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Abstract. This study deals with the nonlinear static analysis of functionally graded carbon nanotubes reinforced composite
(FG-CNTRC) truncated conical shells subjected to axial load based on the classical shell theory. Detailed studies for both
nonlinear buckling and post-buckling behavior of truncated conical shells. The truncated conical shells are reinforced by single-
walled carbon nanotubes which alter according to linear functions of the shell thickness. The nonlinear equations are solved by
both the Airy stress function and Galerkin method based on the classical shell theory. In numerical results, the influences of
various types of distribution and volume fractions of carbon nanotubes, geometrical parameters, elastic foundations on the
nonlinear buckling and post-buckling behavior of FG-CNTRC truncated conical shells are presented. The proposed results are

validated by comparing with other authors.
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1. Introduction

The truncated conical shells are important components
as principal elements of engineering structures which draw
attention to researchers and scientists. As well as known,
there are many authors study the static and dynamic
analysis of truncated conical shells made of different
materials. One of the most renowned authors on these
structures is Sofiyev with some investigations by him and
his co-workers were reported in the literature (Sofiyev and
Schnack 2003, Sofiyev 2010, 2011, 2015, Najafov and
Sofiyev 2013, Sofiyev and Kuruoglu 2013, 2015, 2016,
Sofiyev et al. 2017). It can be seen that, in Sofiyev’s
studies, he analyzed, in turn, the linear and nonlinear
buckling behavior, dynamic and the free vibration analysis
of truncated conical shells surrounded or not by an elastic
medium under different loads. He used the form of one-
component deflection function for linear studies and the
form of two-component deflection function for nonlinear
studies to solve the system of nonlinear partial differential
equations. His studies were obtained for truncated conical
shells by using the stress function, the deflection function
and the superposition method.
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These novel researches about buckling analysis of
conical and truncated conical shells made of composite
materials are studied. Buckling analyses of laminated
truncated conical shells subjected to external hydrostatic
compression are carried out by Hu and Chen (2018).
Shadmehri et al. (2012) investigated the linear buckling
response of conical composite shells under compression
load using the first-order shear deformation shell theory.
Seidi et al. (2015) presented the temperature-dependent
buckling analysis of sandwich conical shell with thin
functionally graded facesheets and homogenous soft core
based on analytical solution. Morozov et al. (2011)
investigated the buckling analysis and design of anisogrid
composite lattice conical shells. Zielnica (2012) studied the
buckling and stability of elastic-plastic sandwich conical
shells. Sharghi et al. (2016) studied the buckling of
generally laminated conical shells with various boundary
conditions subjected to axial pressure is studied using an
analytical approach. Topal (2013) investigated the pareto
optimum design of laminated composite truncated circular
conical shells.

In addition, there are many works have focused on
buckling and post-buckling behaviors of functionally
graded materials (FGM) truncated conical shells. Thermal
buckling analysis of FGM sandwich truncated conical shells
reinforced by FGM stiffeners resting on elastic foundations
using FSDT are carried out by Duc et al. (2018). Khayat et
al. (2017) investigated the buckling analysis of functionally
graded truncated conical shells under external displacement-
dependent pressure. The an analytical investigation for
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analyzing the buckling and post-buckling behaviors of
truncated conical shells made of FGM subjected to axial
compressive load and external uniform pressure are
presented by Dung et al. (2017) and Chan et al. (2018).
Torabi et al. (2013) studied the buckling analysis of a FGM
conical shell integrated with piezoelectric layers subjected
to combined action of thermal and electrical loads. Naj et
al. (2008) investigated the thermal and mechanical
instability of functionally graded truncated conical shells.
Akbari et al. (2015) presented the thermal buckling of
temperature-dependent FGM conical shells with arbitrary
edge supports based on an iterative generalized differential
quadrature method. Duc and Cong (2015) studied the
thermal stability of an eccentrically stiffened functionally
graded truncated conical shells in thermal environment and
surrounded on elastic foundations. Viola et al. (2014)
investigated the static analysis of FGM conical shells and
panels using the generalized unconstrained third order
theory coupled with the stress recovery.

FG-CNTRC were first proposed by Shen (2009) and
until now, FG-CNTRC have become more popular and
recently, researchers have paid much heed to the
development of FG-CNTRC. In particular, up to this point,
studies on the linear and nonlinear of FG-CNTRC conical
and truncated conical shells are also of more interest to
researchers. The typical studies for static and dynamic
analysis of FG-CNTRC truncated conical shells include, via
the extended Hamilton principle, Heydarpour et al. (2014)
discretized the governing differential equations subjected to
the related boundary conditions for studying free vibration
analysis of rotating FG-CNTRC truncated conical shells by
using the differential quadrature method. Duc and Nguyen
(2017) studied the dynamic response and vibration of FG-
CNTRC truncated conical shells resting on elastic
foundation based on the classical shell theory. Kamarian et
al. (2016) investigated the free vibration analysis of
CNTRC conical shells based on first-order shear
deformation theory. Mehri et al. (2016a, b) studied the on
dynamic instability of a FG-CNTRC truncated conical shell
under simultaneous actions of a hydrostatic pressure and
yawed supersonic airflow and the buckling and vibration of
the FG-CNTRC truncated conical shell subjected to axial
compression and external pressure simultaneously based on
the basis of Novozhilov nonlinear shell theory and Green-
Lagrange geometrical nonlinearity and using Fourier
expansion and the harmonic differential quadrature. Ansari
and Torabi (2016) studied the buckling and vibration of FG-
CNTRC conical shells under axial loading by using the
generalized differential quadrature method. By using first
order theory of shells and geometrical non-linearity of von-
Karman and Donnell kinematic assumptions and according
to the adjacent equilibrium criterion, Jam and Kiani (2016)
dealt with the buckling of FG-CNTRC conical shells
subjected to pressure loading. Mirzaei and Kiani (2015)
presented the thermal buckling of FG-CNTRC conical
shells with axially immovable edge supports subjected to
uniform temperature rise loading. With the equilibrium and
linearized stability equations for the shells are derived based
on the classical shell theory, Duc et al. (2017) studied the
linear thermal and mechanical instability of the FG-CNTRC

truncated conical shells in thermal environment.

Despite all the above-mentioned literature, it is clear that
the buckling and post-buckling behaviors are very
important for understanding the structural responses of
truncated conical shells as well as scientific foundations for
structural designers, manufacturers and for building projects
using this structure, however, the number of works for FG-
CNTRC truncated conical shells is still limited. The
majority of publications is focused on linear buckling and
free vibration analysis of truncated conical shells. Thus, this
work proposes to analyze the nonlinear buckling and post-
buckling behaviors of FG-CNTRC truncated conical shells
subjected to axial load using the classical shell theory.

2. Material properties and formulation
2.1 Numerical simulation procedure

The FG-CNTRC material is made of Poly (methyl
methacrylate), referred to as PMMA, reinforced by (10,10)
single-walled carbon nanotubes (SWCNTs). The SWCNT
reinforcement is functionally graded (FG) or uniformly
distributed (UD) in the thickness direction (Shen 2009, Duc
and Nguyen 2017). Four types of FG-CNTRC s, i.e., FG-A,
FG-X, FG-O and UD CNTRC (Fig. 1), which are the
functionally graded distraction of CNTs through the
thickness direction of the composite truncated conical shell,
will be investigated in this work.

The volume fractions of component materials are
assumed to vary according to the linear functions of the
shell thickness are expressed as follows (Shen 2009,
Heydarpour et al. 2014, Duc and Nguyen 2017)

*

Vi (UD)

Vi [1— 2%) (FG-A)

Yor S, [1—2%} (Fe0) m Ve ()
4vgNT% (FG-X)
where
Vonr = T , )

Wenr + (IDCNT ! py, ) - (pCNT ! P )WCNT

FG-O

Fig. 1 Configurations of CNTRC truncated conical shells
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in which weyr is the mass fraction of CNTs, and pcnt and pp,
are the densities of CNT and matrix, respectively.

The effective Poisson’s ratio may be written as (Shen
2009)

Vip :VSNTvlczNT +vam (3)
where v&'T and v,, are Poisson’s ratio of the CNT and
the matrix, respectively.

There ESNT, EFNT, GEMT are Young’s and shear
modulus of the CNT, respectively; E,, G, are mechanical
properties of the matrix, n; (i =1,3) are the CNT
efficiency parameters and Vcnr and V, are the volume
fractions of the CNT and the matrix, respectively, the elastic
modules of the FG-CNTRC material are determined as
(Shen 2009)

B =mVenr ElclNT +V,E,,

7 Vo | Va

= Troow tZ o

E, Ex En (4)
s _Vewr | Vi

Gl? GICZNT Gm ,

The CNT efficiency parameters n; (i = 1,3) used in
Eg. (4) are estimated by  matching  Young’s
modulus E;; and E,, and the shear modulus G;, of FG-
CNTRC material obtained by the extended rule of mixture
to molecular simulation results (Shen 2009). For three
different volume fraction of CNTSs, these parameters are as:
n = 0.137, 5, = 1.022, 53 = 0.715 for the case of Viyr
0.12; 5, =0.142, 5, = 1.626, n3 = 1.138 for the case of Vyr
0.17 and #; = 0.141, », = 1.585, 3 = 1.109 for the case of
Viyr = 0.28. (Heydarpour et al. 2014, Duc and Nguyen
2017).

2.2 Model FG-CNTRC truncated conical shells
resting on elastic foundations

Consider a thin FG-CNTRC truncated conical shells
surrounded by the elastic foundations, with the shell of
thickness h, radii R; < R,, length L and the semi-vertex
angle of the cone y. The meridional, circumferential, and
normal directions of the shell are denoted by S, 6 and z,
respectively. A schematic of the shell with the assigned
coordinate system and geometric characteristics are shown
in Fig. 2.

The FG-CNTRC truncated conical shell is surrounded
by an elastic medium. The reaction-deflection relation of
foundation is given by (Sofiyev 2011)

G (S,9) = K,w—K Aw, ®)
= 0 sin(): _ (Pw  Low 127wy
where ¢ = 6 sin(y); Aw = (052 sos T2 a<p2)’ w is the

deflection of the shell, K, (N/m% is the spring layer
foundation stiffness and K, (N/m) is the shear layer
foundation stiffness of Pasternak foundation.

2.3 Theoretical formulations

In this study, the basic equations of thin FG-CNTRC
truncated conical shells are achieved by using the classical
shell theory. The strains across the shell thickness at a
distance z from the mid-plane are

&g & Ks
g, =4 r+23k, . (6)
Vso 7 gs 2Ks,

Taking into account Von Karman — Donnell nonlinear
terms, the strains at the middle surface and the change of
curvatures and twist are related to the displacement
components u, v, w in the S, 6, z. coordinate directions,
respectively, as (Sofiyev 2011)

o ou lfowY , lav u w 1 (ow)
gg=—+=| = | G =g—+o—<COty+—| —

a5 2.5 Sép S S 252 09
o lau v v 1fowaw)
=520 s s s\ asag) |

%4 (%4 (7)

o*w 1 6°w 1ow
ke=——z k=" 7"<=

a5 S?0¢7 S5

10w 1 ow

Ky = ————+——.
¥ 5850p S2op

with &) and &) are the normal strains in the curvilinear
coordinate directions S and & on the reference surface
respectively, v, is the shear strain at the middle surface of
the shell, ks, ky, ksy are the changes of curvatures and twist.

Shear layer (

(b)
Fig. 2 The geometry of a FG-CNTRC truncated conical shell resting on elastic foundations
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Using Egs. (6) and (7), the nonlinear geometrical
compatibility equation of truncated conical shells is written
as

coty o'w 1%, 1 0y, . ’e) 1 0%l

S 052 Sd50p SE 0p 052 S 0
200 1023 1(ow) 2 0w dw
S S5 S'\op) SopdSop (8)

1|werw ((dfw )| 1owdiw
S a5 08°

S?| 087 9g? | 8Sop
The stress-strain relations of the shell are given as

Os Qi Q. 0| &
o, |=|Q, Qp O &y |y
Osg 0 0 Qe[ 7so

~

9)

in which, the quantities Qy, (ij = 11, 12, 22, 66) are
functions of non-dimensional thickness coordinate

Q _ Ell Q _ EZZ
n = 2 =7 )
ViV —VioVa
Vo By
Q12 = 1 ) Qee :Gm'
ViV

The force and moment resultants of FG-CNTRC shells
are shown by

h/2

(N, M= [ oi@2)dz, (i=5,0). (10)

-h/2

The force and moment resultants of the shell are
expressed in terms of the stress components through the
thickness

N A, A, 0 B By 0 & 3

N, A, A, 0 B, B, 0 & 3

Nso _ 0 0 A O 0 2By 739 (11)
Mg B, B, 0 D, D, 0 s ,

M, B, B, 0 D, D, 0 y)

Mg,] |0 0 Bg O 0 2D ||k,

where the coefficients A, By, Dj (i, j = 1 — 2, 6) are shown
by

h/2

(A By D)= I Qz2%)dz. (12)

—h/2

The nonlinear equilibrium equations of a truncated
conical shell (Sofiyev 2011)

S%+a’\l_5‘9+NS_NH :o’
oS op

OoN ON (13)
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The first two equations of the system of Eq. (13) are
satisfied by using a stress function F as (Sofiyev 2011)

_L1OF 1R _oF
* 529 S oS’ v 88?’
, (14)
1 8°F 1 0F

Substituting Egs. (6), (11), (14) into the Eq. (8) and Egs.
(6), (11), (14) into the third equation of the system (13),
obtained two new equations of F and w. For the simplicity
of the mathematical operations, the variable S = S;e* is
included and F = F,e* is taken into account instead of F,
after lengthy computations, the system of nonlinear partial
differential equations for F; and w can be shown in the form

ll(F1)+ H12 (W)+ H13(F1’W)
2 (F)+Hy (W)+Hy (w,w)

0,
0 (15)

H
H

with Hj; are given in Appendix .

The system Eqgs. (15) are basic equations to analyze both
the nonlinear buckling and post-buckling behavior of FG-
CNTRC truncated conical shells resting on elastic
foundations.

2.4 Boundary condition and solution

In this section, the main equation of FG-CNTRC
truncated conical shells are achieved. The truncated conical
shell is assumed to be simply supported at both edges

w=0 at x=0 and X=X (16)

The boundary condition can be satisfied when the
deflection w is approximately assumed as follows (Sofiyev
2011)

w= fe* sin(m,x)sin(m,0) + Gfe* sin* (mx),  (17)

S .
—_ X, = I3, m is the numbers

siny

of half waves along a generatrix and n is number of full
waves along a parallel circle. There is form of two-
component deflection function, f is the unknown amplitude
of the deflection in the linear case and G is a parameter that
determines relationship between the linear and nonlinear
parts of the displacement of deflection function or in other
words, with respect to the space configuration, the first term
corresponds to that used in the stability theory of
infinitesimal deflections and the second term reflects the
preferred inward bulging of the conical shell when the
displacements become large.

mm
where m; = — My =
0
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Substituting Egs. (17) into Egs. (15) and solving the
obtained equation by applying the superposition principle,
the stress function F; can be obtained as

F, = K, fe™sin(m,x)sin(m,p)+ K, fe™* cos(m,x)sin(m,p)

+K,Gf e cos(2m,x)+ K,Gf e sin(2m,x)

+(KoyG® f + Ky, + Ky,G ) f cos(2m,x)

+(KgG* f + K, + Ke,G) fsin(2mx)

+K, f % cos(2m,x)cos(2m,p)+ K, f 2 sin(2m,x) cos (2m,p)
+(KyGF  + Kg, ) cos(myx)sin (m, ) (18)
+(KnGF * + Ky,  )sin(m,x)sin (m, ) +

+K,Gf ? cos(3m,x)sin (m,e) + K,,Gf * sin (3m,x)sin (m, )
+K,G? f? cos(4m;x) + K,,G* f ? sin(4m,x)

+K,s f 2 cos(2m,p) + K, Gfe ™ *%(14’ e’ cos(m,))TS; .

where the following definitions apply

o By By By Gy IM(2am+ay)
1= Ny = 1 INg 1IN T 1INEL T 2 2 !
a23 23 2 2 2 a15 +a’16
Ko Busdy Al | COt(y)Sm, (2a,M, +3y)

52 ' 53 — 1
' +ay A’ +ay,
K __1m(-2a,m +a,) K. = st — 368y
61 2 2 1 IN62 2 2 !
2 Qs T3y a5ty
=_C0t(7)51m1(_2a16n1,|,+815) K =}6\1mf—4a2a3
K a152+a162 4 812+622 ,
P L T . RS Y P P
8 2 2 1INl T 2 2
2 a1 +a2 a19 +a’20
_ 1 COt(y)Slml(ai!?ml _aZO) K — A9y — A58y
92 2 2 1MoL T 2 2
2 a19 +a20 a19 +a20
K _ 1cot(y) Sim, (am, +ay, ) K = BaBo ~ 83,
102 2 2 1ML 2 2 '
2 qy tay 8 +3a
Ko B +ad, | &M’ +aa
12— 2 2 M3 T 2 2 !
8 ta a, +a
K = asmlz_aztae _mlzmzz K. = Cp, +Cy
Y oal+alr T ® 2a T 2A
4 5 7 22

in which the remaining constants a; (i = 1 + 25) are given in
Appendix II.

Applying the Galerkin method with the limits of integral
is given by the formula

Xg 27siny
j j ®e* sin(m, x) sin(m,p)d pdx = 0, (19)
0 0
Xo 27siny
j j ®e* sin®*(m x)dpdx =0, (20)
0 0

where @ is the left hand side of the first equation of system
Eqg. (15) after substitution Egs. (19)-(20), after that, we

obtain the following equations

u, f°G? +u, fG+u, f? +u,T +u, =0, (21)
UG % +u, F2G? +u F°G +uy, fG+u,, 2+ (U, FG +u, )T =0. (22)
where the constants u;, i = (1 — 12) are given in Appendix
. From Egs. (21) and (22) lead to the relationship between

the linear and nonlinear parts of the displacement as follows

(uug —u,ug) £°G* (U, +u,ug —u,u, ) f2G?

u, u,
uu, —u,u.) 2 (u,u, —u,u, +u.u,)f
+(—( 3Yg Ty 8) _( 2Y%12 ~ Y40 TUs 9) JG 23)
u, u,

2
_ (u3u12 - u4u11) f usu,,
u, U,

To simplify the calculations, create a relationship G = if
and using Eqg. (23) we obtain the following definition
UsUy, —U,Uy,

A=-— .
UyUy, — U, Uy, + UgU

(24)

Substitution of Eq. (24) into Eq. (21) the axial load can
be expressed as follows

4 A2 2 2
fPA% U, + F AU, + U, +ug
u4

T=-

(25)

Eg. (25) is the main equation used to investigate the
nonlinear buckling and post-buckling behavior of the FG-
CNTRC truncated conical shells resting on elastic
foundations under axial load.

3. Numerical results and discussion
3.1 Validation

In order to evaluate the reliability of the method used in
this paper, the comparison of axial buckling load T, (kN) is
made with results of the study (Ansari and Torabi 2016,
Duc et al. 2017). Table 1 shows the comparison of critical
buckling load T, (kN) of FG-A CNTRC truncated conical
shells and Table 2 shows the comparison of critical buckling
load T, (KN) of CNTRC truncated conical shells with
various types of CNT reinforcements. The geometrical
parameters and material properties of CNTRC truncated
conical shells in these tables ESNT = 5.6466 TPa, ESNT=
7.0800 TPa, G'T= 1.9445 TPa, v{)'"= 0.175, v, = 0.34,
E, = 2.5 GPa, h = 0.002m, Ry/h = 25. The results in these
tables show a good agreement in this comparison.

3.2 Nonlinear buckling and post-buckling of FG-
CNTRC truncated conical shells

In this section, nonlinear buckling and post-buckling
analysis of FG-CNTRC truncated conical shells
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Table 1 Comparison of critical buckling load T, (kN) of FG-A CNTRC truncated conical shells

(h=0.002 m, Ry/h = 25)

] L/R, =1 L/R, =3
Venr oo T ono "o oo T ano oo
y=15 y=30 y =45 y=15 y =30 y =45
79.62 67.92 52.43 62.12 50.21 31.99
Duc etal. (2017) 141’ (12 (181  (14) (1.3) (10.1)
Ansari and Torabi
0.12 (2016) 79.72 69.88 54.67 61.68 48.91 33.40
Bresent 79.83 69.78 54.25 61.52 48.37 33.85
(1,48) (5,18) 2,17) (9,16) (9,30)  (11,33)
12099 10821 83.63 103,12 83.75 53.26
Duc etal. (2017) (1.3) 101) @181 (7.1 (1.2) (14.1)
0.17 Ansari and Torabi 12356  107.10 82.75 102,59 80.85 54.76
(2016)
Bresent 12422  106.42 82.16 102.29 80.10 54.02
(2,14) (2,18) (2,18) (7,23) 937)  (11,36)
17311 15216 12214 12539  103.03 71.09
Duc etal. (2017) (10,1) (14.1) (10,1) 1,2) 1,3) (14,1)
0.28 Ansar('zznld&mrab' 17325 15336  121.34  127.76  102.19 70.32
Bresent 17281 15313 12173  127.35 10221 70.89
9,27) (3,13) (2,16) (9,15) (8,34) (9,39)
* Buckling mode of the FG-CNTRC truncated conical shell
Table 2 Comparison of critical buckling load T, (kN) of CNTRC truncated conical shells
(h =0.002 m, Ry/h = 25, L/R; = 1)
Type Y Ansari and Torabi Present Ansari and Torabi Present Ansari and Torabi Present
(2016) (2016) (2016)
. 98.94 152.68 231.78
15 98.46 220) 152.01 (222) 231.34 250)
. 88.23 135.96 192.20
UD 30 88.32 (729) 135.20 242) 19355 (226)
. 70.43 107.18 157.03
45 70.91 231) 107.10 233) 157.23 (229)
. 68.19 103.70 144.94
15 67.08 (259) 104.52 (240) 145.49 (28)
. 57.52 87.72 126.67
FG-O 30 5755 2.30) 88.56 237) 126.28 2.38)
. 43.17 66.83 97.69
45 43.99 (235) 66.68 237 97.82 (238)

subjected to axial load are presented. Poly (Methyl
methacrylate) (PMMA) is considered as the matrix with
material properties at room temperature The (10,10)
single walled carbon nanotubes (SWCNTS) is considered as
reinforce-ment. The material properties at room temperature
of SWCNTs are given ESNT = 5.6466 TPa, ES)'" = 7.0800
TPa, G'T=1.9445TPa, v{NT=0.175.

Figs. 3 and 4 illustrate the effect of CNT volume
fraction of fibers and ratio Ry/h on the critical buckling load
of CNTRC truncated conical shells. Three values of volume
fraction are considered. It can be seen from these figures
that the value of critical buckling load increases when the
CNT volume fraction increases and vice versa. The CNT
volume fraction increase results in load capacity of CNTRC
truncated conical shells become a better because the elastic

modulus of the CNT is significantly stronger than the
elastic modulus of the matrix. It is clear that the ratio R;/h
has a substantial effect on the critical buckling load because
the Ri/h increase makes the CNTRC truncated conical
shells thinner results in the critical buckling load of the
CNTRC truncated conical shells become lower. The critical
buckling of FG-X CNTRC truncated conical shell is
substantially higher than CNTRC truncated conical shell
with uniform distribution type under conditions the same
geometrical parameters. For instance, with the same
geometrical parameters and Viyr = 0.28, Ry/h = 100 the
value of critical buckling load of FG-X CNTRC truncated
conical shell is T, = 7 kKN (Fig. 3) and the value of critical
buckling load of CNTRC truncated conical shell with
uniform distribution type is T, = 5 kN (Fig. 4).
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Fig. 3 Effect of CNT volume fraction and ratio R;/h on the
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Fig. 5 Effect of semi vertex angle and ratio L/R; on the

critical buckling load of FG-CNTRC truncated

conical shells

Table 3 Effect of CNT volume fraction and ratio L/R; on
the critical buckling load T, (kN) of FG-CNTRC
truncated conical shells

Fig. 5 depicts the effect of semi vertex angle on the
critical buckling load of FG-CNTRC truncated conical
shells under three different sets of length to radius ratio (L /
Ry). It is clear that the value of the critical buckling load of
FG-CNTRC truncated conical shells decreases when the
value of semi vertex angles increases.

Table 3 compares the critical buckling load of FG-
CNTRC truncated conical shells with three different values
of CNT volume fractions and length to radius ratio (L/Ry).
The geometrical parameters of the truncated conical shells
are (n, m) = (1, 11), FG-X, Ry/h = 80, y = 30°, K, = 0, K, =
0. Clearly, the lower the length to small radius ratio (L / Ry),
the higher the value of the critical buckling load of FG-
CNTRC truncated conical shells in both of Fig. 5 and Table
3.

Table 4 presents the effect of three different CNT
volume fractions and various types of CNT reinforcements
on the critical buckling load of FG-CNTRC truncated
conical shells. The geometrical parameters of the truncated
conical shells are (n, m) = (1, 11), L/R; =1, Ry/h =80, y =
30° Ky =0, K, = 0. It is noticeable that the value of
critical buckling load is affected by various types of CNT
reinforcements. The value of critical buckling load of FG-X
CNTRC is the highest and FG-O CNTRC is the lowest. For
instance, in the case Viyr= 0.12 the value of the critical
buckling load of FG-X CNTRC truncated conical shell is
T = 21.665 kN, this value is dramatically decreased for
FG-O CNTRC truncated conical shell (T, = 7.592 kN).

Table 5 compares the critical buckling load of CNTRC
truncated conical shells resting on elastic foundations with
various types of CNT reinforcements in three cases of CNT
volume fraction. The geometrical parameters of the
truncated conical shells are (n, m) = (1, 11), L/IR; = 1, Ry/h =
80, y = 30°, Ky, = 5x10° N/m®, K, = 1x10* N/m. It is clear
that the critical buckling load of FG-X CNTRC truncated
conical shells with Viyr = 0.28 is the highest and the
critical buckling load of FG-O CNTRC truncated conical
shells with Viyr= 0.12 is the lowest. It is understood that
among the various types of CNT reinforcements the FG-X

Table 4 Effect of CNT volume fraction and various types of
CNT reinforcements on the critical buckling load
Ter (KN) of FG-CNTRC truncated conical shells

Type  Viyr =012 Viyp =017 Vi =0.28
FG-X 21.665 31.639 51.179
FG-O 7.592 10.940 17.229
FG-A 15.288 22.226 35.462

L/R, Viyy =012 Viyp =017 Vi =028
1 21.665 31.639 51.179
2 4.652 6.886 10.828
3 1.680 2515 3.856

Table 5 Effect of CNT volume fraction and various types of
CNT reinforcements on the critical buckling load
Ter (KN) of FG-CNTRC truncated conical shells
resting on elastic foundations

Type  Viyr =012 Viyr =017 Viyp =0.28
FG-X 23.536 33510 53.050
FG-O 9.463 12.810 19.100

FG-A 17.159 24.097 37.333
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type makes the load capacity of the CNTRC truncated
conical shells is the best. From Tables 4 and 5, the value of
the critical buckling load of FG-CNTRC truncated conical
shells resting on elastic foundations is higher than the FG-
CNTRC truncated conical shells without the elastic
foundations.

Figs. 6 and 7 compare the effect of small radius to
thickness ratio (Ry/h) on the post-buckling behavior of FG-
X (Fig. 6) and UD (Fig. 7) CNTRC truncated conical shells
with the same geometrical parameters. Three cases of small
radius to thickness ratio Ry/h = (60, 80, 100) are consirded.
It is found that when R/h ratio is increased, the post-
buckling load — deflection curve becomes lower and vice
versa. The post-buckling curve shows the post-buckling
strength of CNTRC truncated conical shells. In other words,
Ri/h increase makes the CNTRC truncated conical shells
thinner which results in the lower the load capacity of the
FG-CNTRC truncated conical shells. The results show that
the post-buckling curve of FG-X CNTRC truncated conical
shell is lower than UD CNTRC truncated conical shell
under the same conditions and the deflection of the shells is
not sufficiently large.

Fig. 8 shows the influence of length to small radius ratio
(L/Ry) on the post-buckling behavior of FG-CNTRC
truncated conical shells. Three value different of length to
small radius ratio (L/R;) are considered. It is noticeable that
when L/R; increases, the post-buckling curve is lower and

_Rl/h:60

- _Rl/h:100

(m)=(L11), FG-X, V=028,
L=2R ,~=30°,K_=0,K =0.
1 w p

e
-
-

-
-

o

Fig. 6 Effect of ratio Ry/h on the post-buckling curves of
FG-X CNTRC truncated conical shells
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Fig. 7 Effect of ratio Ry/h on the post-buckling curves of
CNTRC truncated conical shells with UD type

vice versa. That is correct because L/R; increase makes the
CNTRC truncated conical shells becomes thinner and the
load capacity is decreased. This figure shows that the post-
buckling curve is substantially decreased when L/R; ratio
increases form L/R; = 1 to L/R; = 2. In contrast, the post-
buckling curve is slightly decreased with the value of L/R;
ratio more than L/R; = 2.

Fig. 9 presents the influence of semi vertex angle y on

fh
Fig. 8 Effect of ratio L/R; on the post-buckling curves of
FG-CNTRC truncated conical shells
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Fig. 9 Effect of semi vertex angle y on the post-buckling
curves of FG-CNTRC truncated conical shells
resting on elastic foundations
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Fig. 10 Effect of volume fraction of fibers on the post-
buckling curves of FG-CNTRC truncated conical
shells resting on elastic foundations
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Fig. 11 Effect of volume fraction of fibers on the post-
buckling curves of CNTRC truncated conical
shells with uniform distribution type

the post-buckling behavior of FG-CNTRC truncated conical
shells. Three different values of semi vertex angles are
considered. The results in this figure show that increasing
the value of the semi vertex angles leads to the post-
buckling curve of the FG-CNTRC truncated conical shells
is lower.

Fig. 10 compares the post-buckling behavior of FG-
CNTRC truncated conical shell resting on the elastic
foundation and the FG-CNTRC truncated conical shell
without the elastic foundation. The geometrical parameters
are shown in Fig. 10. It is clear that the elastic foundation
has considerably affected help the capacity load of FG-
CNTRC truncated conical shells is better.

Fig. 11 illustrates the effect of CNT volume fraction of
fibers on the post-buckling behavior of CNTRC truncated
conical shells with uniform distribution type. Three
different sets of CNT volume fraction Vi = (0.12, 0.17,
0.28) are considered. It can be seen that the post-buckling
curve is higher when CNT volume fraction of fibers
increases and vice versa. That is understood that the CNT
volume fraction of fibers increase results in the CNTRC
truncated conical shells have the better post-buckling
strength because the elastic modulus of the carbon
nanotubes is significantly stronger than the elastic modulus
of the matrix.

4. Conclusions

By using the approximate solution about the form of
two-component deflection function and the superposition
method, the present study aims to analysis the nonlinear
buckling and post-buckling behaviors of FG-CNTRC
truncated conical shells subjected to axial load and resting
on elastic foundations. The main equations are obtained by
Galerkin method and Airy stress function method based on
the classical theory. The effect of geometrical parameters,
both FG and UD types of CNT, nanotube volume fraction,
elastic foundations on the static analysis of FG-CNTRC
truncated conical shells are investigated. Some conclusions
can be obtained from this study:

e The critical buckling load and post-buckling strength
of FG-CNTRC truncated conical shells are

significantly effected by various types of CNTs
distributions. The critical buckling load and post-
buckling strength of FG-X CNTRC truncated
conical shells is the highest.

e CNT volume fraction of fibers has a substantial
effect on the critical buckling load and post-buckling
curves.

e The elastic foundations affected on the nonlinear
buckling and post-buckling behaviors of FG-
CNTRC truncated conical shells. In addition, the
effect of Pasternak elastic foundation is stronger than
Winkler elastic foundation.

e The geometrical parameters have influences on the
value of critical buckling load and post-buckling
curves of FG-CNTRC truncated conical shells.
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