent configurations 
during consecutive updates. The issue in the context of Cloud computing in particular can be 
consulted in [4]. 

If done manually, the activation and configuration are extremely complex and error-prone 
due to the variety of software stacks bundled in the VMs. This becomes even worse in Fog 
environment where software components are distributed across its three strata: Edge, Fog and 
Cloud [5]. Moreover, the models and engines of current related work proposed to design and 
deploy distributed applications are not quite natural and very complicated, which prohibit 
extension of these approaches beyond Cloud. Inserting and deleting software components 
and/or full VMs flexibly and rapidly require us to rethink the way we develop dynamic 
deployment and configuration (D&C) platforms resulting in a lightweight model to design and 
deploy complex distributed applications. 

1.2 Our Contributions 
To deal with the mentioned D&C issue, we introduce AutoBot platform consisting of three 
main modules. The first module includes a model that describes hierarchically any distributed 
stacks of applications and interdependencies of components. The second one is a dynamic 
D&C engine which installs and configures automatically all the earlier described component 
instances on cloud environment. Finally, a runtime system ensuring the proper global 
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configuration of the running application when new VMs and/or component instances are 
added and removed. 

Such a dynamic behavior requires a flexible platform catching the necessary configuration 
aspects to provide a fully automated environment for deploying any distributed applications in 
the Cloud. AutoBot boldly promotes the features following: 

Flexibility: its model automates the deployment of all distributed applications regardless of 
their programming language and model, runtime environment, and business domain. It offers 
(i) a consistent abstraction of the application’s software architecture and (ii) a consistent 
configuration interface staying away from specific configuration scripts managed by hand. 
Each component of this model includes a part of the management functionality to be deployed 
by the distributed software. This model is also entirely independent of any 
Infrastructure-as-a-Services (IaaS), and the AutoBot runtime is actually developed as 
independently of the infrastructures as possible. In case of incorporating another cloud 
infrastructure, not many changes in the AutoBot runtime are actually required because it just 
relies on 2 IaaS primitives: create and delete VMs, and a little information relating to their 
status. 

Portability: A couple of plug-in types are defined and developed in AutoBot, which allow 
developers to customize and extend the platform as they wish to be independent of the 
application model, runtime system, and hardware infrastructure. The DSL (Domain Specific 
Language) plugin enables the developers to select or add languages describing the application 
model such as the built-in AutoBot DSL, TOSCA [6], or CAMEL [7]. The Runtime plugin (i.e. 
connectors) is for the development and integration of any scripting languages (e.g. Bash, 
Python) or configuration management tools (Chef [8], Puppet [9]). Finally, the developers can 
integrate new infrastructure from different cloud providers using the IaaS plugin. This 
portable mechanism helps future developers to extend the platform beyond Cloud computing 
and cover the Fog computing’s concepts, for instance. 

Scalability: The proposed configuration protocol is actually decentralized to be able to 
cope with many customer applications. As soon as the VMs are actually instantiated, the 
configuration protocol is enabled and the entire application is configured without any 
centralized servers (as opposed to methods such as Puppet configuration server). Each VM 
incorporates the necessary understanding of the application model along with a configuration 
agent which manages the configuration software components to operate in the VM. 

Loose coupling: The dynamic configuration protocol was made with asynchrony in mind 
to implement the solution’s agility. Configuration agents talk in a reliable and asynchronous 
manner using a message queuing system,. Hence, no globalwide synchronization is needed 
between the configuration agents to post configure and activate the distributed application. 
This process evolves progressively every time a VM is readily available and ultimately the 
distributed application is properly configured, installed and running. 

The rest of this article is organized as follows. In Section 2, a common use case of 
distributed application is described that we use throughout this article as an example. Section 3 
shortly introduces the main modules of the proposed platform. Section 4 presents, through the 
use case in Section 2, a designed model for the distributed application, which consists of the 
meta data, the variables (especially exported/imported structures) along with the 
interdependencies between components/software types. Both Sections 5 and 6 discuss our 
dynamic D&C protocol. Some performance evaluations conducted on Amazon EC2 are 
reported in Section 7. At last, related work is presented in Section 8 and conclusion is made in 
Section 9. 
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2. Use case 
Nowadays many enterprise applications are complex multi-tier ones. It means that the 
application is composed of many parts, and these parts can be located on a same computer, or 
can be distributed among multiple computers connected through a network. A part is basically 
a software installation, providing or using services of another part, through interface. The 
advantage of this design is that when the parts are communicating through interfaces, 
implementation can be changed. The second advantage is that under high load (either an 
increase of users or user requests, or an increase of the work to be done), some parts can be 
replicated in order to distribute the workload. It is one of the most basic ways to scale a 
multi-tier application. One of the most known and used multi-tier applications is the three-tier 
one: a frontend server, a backend server, and a storage server. A well-known implementation 
of this pattern is Apache-Tomcat-MySQL. That is the example we will use in the next sections 
of this article. 

3. AutoBot architecture 

 
 

Fig. 1. Overall system architecture and interactions 
 
A unit of software is called a software type in AutoBot. A number of these software types will 
compose a distributed application. Running version of these types, i.e. software instances, are 
instantiated at runtime. In Fig. 1 about AutoBot global architecture, the roles and relative 
interactions between these abstractions are explain briefly. During the article, operations of 
AutoBot is demonstrated through RUBiS [10], a typical multi-tier web application. RUBiS, 
similar to ebay, is an open source auction site which can be implemented with three tiers 
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including Web-Apache, Application-Tomcat and Database-MySQL. AutoBot modules and 
abstractions are detailed as follows: 
Software Types. As mentioned it is an object-oriented (O-O) abstraction enabling users to 
describe meta-data needed for installing, configuring or upgrading a component. 
Software Instances. Also deriving from O-O model, it is an occurrence of a particular 
instantiated software type. In a VM, identification of instance is unique, but software instances 
of the same software type may co-locate on the same instance of VM (i.e. software 
consolidation). 
Deployment Manager (DM). It is a module coordinating the entire deployment process of the 
application on multiple VMs and keeping a global view of the current model of managed 
applications. By a dedicated admin channel resided in the messaging server, DM controls the 
instantiation of VMs using IaaS API, installs and configures the software instances and types 
inside the VMs, and maintain essential information of other components in the system. 
Therefore, DM is important not only for the initial application deployment but also for the 
dynamic application updates (insert/delete components/VMs). 
Configuration Manager (CM). CM is responsible for publishing exported and imported 
variables (i.e. the inter-dependencies) which are needed to complete the installation of 
different software instances. Exported variables and imported variables of an instance is the 
ones that other components require and the ones the instance needs to function correctly. This 
module also handles configuring the software component(s) thanks to the configuration 
connectors like Puppet and Bash scripts. 
Application Manager. It is a module that helps manage the life cycle of the managed 
application and its components, regularly check their current status (started, stopped, error, 
etc.). By the application manager the running application can be updated by 
inserting/removing software instances.  
Monitoring Manager. It consists of 3 sub-modules: (1). Auto-monitor: this module uses 
heartbeats to monitor status of VMs and informs the user when VMs come down. No 
particular action is conducted that allows service providers freely implement their own failure 
notification solutions; (2). Auto-protection: this module allows service providers apply their 
own firewall rules to make interconnections possible between software instances deployed on 
different VMs; (3). Auto-repair: this module reacts to changes captured by the monitor such as 
removing the crashed instances running on the VM, cleaning the application, killing the VM if 
needed or asking for other VMs with similar characteristics and redeploy the instances. This 
module is by default not activated and turned on by users if required. These submodules enable 
distributed applications to react to changes of surrounding environment, which helps 
latency-sensitive IoT (i.e. Internet-of-Things) applications operate effectively in 
Fog-computing environment. 

It is worth noting that AutoBot uses methods to install and configure software independent 
of the technologies dedicated to installation of software components, e.g. Puppet or Bash 
scripts. Moreover, a configuration protocol based on exchanging of asynchronous message 
enables starting of components in correct order as long as the local constraints of these 
components are resolved. The combination of our proposed model and the asynchronous 
message exchange help the system track the status and relationships of the application at 
runtime. Next sections will discuss AutoBot model in details through RUBiS examples and 
see how AutoBot handle its dynamic D&C protocol. 
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4. Application model of AutoBot 
To facilitate the description of application model, AutoBot DSL using ML-style notation have 
been developed enabling users to define various software types. Under AutoBot language, an 
application (lines 6 – 14, Fig. 2) contains definitions of software types/instances and VM 
types/instances. While VM type is characterized by specifying the identification of the IaaS 
image (line 73, Fig. 2), VM instance is referred to its VM type along with an IP and an IaaS 
flavor such as “small” or “micro” (lines 65 – 71, Fig. 2). 

A software type (lines 57 – 63, Fig. 2) consists of parameters assigned to a value in some 
cases. These parameters are local configuration of the software and exported/imported 
structures (i.e. variables). The imported variable has a special parameter indicating if receiving 
this variable is obligatory for booting. In these structures the parameter “channel” defining the 
topic on the message server where the corresponding software instance publishes or subscribes. 
Using this parameter prohibit software instance from broadcasting to all other instances 
requiring or sending this type of structure. A parameter indicating the configuration 
technology is also needed to be point out. Some scripts defining operations on how to install 
and configure the software on the VM must be provided along with the model. Some variables 
in these scripts are parameterized because they only can get practical value at runtime. A VM 
instance’s name can be specified in the software type, otherwise a VM type’s name must be 
included instead. All the parameters of a software type are inherited by its software instance 
(lines 46 – 55, Fig. 2). Furthermore, a software instance contains a reference to the VM 
instance on which it is running, and some data about its present status. 

VM type is a subtype of Container type which includes any hardware or virtual "box" 
hosting any of software types. AutoBot’s developers can add other subtypes of Container type 
as the IaaS plugins. Some subtypes can be physical machine, virtual container or even Fog 
nodes such as set-top boxes, access points. All the parameters of VM/Container type are 
inherited by VM instance in particular or Container instance in general. This reduces 
difficulties of dealing with the heterogeneity of both the Cloud and Fog environments. 

5. Dynamic Deployment and Configuration protocol 
The AutoBot dynamic D&C protocol is described in this section through the installation and 
configuration of RUBiS. It is known that RUBiS can be run as a Java servlet embedded in a 
servlet container such as JOnAS application server [11] or Apache Tomcat. 

5.1 The system overview 
Four parts are implemented in the system to deploy an application like RUBiS: (i) a web 
application hosting the DM receiving calls from the clients to handle instantiation and removal 
of software instances, VMs and to keep an eye on the managed application(s); (ii) an IaaS 
provisioning or releasing VMs when the DM asks for; (iii) a configuration agent located in 
each VM, which is activated after the VM has booted to handle communication on behalf of 
the VM; (iv) a message server to exchange messages among the agents themselves and 
between the agents and DM. 

5.2 The dynamic Deployment and Configuration protocol 
Fig. 3 sums up various steps required to deploy and configure RUBiS using AutoBot on the 
Cloud: 
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Fig. 2. AutoBot type model 
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Fig. 3. Steps of the dynamic D&C protocol 
 
1. The model of the distributed application to be deployed is sent to the DM. Fig. 4 and Fig. 5 
represents the RUBiS application model under AutoBot DSL language. Fig. 4 represents the 
various components forming RUBiS. As shown in the lines 17 – 30 and lines 33 – 44, Fig. 4, 
two similar types are provided (Tomcat and JOnAS, respectively). The RUBiS servlet can be 
hosted by both these type of servers and integrated with Apache thanks to the Apache JServ 
Protocol connector (AJP). The DM receives this model and converts it into a 
Cloud-Independent Constraint Problem (CICP) model which the description of software 
components is completely independent of the cloud service providers. Afterward, the DM 
combines information from the CICP model and the supported cloud providers (described in 
the IaaS plugins) to generate a Cloud-Specific Constraint Problem (CSCP) model. The CSCP 
model is a proposed solution for optimal deployment of the distributed application on existing 
cloud resources. 
2. Based on the CSCP model, the DM prepares primitive requests which are sent to the 
corresponding IaaS API for the instantiation of required VMs. With RUBiS, first we deploy 
one instance of Apache (lines 4 – 15, Fig. 5), one instance of Tomcat (lines 18 – 29, Fig. 5) and 
one instance of MySQL (lines 32 – 41, Fig. 5). These instances are put on VM instances 
“VM1”, “VM2”, and “VM3” respectively. 
3. The three VMs are instantiated by the IaaS. The present status of the VMs are kept track of 
by the DM. The DM waits for the VMs to be launched and keep running. 
4. The DM puts configuration files and software instance definition on the message queue of 
each VM. When a VM is up, it first connects to the message server to retrieve the material of 
the instances for which it is responsible and begin installing these instances. 
5. After being installed, all software instances of the application start to exchange their 
imported and exported configurations. In other words, they participate in the global 
application configuration thanks to the message server. Each time the instances get new data, 
they update themselves. The correctness of dynamic reconfiguration is ensured by this 
mechanism. 

5.3 Start of the application 
The deployed application is by default stopped when deployed. The user has to explicitly ask 
for his application to start. When a user asks for the startup, the DM checks the status of the 
dependencies of software instances. If all dependencies are resolved, i.e. it has received 
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“stopped” messages from all the components, it can send a “start” message to start the 
application. It asks for the start of software instances that have no mandatory dependencies to 
start (in RUBiS, the MySQL database can start up and be already up and running before 
Tomcat and/or Apache), or those whose dependencies are running. If some dependencies 
cannot be resolved, it outputs a message and waits for the configuration protocol to finish. It 
keeps on doing that while there are still software instances not running. In this process, when 
the DM wants a software instance to start, it sends a message to the agent on the VM through 
the message server. The agent then starts the software instance. This way to start application is 
a step towards a fully decentralized which would require each software instance not only to 
have the up-to-date model of the application locally but also to have the same consistent view 
as the other instances. Although several protocols exist, which provide such guarantees (View 
Synchrony), we argue that our “centralized” version is not an impediment since the DM 
“only” tracks the running model of the application and no other information is stored on the 
DM. The message server on the other hand may represent a bottleneck in case of a growing 
number of application and thus software instances. That is why in our system, (i) we allow the 
message server to be on a separate machine and (ii) we can have one message server per DM 
as well as shared message servers between multiple DMs in case many concurrent large 
applications are running. 
 
Varying architectures using channels. By default, each software instance exchanging 
variables communicates to other software instances exchanging this same structure. We can 
see an example of that behavior in Fig. 6(a), where one Apache, two Tomcat, and two MySQL 
have been deployed. It may lead to broadcast of multiple variables which are unnecessary in 
some specific cases. To avoid this, we can specify dedicated communicating channels for both 
Tomcat and MySQL by changing the channel parameter. For example, we can define a 
channel named “channel1” for the imported structure of Tomcat1 and for the exported 
structure of MySQL1. We do the same for Tomcat2 and MySQL2 with a channel named 
“channel2”. We can see in Fig. 6(b), this results in a change of the application architecture: 
each Tomcat is now linked to only one MySQL. This feature is practical when service 
providers want to use dedicated VMs to support premium services, for instance. 

6. Dynamic Reconfiguration 
In the previous section, we presented a basic overview of the system and D&C protocol. We 
now detail the deployment process of a new software instance to become a running application. 
To present the deployment and configuration steps of new software instance, we illustrate it 
with our RUBiS. We start with an Apache, a Tomcat and a MySQL, as previously mentioned, 
each on a different VM. In Fig. 5 the model transmitted by the user to the DM, which 
represents this occurrence of the application, is described. 

6.1 Dynamic insertion of a new software instance 
We assume that the application described in the previous section (Apache, Tomcat, and 
MySQL) is deployed, configured and started. We now present the steps to add a new JOnAS 
application server to this application. For example, the new software instance JOnAS is 
deployed by transmitting the software instance model depicted in Fig. 7. 
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Fig. 4. RUBiS software types described in AutoBot model 
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Fig. 5. RUBiS software instances described in AutoBot model 

6.1.1 Provisioning of a VM instance if needed 
The VM instance defined in the software instance model is first checked by the DM when the 
deployment of a new software instance is requested by the user. 

– If the request contains information to deploy the software application on an existing 
VM instance, the model is sent immediately to the VM by the DM (part described in 
the subsection 6.1.2).  

– Otherwise, the DM checks whether a VM type (e.g. “t1.micro”, “m1.small”, etc.) has 
been defined in the software type of the software instance or not. If yes, one VM 
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instance of this kind will be asked the IaaS for instantiation. Otherwise, a VM instance 
will be instantiated from the default VM template. 

In any cases, a message queue on the message server is created for each new VM. 

6.1.2 Sending the software instance model to the VM instance 
The DM serializes and sends the object and the configuration scripts of software instance to 
the message queue of the VM. In the case the VM is not running, this operation still can be 
done thanks to the asynchronous message server. When the VM is on and the agent is started, 
it connects to the message queue and gets all the materials. Note that the agent knows who to 
contact and on which message queue name through the user data specified by the VM when 
asking the IaaS for the instantiation of the VM. 

6.1.3 Setup of the software instance on the VM and local configuration 
When the software instance model and its configuration files are at the side of VM agent, it 
checks which “connector” used to perform the installation and configuration for the software 
instance. Four basic operations setup, update, start, and stop are implemented by a connector 
which is a Java class. The operations relative to each particular software type are described in 
its configuration files. A basic operation called by each connector will transmit the 
configuration of the model to the configuration and packaging system. This mechanism allows 
user to separate actual operations on VM from the configuration exchange. It means a wide 
range of software types can be covered: from distributed software to the ones available in 
Linux repositories. 
 

 
 

Fig. 6. Different strategies of communicating channels 
 

 
 

Fig. 7. Adding a JOnAS application server at runtime 
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6.1.4 Distributed configuration  
When the required software instances are all installed successfully on VMs, they now need to 
exchange configurations. After the installation, the agent on VM inspects the local model of 
the software instance, and applies the steps depicted in the following high-level Algorithm 6.1. 
The agent then listens for messages on the topics it subscribed to, and: 

– If it receives a notification on a topic, it publishes the structure on the topic.  
– If it receives a structure on a topic, it checks if it has instances that need that structure, 

and if so, it adds the structure to instances. 
 

 
 
This behavior enables the system to configure in any order, and also works if an instance is 
added after the initial deployment. We will illustrate the algorithm with the use case: adding a 
JOnAS server to an already deployed RUBiS application with Apache-Tomcat-MySQL: 

– JOnAS exports a structure named “workers”. The agent subscribes to the channel 
named “import.workers”, and publishes the structure filled with values in the topic 
“export.workers”. The JOnAS had already subscribed to this “export.workers” topic, 
therefore it receives this new “workers” structure and can update itself with the IP 
address and the AJP port of the JOnAS server as well. 

– JOnAS, in the same way, will receive the information regarding the database and 
update its configuration accordingly. 

The entire dynamic configuration protocol of adding the JOnAS instance is depicted in Fig. 8. 

6.1.5 Start of the software instance 
In the same way as described in Fig. 3, after the DM puts the software instance model in the 
message server queue, the DM checks if the application is running or stopped. If the 
application is running, a message is sent to the same message queue asking the software 
instance to start. The agent on the VM, receiving messages in the same order, first installs and 
configures the software instance and then starts it. 

6.2 Removal of a software instance 
When the user wants to remove a software instance, it performs a “graceful leave”. The DM 
sends a message to the VM, through the message server, asking for the removal of the software 
instance. The agent receiving this message unsubscribes to all the topic(s) it has previously 
subscribed and notifies other software instances using its exported structure that it is leaving. 
For example, in the use case used in the previous part, the agent would unsubscribe to the topic 
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“import.workers” and “export.database”, and it would then publish to the topic 
“export.workers” to notify it is leaving. The Apache would update itself to correct its 
configuration. The same kind of process is triggered when the user asks to shut down a 
complete VM. A removal can also occur if a VM crashes; in this case, if the Auto-repair 
submodule is enabled, it will take care of the correct removal of the VM according to the 
following procedure: 

– It cleans the software instances handled by the dead VM from the application as these 
instances cannot notify other running instances that they left, this module does it on 
their behalf. 

– It removes these software instances. 
– It asks the IaaS to kill the VM with the problem. It does that to ensure that the VM will 

not reappear and mess up the application. 
– It asks the IaaS to hire a new VM with the same characteristics as the crashed one. 
– It deploys the software instances on the new VM. 

7. Evaluation 
Some results of deployment time of a running application on the Cloud and beyond performed 
in order to validate AutoBot. A small command line front-end has been developed to facilitate 
the basic management operations with AutoBot. RabbitMQ is chosen as the system’s message 
server as well as Puppet and Bash are chosen to install software components locally. The 
verification of the proposed D&C protocol has been conducted in our original work [4]. 
 

 
 

Fig. 8. Different strategies of communicating channels 
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We use AutoBot with Puppet connector to deploy the RUBiS application with three 
following components: 1) Apache Web server, 2) Tomcat included RUBiS servlet, and 3) 
MySQL database. The JOnAS application server with Bash script can be used in place of the 
original Tomcat application server in some experiments. 

Settings. All the experiments use “t1.micro” instances from Amazon EC2. Without loss of 
generality, we combine the Message Server and the DM in one VM. Each software instance is 
deployed on a single VM instance. These entire RUBiS deployment system with AutoBot in 
the Cloud is shown in Fig. 9. First the original 3-tier application is deployed and then we 
switch to the following ones: 

1. Insert a new instance of Tomcat type hosting the RUBiS servlet, called tomcat2 as 
depicted in Fig. 10. 

2. Insert an instance of JOnAS including the RUBiS servlet, too. 
3. Remove the tomcat2 instance. 

 

 
 

Fig. 9. RUBiS deployment with AutoBot 

 
 

Fig. 10. Adding a new Tomcat software instance 
 
The connections between the components are described step by step as follows in terms of 

variable exchange. The MySQL instance exports its port number and IP address. To serve as 
inputs of Apache instance for the AJP connector, the Tomcat instance exports its IP address, 
port number and the number of worker threads. It also imports the variables exported from the 
database instance. Like Tomcat application server, The JOnAS instance has the same set of 
imports/exports variables. Finally, the variables exported from Tomcat/JOnAS instances are 
imported by Apache web server. The web server then forwards its requests to the RUBiS 
servlet located in the application ones. In the original scenario, the components of RUBiS 
application are deployed on 3 VMs. Then two more VMs are inserted to host the newly 
deployed JOnAS instances. These two VMs will be removed afterward. 

Time measurement. All measurements are the nmean and average results of ten different 
runs. Before deploying the application, we give some insights about the time it takes to deploy 
and install each software instance alone The deployment time of each component is shown in 
Table 1. The duration of an instance in the table represents the time for VM provisioning plus 
software deployment until the moment this instance starts. For example, we see that Apache 
takes 105 seconds which is the shortest time for deployment. In general, all the measurements 
are conducted between the time DM receives the request and the time it gets the up-to-date 
status of the instance being tracked. 
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Table 1. Mean deployment time of the standalone software instances 
 

Mean deployment time (s) 
 Mean 99th percentile 

MySQL 153.811 ± 17.6 180.044 ± 18.5 
JOnAS 147.429 ± 5.3 154.214 ± 4.7 
Tomcat 114.031 ± 26.5 165.440 ± 36.3 
Apache 105.034 ± 8.6 121.130 ± 11.3 

 

7.1 The 3-tier RUBiS deployment 
In this experiment, the original RUBiS web application with Apache, Tomcat and MySQL 
instances is deployed and performed repeatedly. The average time and its standard deviations 
needed to have running instances of RUBiS are presented in Fig. 11. This duration is a 
combination of the VM provisioning time, the software installation time, and the dynamic 
configuration of these components. As mentioned, the asynchronous configuration 
mechanism of AutoBot enables the deployment of components in any order. Take advantage 
of this time-decoupling mechanism, the components are deployed and installed in parallel. We 
can see that a fully working instance of RUBiS hosted in modest EC2 nodes can be deployed 
within 152 seconds on average.  

7.2 Addition and removal of software instances 
To have component colocation, AutoBot allows software instances to be added or removed on 
the fly on an existing or new VM. With stateless applications that their components do not 
maintain the present status, this mechanism is especially effective. In this second experiment, 
starting from a running instance of the 3-tier RUBiS, we will add a new VM hosting an 
instance of Tomcat-RUBiS named tomcat2. It takes approximately 270 seconds to have a fully 
working 4-instance RUBiS from the moment the request to add the software instance is issued. 
This duration is a combination of the VM provisioning time, the software installation time 
inside this VM, the auto configuration of these components plus the update(s) impacting other 
components (Apache in this case). We next insert a JOnAS-RUBiS instance working with the 
Tomcat-RUBiS instance to serve the requests originating from Apache. The average 
deployment time of JOnAS is more than Tomcat (299 secs vs 270 secs) since JOnAS provides 
more special features. Lastly, tomcat2 is removed and it only takes eight seconds on average to 
do this process including the dependency reconfiguration and bring the entire system back to a 
stable status. Details of the time it takes for each step of reconfiguration are shown in Table 2. 
These experiments validate our proposed platform and also show that legacy application can 
be easily deployed, managed and updated on modern clouds using the AutoBot model and 
runtime. 

7.3 Beyond the Cloud 
With a commercial web application like RUBiS, workload often peaks at some period daily. 
This results in slower response time causing negative impressiveness and feedback from 
customer side. In this situation, creating new application server instances like Tomcat or 
JOnAS to cover this demand is a critical task. To reduce end-to-end response time (RT), 
service providers can take advantage of devices at the edge where is closer to customers to 
install Tomcat/JOnAS instances inside. This context fits the Fog computing model. In this 
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specific experiment, we aim to install extra JOnAS instances inside Beaglebone Black 
embedded boards [12] when workload of the RUBiS website peaks (RT over 800 milliseconds 
in this experiment) as well as to remove these instances when the workload gets down (RT 
under 200 milliseconds). An AutoBot’s IaaS plugin, called Fog_Node, has been developed to 
cover Fog computing’s concepts. This plugin acting as a proxy to send requests to AutoBot 
agents located inside the Beaglebone Black instances. We do the same method in Section 7.2 
to measure the deployment time of adding/removing a new JOnAS instance to/from a 
Beaglebone Black board. This results in about 310 seconds with the addition and 10 seconds 
with the removal. 

 
 

Fig. 11. Average startup time of original RUBiS on EC2 
  

Table 2. Mean deployment time of an evolvable RUBiS application 
 

Mean deployment time (s) 
 Mean 99th percentile 

Original 3-tier RUBiS 152.7 ± 9.1 168.6 ± 11.2 
Add a new Tomcat (tomcat2) 270.2 ± 37.7 289.3 ± 13.4 

Add a JOnAS server 299.2 ± 43.1 394.2 ± 67.1 
Remove tomcat2 8.6 ± 0.5 9.1 ± 0.3 

 
Fig. 12 shows the response time fluctuates during the experiment time. First, the 

experiment starts with a RUBiS application consisting of one Apache instance, two JOnAS 
instances, and one MySQL instance all on Amazon EC2. Until around the 90th second, this 
system handles well the workload which is generated from the RUBiS client emulator. After 
the 90th second, the workload significantly increases resulting in a high RT. AutoBot whose 
Auto_Repair submodule was turned on triggers a command to add a new JOnAS instance to 
the system. As mentioned, the deployment time of JOnAS instance is about 310 seconds and 
during this period, the RT is still over 800 milliseconds. The RT gets a subtle peak around 
420th second when the deployment time finished and the dynamic reconfiguration is 
happening. Afterward, the RT reduces under the max RT threshold thanks to the working 
together of the three JOnAS instances. Since the workload also decreases gradually, the RT 
goes under 200 milliseconds around 1220th second. At this point, AutoBot triggers another 
command to remove a redundant JOnAS instance. This process takes only 10 seconds and then 
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the RT goes over 200 milliseconds once more. Another removal could happen if the RT goes 
under the min RT threshold again. 

This experiment validates the flexibility of AutoBot which can be extended to the 
environments beyond Cloud computing such as Fog computing. It also gives a proof that the 
submodules of the monitoring manager are functioning correctly. 

 
Fig. 12. Adding/Removing JOnAS instance in the context of Fog computing 

7.4 The Overhead of AutoBot 
Two thousand requests were generated and sent to the y-cruncher benchmark [13] to calculate 
the PI (π) to a specified number of digits after the decimal point (55 in this experiment) in 
order to evaluate the overhead introduced by AutoBot. Two cases were evaluated: i) the 
benchmark application deployed with AutoBot and ii) the benchmark application deployed 
without AutoBot. The experiments were conducted on VM c4.large instances (2 cores and 
3.75 GB memory). In both scenarios, the requests were sent and executed 30 times. The results 
of the average execution time of each scenario as well as the additional costs brought by the 
AutoBot platform are presented in Table 3. 

 
Table 3. Execution Time and Overhead 

 

Scenario Average execution time Overhead introduced by AutoBot 
Application 14.65 - 

Application + AutoBot 15.25 4.1% 
 
From the results, the AutoBot platform introduces only 4.1% performance overhead. This 

additional cost is generated mainly by exchanging configurations of the dynamic 
reconfiguration mechanism. In summary, the AutoBot platform introduces a negligible 
overhead given the aforementioned advantages. 
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8. Related work 
According to the N.I.S.T. definition of the cloud [14], the objective of Platform as a Service 
(PaaS) layer is to provide models and environments for the automatic management of all 
life-cycle stages of applications deployed on Cloud. The deployment one is the first stage. 
Carzaniga et al. [15] defines the stage of deployment with the following four steps: (i) the 
packaging/versioning at the end of the application development, (ii) static configuration of the 
application, (iii) its installation in the runtime environment, and (iv) post-configuration and 
activation of the application. Package managers at operating-system-level (OSLPM) like apt, 
dpkg, or RPM manage dependencies between packages on a single machine and therefore 
differ from AutoBot. They do not provide application or configuration management or 
deployment of multiple machines. However, AutoBot complements these systems because it 
can use an OSLPM to install a software instance locally on a VM (AutoBot supports Bash 
scripts so that nearly any OSLPM can be used). It supports for resolution of higher-level 
problems involving the management and maintenance of distributed applications on 
heterogeneous platforms. 

Tools like Chef and Puppet are intended to (i) set the local configuration of running hosts 
and (ii) keep them in accordance with the desired application status. These solutions follow a 
client/server approach where a server has the desired machine status and the client ensures that 
the configuration is set up. AutoBot improves in several ways on these management systems. 
First, the specification of the software types and their private details for installation are clearly 
separated. This relieves configuration pain and resolution of dependencies. AutoBot allows a 
very compact specification of a distributed application, which is smaller than the order of 
magnitude required to deploy a complex distributed application. A particular application can 
be easily deployed on different platforms (Linux-based, Windows-based, etc.) without much 
more work than a single installation would require. Lastly, although these management 
systems support application management across multiple servers, each client works in 
isolation and therefore does not coordinate between servers. AutoBot provides an easy way to 
coordinate and configure services on multiple machines depending on their dependencies. 

About the standards of Cloud computing, Organization for the Advancement of Structured 
Information Standards (OASIS) creates TOSCA (Topology and Orchestration Specification 
for Cloud Applications) providing a language for describing the components comprising the 
model of cloud applications and the processes for orchestrating these components. Similar to 
this approach, CAMEL is another language aiming at enabling interoperability among the 
components of multi-cloud applications. This language also proposes application models at 
runtime that enables the continuous management of multi-cloud applications from design time 
to runtime operations. AutoBot not only provides its own DSL but also supports taking 
advantage of other standards by customizing the DSL plugins.  

The nature of AutoBot is to resolve an optimization problem of application deployment in 
distributed environment with the given resources. On the same topic of optimization problems 
in Cloud and Fog, each of the following works focuses on a specific issue. Canali et al. [16] 
also resolve deployment problem in Cloud data center but they only focus on virtual elements 
(VE). To minimize the energy consumption in a software-defined Cloud data center, the 
energy consumption is modeled by considering the computing costs of the VEs on the physical 
servers, the costs for migrating VEs across the servers, and the costs for transferring data 
between VEs. In [17], the same group of authors takes the maintenance cost into account and 
proposes the Maintenance and Electricity Costs Data Center (MECDC) algorithm to solve the 
optimization problem of balancing electricity consumption and maintenance costs in Cloud 
data centers. In another direction for software-defined Cloud data centers, Tajiki et al. [18] 
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propose CECT, a computationally efficient congestion avoidance scheme. Based on the flow 
requirements, the proposed algorithm not only reallocates the resources but also minimizes 
network congestion. In the scope of Fog computing, novel optimization algorithms are also 
proposed to resolve the selection problems of when 5G mobile users should offload computing 
workload to Wi-Fi [19] and when Fog servers should cluster the nearby cloudlets for 
offloading the task of a mobile [20]. In the same vein, energy-efficient and real-time 
management of the distributed resources available along the Fog strata is taken into 
consideration in [21]. The authors propose an energy-efficient adaptive scheduler for 
Vehicular Fog Computing (VFC), which optimizes the energy by taking advantage of the 
heterogeneity of Foglets (FIs). The FI provider shapes the system workload by maximizing the 
task admission rate over computation and data transfer. To facilitate mobile malware 
identification, Afifi et al. [22] propose a hybrid method to find the optimal parameters used for 
this purpose. In data preparation phase, a multi agent system architecture including sniffer, 
extraction, and selection agents is presented to capture and manage the pcap file. The 
principles used in these proposed algorithms can be applied by AutoBot to enhance its 
modules involving the optimization of application deployment. 

Few of the heterogeneous industrial PaaS solutions offer fully automated systems to deploy 
an application regardless of its programming language, programming convention and model, 
business domain, infrastructure, and runtime environment. Engage [23], PaaSage [24], and 
Roboconf [25] are good representatives of these systems, which provide not only a method for 
describing distributed applications, but also a complete runtime system for managing these 
deployed applications. While PaaSage develops many efficient constraint-based optimization 
tools such as MILP and CP solvers, Engage predominates in enabling static checking of 
application configurations. Yet, Engage and PaaSage lacks some flexibility in inserting or 
releasing new software instances dynamically during runtime while still ensuring the proper 
resolution. Since they only depend on partial specifications rather than complete ones, there 
can be no guarantees that a software instance is solved even if an advanced constraint solver 
used. Although they provide elegant mechanisms to roll back to last state if an upgrade fails, 
the two do not detail in this feature further. Roboconf is the first research presenting a 
declarative language to describe the hierarchy of software components both horizontally and 
vertically. Nevertheless, Roboconf is built around its own describing language which is not a 
standard to describe the deployment of a distributed application. Furthermore, Roboconf does 
not have the means to describe the local configuration and, more generally, the content of the 
virtual appliances participating in the application to be deployed and instantiated in VMs. 
Since these PaaS solutions lack some precious features, we have chosen to design a simpler 
model for any distributed applications. 

Similar to AutoBot, some works also aim to provide flexible and portable deployment 
solutions in Multicloud in terms of functional, data and service portability. Semantic approach 
of Cloud4SOA project [26] deals with the portability between PaaS. mOSAIC [27] provides 
service enhancement portability at both PaaS and IaaS levels. It includes a component-based 
application model along with asynchronous communication. Authors of soCloud solution [28] 
develop an API to offer service enhancement portability also running on IaaS and PaaS. 
Unlike mOSAIC, soCloud supports both synchronous and asynchronous communications. 
AutoBot not only aims to a flexible and portable application deployment solution on the Cloud 
but also provides the DSL plugins to abstractly describe concepts of heterogeneous 
environments beyond the Cloud such as Fog computing. 

In recent years, several works in deployment and (re)configuration of the components in 
Fog computing have been introduced in the literature. Firstly, a service orchestration 
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architecture for Fog-enabled infrastructures is proposed by Brito et al. [29]. This orchestrator 
enables Fog nodes capability of running virtualized and containerized applications and offers 
these applications capability of accessing to connected/attached devices over different 
communication technologies. In another research, a Fog computing platform, which 
dynamically pushes programs to the devices, is implemented by Hong et al. [30]. These 
programs pre-process the data before transmitting them over the Internet in order to reduce the 
network traffic and the load of Cloud data centers. Moreover, this paper formulates a 
deployment problem of the programs and proposes an efficient heuristic deployment 
algorithm to solve it. The authors of [31] seek a solution to reduce the network costs and 
response time for the user by developing a resource-aware placement of data analytics 
platform in Fog computing architecture, which would adaptively deploy software components 
of the analytic platform to run either on the Cloud or the Fog. A novel integrated fog cloud IoT 
(IFCIoT) architectural model is introduced by the authors in [32]. The layers such as 
application layer, analytics layer, virtualization layer, reconfiguration layer, and hardware 
layer are included in the architecture. These layers facilitate abstraction and implementation 
for Fog computing paradigm where various vendors such as data, applications, services, and 
content providers are involved. Although these works contribute to the development of D&C 
solutions for Fog computing, they all do not reuse D&C modules developed previously for 
Cloud computing, which may increase the development time and cost. AutoBot aims to a 
platform where portable modules once developed and run well in Cloud will be extended and 
reused in other distributed environments such as Fog computing.  

9. Conclusion and Perspectives 
Dynamic configuration and deployment of complex distributed applications are broadly 
preferred but management systems are often complicated and expensive in practice. This is the 
reason we decided to rethink how to model, deploy and manage dynamic distributed 
application stacks. We introduce an explicit and concise domain specific language which 
offers the needed syntax to describe any sort of distributed applications, their configuration 
variables and interdependencies. The paper also presents a platform, AutoBot, that takes 
advantage of this language, which ensures (i) the successful parallel deployment of the 
components on the cloud infrastructure using minimal IaaS primitives, (ii) the coordination of 
the global configuration via a decentralized configuration protocol across multiple VMs and 
(iii) the capability to add/remove new software components during runtime to a deployed 
application. An important perspective of this work is the extension of the domain specific 
language to cover extremely heterogeneous environment of Internet of Things applications 
which can be deployed and managed automatically by a mechanism evolved from the D&C 
protocol proposed in this paper. Another perspective is that the platform is designed as flexibly 
as possible, thus its components can be added, reused or improved to serve for not only Cloud 
computing applications but also Fog computing ones.  
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