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Abstract This paper investigated the nonlinear

vibration and dynamic response of the carbon nan-

otube polymer composite elliptical cylindrical shells

on elastic foundations in thermal environment. The

material properties of the nanocomposite elliptical

cylindrical shells are assumed to depend on temper-

ature and graded in the thickness direction according

to various linear functions. The shell is subjected to the

combination of the uniformly distributed transverse

load in harmonic form and the uniform temperature

rise. The motion and geometrical compatibility equa-

tions are derived based on the Reddy’s higher order

shear deformation shell theory. The natural frequen-

cies and the deflection amplitude–time curves of the

shell are determined by using the Galerkin method and

fourth-order Runge–Kutta method. The numerical

results show not only the positive influences of carbon

nanotube volume fraction and elastic foundations but

also the negative influences of initial imperfection and

temperature increment on the nonlinear vibration and

dynamic response of the carbon nanotube polymer

composite elliptical cylindrical shells. The reliability

of the present results is verified by comparing with

other publications.

Keywords Nonlinear thermal vibration � The carbon

nanotube polymer composite elliptical cylindrical

shells � The Reddy’s higher order shear deformation

shell theory � Elastic foundations

1 Introduction

Nowadays, nanotechnology plays an important role in

numerous industrial, commercial and engineering

applications such as health, transportation, energy,

environment, and many others. Because of unique

features of mechanical strength, electrical and thermal

conductivity, carbon nanotubes are chosen to be

reinforcement in composite structures. Recently, car-

bon nanotube reinforced composites have been prop-

erly noticed. Arani et al. (2014) conducted the static

stress analysis of carbon nanotube reinforced com-

posite cylinder subjected to non-axisymmetric

thermo-mechanical loads and uniform electro-mag-

netic fields. Shen (2009) presented an research on the
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nonlinear thermal bending of functionally graded

single-walled carbon nanotube reinforced nanocom-

posite plates under a transverse uniform or sinusoidal

load with simply supported edges. Based on the first

order shear deformation theory, Lei et al. (2016)

studied stability of functionally graded composites

laminated plate reinforced by carbon nanotubes.

Mirzaei and Kiani (2016) dealt with thermal buckling

of functionally graded carbon nanotube reinforced

conical shell. Zarei et al. (2017) evaluated multiple

impact response of composite plates reinforced by

carbon nanotube with general boundary conditions in

case of temperature dependent properties. Kundalwal

and Meguid (2015) studied the effect of carbon

nanotube waviness on the active constrained layer

damping of the laminated hybrid composite shells;

Kundalwal and Ray (2016) also introduced the

investigation of active constrained layer damping of

smart laminated fuzzy fiber reinforced composite

plates. Shen and Xiang (2012) investigated the

nonlinear vibration of nanotube composite cylindrical

shells reinforced by single-walled carbon nanotubes

under a uniform temperature rise; Alibeigloo (2014)

carried out the free vibration analysis of composite

cylindrical panel with a polymeric matrix and carbon

nanotube fibers embedded in piezoelectric layers

based on theory of elasticity. A new approach—using

analytical solution to investigate nonlinear dynamic

response and vibration of imperfect functionally

graded carbon nanotube reinforced composite double

curved shallow shells was introduced in (Duc et al.

2017). Baloch et al. (2018) presented residual mechan-

ical properties of lightweight concrete and normal

strength concrete containing multi-walled carbon

nanotubes after exposure to high temperatures. Kumar

et al. (2017) concerned with the analysis of active

constrained layer damping of geometrically nonlinear

vibrations of doubly curved sandwich shells with

facings composed of fuzzy fiber reinforced composite.

Based on generalized differential quadrature method,

Keleshteri et al. (2017) investigated stability of smart

functionally graded carbon nanotube reinforced com-

posites annular sector plates with surface-bonded

piezoelectric layers. Further, Asadi and Wang (2017)

examined dynamic stability of a pressurized function-

ally graded carbon nanotube reinforced composites

cylindrical shell interacting with supersonic airflow.

In order to investigate the mechanical properties of

thick structures, the higher order shear deformation

plate and shell theories must be used because the

Kirchoff hypothesis is not true in this case. Although

the calculations of the higher order shear deformation

plate and shell theories are much more complex than

ones of the classical or the first order shear deforma-

tion plate and shell theories, there are still many

publications on static and dynamic stability of struc-

tures using these theories. The dynamic instability

behavior of laminated hypar and conoid shells using a

higher order shear deformation theory were researched

in (Pradyumna and Bandyopadhyay 2011). Dastjerdi

et al. (2017) studied and solved the nonlinear local and

nonlocal analysis of an annular sector plate based on a

new modified higher-order shear deformation theory.

Phung-Van et al. (2015) presented a simple and

effective formulation based on isogeometric analysis

and higher order shear deformation theory to inves-

tigate static, free vibration and dynamic control of

piezoelectric composite plates integrated with sensors

and actuators. Xie et al. (2019) proposed a general

higher-order shear deformation zig-zag theory for

predicting the nonlinear aerothermoelastic character-

istics of composite laminated panels subjected to

supersonic airflow. Chen et al. (2018) considered

thermal vibration of beams made of FGM with general

boundary conditions using third order shear deforma-

tion beam theory. Mantari et al. (2012) focused on

bending and free vibration analysis of isotropic and

multilayered plates and shells. Further, Tu et al. (2010)

developed a nine-nodded rectangular element with

nine degrees of freedom at each node for the bending

and vibration analysis of laminated and sandwich

composite plates. Duc et al. (2015) investigated the

nonlinear vibration and dynamic analysis of imper-

fect thick functionally graded double curved shallow

shells with piezoelectric actuators on elastic founda-

tions subjected to the combination of electrical,

thermal, mechanical and damping loading. Jadhav

and Bajoria (2015) presented the buckling of func-

tionally graded plate integrated with piezoelectric

actuator and sensor at the top and bottom faces

subjected to the combination of electrical and mechan-

ical loading.

The elliptical cylindrical shell is one of the special

shapes of the cylindrical shell. Because these struc-

tures are used extensively in various fields such as

aerospace, marine, pipelines, missiles and automo-

biles engineering; they attracted great attention of the

scientist around the world. Free and forced vibration
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characteristics of submerged finite elliptic cylindrical

shell were conducted in (Zhang et al. 2017). Ganapathi

et al. (2004) considered the free flexural vibration

behavior of laminated angle-ply elliptical cylindrical

shells. Kazemi et al. (2012) focused on the stability

analysis of piezoelectric elliptical cylindrical shell

using finite element method based on the shear

deformation theory. Khalifa (2015) evaluated effects

of non-uniform Winkler foundation and non-homo-

geneity on the free vibration of an orthotropic

elliptical cylindrical shell. Li et al. (2014) investigated

the elastic critical load of submerged elliptical cylin-

drical shell based on the vibro-acoustics model. Up to

date, there are very few publications about elliptical

cylindrical shells using higher order shear deformation

theory. Duc et al. (2016) analyzed nonlinear thermal

stability of FGM elliptical cylindrical shells reinforced

by eccentrically stiffened. Ahmed (2016) considered

the effects of the crease parameters and the elastic

foundation on the buckling behavior of isotropic and

orthotropic elliptic cylindrical shells with cosine-

shaped meridian under radial loads. Recently, Xu

et al. (2017) introduced a recent computational study

to obtain the nonlinear buckling resistance of perfect

elastic circular cylindrical shells subjected to uniform

bending.

This paper introduces an analytical approach on the

nonlinear dynamic response and vibration of carbon

nanotube polymer composite elliptical cylindrical

shells on elastic foundations in the thermal environ-

ment using the Reddy’s higher order shear deforma-

tion shell theory. The material properties of the shell

are supposed to depend on temperature. The natural

frequencies and deflection–time relationship are

obtained by Galerkin method and fourth-order

Runge–Kutta method. The numerical results show

the effects of geometrical properties, temperature

increment, initial imperfection, elastic foundations,

volume fraction of carbon nanotube of the nonlinear

dynamic response and vibration of the carbon nan-

otube polymer composite elliptical cylindrical shells.

2 Problem formulation

Consider a carbon nanotube polymer composite

elliptical cylindrical shells as Fig. 1. The length, mean

radius and total thickness of the shell are L,R and h,

respectively. A coordinate system x; h; zð Þ is defined

in which h and x are in the circumferential and axial

directions of the shell, respectively, and z is perpen-

dicular to the surface and points outwards

�h=2� z� h=2ð Þ:
The carbon nanotube polymer composite elliptical

cylindrical shells are assumed to surround on elastic

foundations as Fig. 2. The interaction between the

elastic foundations and the shells is described by

Pasternalk model as (Duc et al. 2015, 2016)

qe ¼ k1w� k2

o2w

ox2
þ o2w

oy2

� �
; ð1Þ

where w is the deflection of the carbon nanotube

polymer composite elliptical cylindrical shells; k1 and

k2 are stiffness of Winkler and Pasternak foundation,

respectively.

Fig. 1 Geometry and the coordinate system of the carbon

nanotube polymer composite elliptical cylindrical shells

Fig. 2 Model of the carbon nanotube polymer composite

elliptical cylindrical shells on elastic foundations
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The principal radii of curvature in the circumfer-

ential direction R can be determined to the minor

radius b and the major radius a of elliptical cross-

section as (Duc et al. 2016; Xu et al. 2017)

R ¼ b2=R0

� �
1 þ l0 cos 2hð Þ�3=2; ð2Þ

with

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2ð Þ=2

p
; l0 ¼ a2 � b2= a2 þ b2

� �
; ð3Þ

3 The elastic moduli and the thermal expansion

coefficients of the carbon nanotube polymer

composite

3.1 Elastic moduli

It is assumed that the carbon nanotube polymer

composite material is made from Poly (methyl

methacrylate), referred to as PMMA, reinforced by

(10,10) single-walled carbon nanotubes. The effective

Young’s and shear modulus of the carbon nanotube

polymer composite material are determined as (Shen

2009; Mirzaei and Kiani 2016)

E11 ¼ g1VCNTE
CNT
11 þ VmEm;

g2

E22

¼ VCNT

ECNT
22

þ Vm

Em

;

g3

G12

¼ VCNT

GCNT
12

þ Vm

Gm

;

ð4Þ

where VCNT and Vm are the volume fractions of the

carbon nanotubes and the polymer matrix, respec-

tively; ECNT
11 ; ECNT

22 ; GCNT
12 are the mechanical prop-

erties of the carbon nanotubes; Em; Gm are Young’s

and shear moduli of the polymer matrix and gi ði ¼
1; 3Þ are the carbon nanotubes efficiency parameters.

The volume fractions of the carbon nanotubes and

the polymer matrix are assumed to grade in the

thickness direction according to linear functions.

Three types of carbon nanotubes reinforcement, i.e.

UD, V and X are considered with the volume fractions

of the three distribution types are expressed as follows

(Shen 2009; Mirzaei and Kiani 2016)

VCNTðzÞ ¼

V�
VCT UDð Þ

V�
VCT 1 þ 2

z

h

� �
Vð Þ

4V�
VCT

zj j
h

Xð Þ

8>>>><
>>>>:

;

VmðzÞ ¼ 1 � VCNTðzÞ;

ð5Þ

where

V�
CNT ¼ wCNT

wCNT þ qCNT=qmð Þ � qCNT=qmð ÞwCNT

; ð6Þ

in which wCNT is the mass fraction of carbon

nanotubes, and qCNT and qm are the densities of

carbon nanotubes and polymer matrix, respectively.

The elastic moduli (except the Poisson’s ratio) of

the polymer matrix are dependent to temperature as

(Shen 2009; Shen and Xiang 2012)

Em ¼ ð3:52 � 0:0034TÞGPa;

mm ¼ 0:34;

am ¼ 45 1 þ 0:0005DTð Þ � 10�6 =K;

ð7Þ

where T ¼ 300 þ DT , DT is the change of tempera-

ture in the environment.

The value of Young’s modulus, shear modulus and

thermal expansion coefficient of of (10,10) single-

walled carbon nanotubes are assumed to depend on

temperature and they are calculated at five values of

temperature by molecular dynamics simulations in

Table 1 (Mirzaei and Kiani 2016). The Poisson’s ratio

of single-walled carbon nanotubes is chosen to be

constant mCNT12 ¼ 0:175:

Table 2 shows the values of the carbon nanotubes

efficiency parameters gi ði ¼ 1; 3Þ at three values of

nanotube volume fractions (Shen 2009; Mirzaei and

Kiani 2016; Shen and Xiang 2012).

The effective Poisson’s ratio of the carbon nan-

otube polymer composite material depends on the

temperature and the thickness direction as (Shen 2009;

Shen and Xiang 2012)

m12 ¼ V�
CNTv

CNT
12 þ Vmmm; ð8Þ

where mCNT12 and mm are Poisson’s ratio of the carbon

nanotubes and the polymer matrix, respectively.

3.2 Thermal expansion coefficients

The thermal expansion coefficients of the carbon

nanotube polymer composite material in the
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longitudinal and transverse directions are expressed by

(Shen 2009)

a11 ¼ VCNTE
CNT
11 aCNT11 þ VmEmam

VCNTE
CNT
11 þ VmEm

;

a22 ¼ ð1 þ mCNT12 ÞVCNTa
CNT
22 þ ð1 þ mmÞVmam � m12a11;

ð9Þ

with am and aCNT11 ; aCNT22 are the thermal expansion

coefficients of the polymer matrix and the carbon

nanotubes, respectively.

4 Nonlinear strain–displacement relations

The nonlinear relations between strain and displace-

ment of the carbon nanotube polymer composite

elliptical cylindrical shells are (Brush and Almroth

1975; Reddy 2004)

ex
ey
cxy

0
B@

1
CA ¼

e0
x

e0
y

c0
xy

0
B@

1
CAþ z

k1
x

k1
y

k1
xy

0
B@

1
CAþ z3

k3
x

k3
y

k3
xy

0
B@

1
CA;

cxz
cyz

 !
¼

c0
xz

c0
yz

 !
þ z2

k2
xz

k2
yz

 !
;

ð10Þ

where

e0
x

e0
y

c0
xy

0
B@

1
CA ¼

ou

ox
þ 1

2

ow

ox

� �2

ov

oy
� w

R
þ 1

2

ow

oy

� �2

ou

oy
þ ov

ox
þ ow

ox

ow

oy

0
BBBBBBBB@

1
CCCCCCCCA
;

k1
x

k1
y

k1
xy

0
B@

1
CA ¼

o/x

ox
o/y

oy

o/x

oy
þ
o/y

ox

0
BBBBBBB@

1
CCCCCCCA
;

c0
xz

c0
yz

 !
¼

/x þ
ow

ox

/y þ
ow

oy

0
BB@

1
CCA;

k3
x

k3
y

k3
xy

0
B@

1
CA ¼ �c1

o/x

ox
þ o2w

ox2

o/y

oy
þ o2w

oy2

o/x

oy
þ
o/y

ox
þ 2

o2w

oxoy

0
BBBBBBB@

1
CCCCCCCA
;

k2
xz

k2
yz

 !
¼ �3c1

/x þ
ow

ox

/y þ
ow

oy

0
BB@

1
CCA;

ð11Þ

in which c1 ¼ 4=3h2; /x; /y are the rotations of

normals to the midsurface with respect to the y and x

axes, respectively.

5 Hooke’s law

Hooke’s law for a carbon nanotube polymer composite

elliptical cylindrical shells with temperature-depen-

dent properties is defined as (Alibeigloo 2014)

Table 1 The material properties of (10, 10) single-walled carbon nanotubes at five values of temperature

T ðKÞ ECNT
22 ðTPaÞ ECNT

11 ðTPaÞ GCNT
12 ðTPaÞ aCNT11 ð�10�6=KÞ aCNT22 ð�10�6=KÞ

300 7.0800 5.6466 1.9445 3.4584 5.1682

400 6.9814 5.5679 1.9703 4.1496 5.0905

500 6.9348 5.5308 1.9643 4.5361 5.0189

700 6.8641 5.4744 1.9644 4.6677 4.8943

Table 2 The values of the carbon nanotubes efficiency

parameters at three values of nanotube volume fractions

V�
CNT g1 g2 g3

0.12 0.137 1.022 0.715

0.17 0.141 1.626 1.138

0.28 0.141 1.585 1.109
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rxx
ryy
rxy
rxz
ryz

2
66664

3
77775 ¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55

2
66664

3
77775

exx � a11DT
eyy � a22DT

exy
exz
eyz

2
66664

3
77775;

ð12Þ

where

Q11 ¼ E11

1 � m12m21

; Q22 ¼ E22

1 � m12m21

;

Q12 ¼ m21E11

1 � m12m21

; Q44 ¼ G23; Q55 ¼ G13;

Q66 ¼ G12;

ð13Þ

and we assume that G13 ¼ G12 and G23 ¼ 1:2G12

(Shen and Xiang 2012).

6 Forces and moments

The force and moment resultants of the carbon

nanotube polymer composite elliptical cylindrical

shells are expressed by

Ni;Mi;Pið Þ ¼
Zh=2

�h=2

rið1; z; z3Þdz; i¼ x;y;xy

Qi;Rið Þ ¼
Zh=2

�h=2

rizð1; z2Þdz; i¼ x;y:

ð14Þ

Substitution Eqs. (10) and (11) into Eqs. (12) then

results into Eqs. (14) yields the constitutive relations

as

Nx

Ny

Nxy

Mx

My

Mxy

Px

Py

Pxy

Qx

Qy

Rx

Ry

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

¼

A11 A12 0 B11 B12 0 E11 E12

A12 A22 0 B12 B22 0 E12 E22

0 0 A66 0 0 B66 0 0

B11 B12 0 D11 D12 0 F11 F12

B12 B22 0 D12 D22 0 F12 F22

0 0 B66 0 0 D66 0 0

E11 E12 0 F11 F12 0 H11 H12

E12 E22 0 F12 F22 0 H12 H22

0 0 E66 0 0 F66 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0

E66

0

0

F66

0

0

H66

0

0

0

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

A44 0 D44 0

0 A55 0 D55

D44 0 F44 0

0 D55 0 F55

2
666666666666666666664

3
777777777777777777775

e0
x

e0
y

c0
xy

k1
x

k1
y

k1
xy

k3
x

k3
y

k3
xy

c0
xz

c0
yz

k2
xz

k2
yz

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

�

U1

U2

0

U3

U4

0

U5

U6

0

0

0

0

0

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð15Þ

in which

Aij; Bij; Dij; Eij; Fij; Hij

� �

¼
Zh=2

�h=2

Qijð1; z; z2; z3; z4; z6Þ dz; ij ¼ 11; 12; 22; 66;

ðAkl; Dkl; FklÞ ¼
Zh=2

�h=2

Qijð1; z2; z4Þ dz; kl ¼ 44; 55;

U1 ¼
Zh=2

�h=2

Q11a11DT dzþ
Zh=2

�h=2

Q12a22DT dz;

U2 ¼
Zh=2

�h=2

Q12a11DT dzþ
Zh=2

�h=2

Q22a22DT dz;

U3 ¼
Zh=2

�h=2

Q11a11DT zdzþ
Zh=2

�h=2

Q12a22DTz dz;

U4 ¼
Zh=2

�h=2

Q12a11DT zdzþ
Zh=2

�h=2

Q22a22DTz dz;

U5 ¼
Zh=2

�h=2

Q11a11DT z3dzþ
Zh=2

�h=2

Q12a22DT z3dz;

U6 ¼
Zh=2

�h=2

Q12a11z
3DT dzþ

Zh=2

�h=2

Q22a22z
3DT dz;

ð16Þ

From the constitutive relations (15), we have
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e0
x ¼ I11

o2f

oy2
� I12

o2f

ox2
þ I13

o/x

ox

þ I14

o/y

oy
� c1I15

o2w

ox2
þ o/x

ox

� �

� c1I16

o2w

oy2
þ
o/y

oy

� �
þ I17U1 þ I18U2;

e0
y ¼ I21

o2f

ox2
� I12

o2f

oy2
þ I23

o/x

ox
þ I24

o/y

oy

� c1I25

o2w

ox2
þ o/x

ox

� �

� c1I26

o2w

oy2
þ
o/y

oy

� �
þ I27U1 þ I28U2;

c0
xy ¼ �I31

o2f

oxoy
þ I32

o/x

oy
þ
o/y

ox

� �

� c1I33 2
o2w

oxoy
þ o/x

oy
þ
o/y

ox

� �
;

ð17Þ

with the detail of coefficients Iijði ¼ 1; 2; j ¼
1; 8Þ; I3kðk ¼ 1; 3Þ are given in ‘‘Appendix A’’.

The Airy’s stress function f x; y; tð Þ is introduced as

Nx ¼
o2f

oy2
;Ny ¼

o2f

ox2
;Nxy ¼ � o2f

oxoy
: ð18Þ

7 The nonlinear motion equations

and the geometrical compatibility equation

7.1 The nonlinear motion equations

The nonlinear motion equations the carbon nanotube

polymer composite elliptical cylindrical shells are

(Brush and Almroth 1975; Reddy 2004)

oNx

ox
þ oNxy

oy
¼ �I1

o2u

ot2
þ �I2

o2/x

ot2
� �I3

o3w

ot2ox
; ð19aÞ

oNxy

ox
þ oNy

oy
¼ I�1

o2v

ot2
þ I�2

o2/y

ot2
� I�3

o3w

ot2oy
; ð19bÞ

oQx

ox
þ oQy

oy
� 3c1

oRx

ox
þ oRy

oy

� �

þ c1

o2Px

ox2
þ 2

o2Pxy

oxoy
þ o2Py

oy2

� �
þ Ny

R
þ qþ Nx

o2w

ox2

þ 2Nxy

o2w

oxoy
þ Ny

o2w

oy2
� k1w þ k2r2w ¼ I1

o2w

ot2

þ 2eI1
ow

ot
þ �I3

o3u

ot2ox
þ �I5

o3/x

ot2ox

þ I�3
o3v

ot2oy
þ I�5

o3/y

ot2oy
� c2

1I7
o4w

ot2ox2
þ o4w

ot2oy2

� �
;

ð19cÞ

oMx

ox
þ oMxy

oy
� Qx þ 3c1Rx � c1

oPx

ox
þ oPxy

oy

� �

¼ �I2
o2u

ot2
þ �I4

o2/x

ot2
� �I5

o3w

ot2ox
;

ð19dÞ

oMxy

ox
þ oMy

oy
� Qy þ 3c1Ry � c1

oPxy

ox
þ oPy

oy

� �

¼ I�2
o2v

ot2
þ I�4

o2/y

ot2
� I�5

o3w

ot2oy
;

ð19eÞ

with q is an uniformly distributed pressure,e is the

viscous damping coefficient and the detail of coeffi-

cients Iiði ¼ 1; 5Þ; I�j ðj ¼ 1; 5Þ may be found in ‘‘Ap-

pendix B’’.

Substituting Eq. (18) into Eqs. (19a) and (19b) gives

o2u

ot2
¼ �

�I2
�I1

o2/x

ot2
þ

�I3
�I1

o3w

ot2ox
; ð20aÞ

o2v

ot2
¼ � I�2

I�1

o2/y

ot2
þ I�3
I�1

o3w

ot2oy
: ð20bÞ

Replacing Eqs. (20a), (20b) into Eqs. (19c)–(19e)

leads to
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oQx

ox
þ oQy

oy
� 3c1

oRx

ox
þ oRy

oy

� �

þ c1

o2Px

ox2
þ 2

o2Pxy

oxoy
þ o2Py

oy2

� �
þ 1

R

o2f

ox2

þ pþ o2f

oy2

o2w

ox2
� 2

o2f

oxoy

o2w

oxoy
þ o2f

ox2

o2w

oy2

� k1wþ k2r2w ¼ I1
o2w

ot2
þ 2eI1

ow

ot
þ I5

o3/x

ot2ox

þ I�5
o3/y

ot2oy
þ I7

o4w

ot2ox2
þ I�7

o4w

ot2oy2
;

oMx

ox
þ oMxy

oy
� Qx þ 3c1Rx � c1

oPx

ox
þ oPxy

oy

� �

¼ I3
o2/x

ot2
� I5

o3w

ot2ox
;

oMxy

ox
þ oMy

oy
� Qy þ 3c1Ry � c1

oPxy

ox
þ oPy

oy

� �

¼ I�3
o2/y

ot2
� I�5

o3w

ot2oy
;

ð21Þ

with

I3 ¼ �I4 � �I2
�I2
�I1

� �
; I�3 ¼ I�4 � I�2

I�2
I�1

� �
;

I5 ¼ �I5 � �I2
�I3
�I1

� �
; I�5 ¼ I�5 � I�2

I�3
I�1

� �

I7 ¼ �I3
�I3
�I1
� c2

1I7

� �
; I�7 ¼ I�3

I�3
I�1

� c2
1I7

� �
ð22Þ

7.2 The geometrical compatibility equation

The geometrical compatibility equation for an imper-

fect carbon nanotube polymer composite elliptical

cylindrical shell is written as (Duc et al. 2015, 2016)

o2e0
x

oy2
þ
o2e0

y

ox2
�
o2c0

xy

oxoy
¼ o2w

oxoy

� �2

� o2w

ox2

o2w

oy2

þ 2
o2w

oxoy

o2w�

oxoy
� o2w

ox2

o2w�

oy2
� o2w

oy2

o2w�

ox2
� 1

R

o2w

ox2
;

ð23Þ

with function w�ðx; yÞ denotes initial small imperfec-

tion of the shell.

Substitution of Eqs. (11) into Eqs. (15) and intro-

ducing the results into Eqs. (21) yields

L11 wð Þ þ L12 /xð Þ þ L13 /y

� �
þ L14ðf Þ

þ S w; fð Þ þ q ¼ I1
o2w

ot2
þ 2eI1

ow

ot

þ I5
o3/x

ot2ox
þ I�5

o3/y

ot2oy
þ I7

o4w

ot2ox2
þ I�7

o4w

ot2oy2
;

L21 wð Þ þ L22 /xð Þ þ L23 /y

� �
þ L24 fð Þ ¼ I3

o2/x

ot2

� I5
o3w

ot2ox
;

L31 wð Þ þ L32 /xð Þ þ L33 /y

� �
þ L34 fð Þ

¼ I�3
o2/y

ot2
� I�5

o3w

ot2oy
;

ð24Þ

in which

L11 wð Þ ¼ X11

o2w

ox2
þ X12

o2w

oy2
þ X13

o4w

ox4

þ X14

o4w

ox2oy2
þ X15

o4w

oy4
� k1w

þ k2

o2w

ox2
þ o2w

oy2

� �
;

L12 /xð Þ ¼ X11

o/x

ox
þ X16

o3/x

ox3
þ X17

o3/x

oxoy2
;

L13 /y

� �
¼ X12

o/y

oy
þ X18

o3/y

oy3
þ X19

o3/y

ox2oy
;

L14ðf Þ ¼ X110

o4f

ox4
þ X111

o4f

ox2oy2
þ X112

o4f

oy4
;

123

N. D. Dat et al.

Author's personal copy



S w; fð Þ ¼ o2f

oy2

o2w

ox2
� 2

o2f

oxoy

o2w

oy2
þ o2f

ox2

o2w

oy2
þ 1

R

o2f

ox2
;

L21 wð Þ ¼ X21

ow

ox
þ X22

o3w

ox3
þ X23

o3w

oxoy2
;

L22 /xð Þ ¼ X21/x þ X24

o2/x

ox2
þ X25

o2/x

oy2
;

L23 /y

� �
¼ X26

o2/y

oxoy
;

L24ðf Þ ¼ X27

o3f

ox3
þ X28

o3f

oxoy2
;

L31 wð Þ ¼ X31

ow

oy
þ X32

o3w

ox2oy
þ X33

o3w

oy3
;

L32 /xð Þ ¼ X34

o2/x

oxoy
;

L33 /y

� �
¼ X31/y þ X35

o2/y

ox2
þ X36

o2/y

oy2
;

L34ðf Þ ¼ X37

o3f

ox2oy
þ X38

o3f

oy3
;

ð25Þ

and the detail of coefficients X1iði ¼ 1; 12Þ; X2jðj ¼
1; 8Þ; X3kðk ¼ 1; 8Þ may be found in ‘‘Appendix C’’.

For an imperfect the carbon nanotube polymer

composite elliptical cylindrical shell, Eqs. (24) may

be transformed to the form as

L11 wð Þ þ L12 /xð Þ þ L13 /y

� �
þ L14ðf Þ þ S w; fð Þ

þ S�ðw�; f Þ þ q ¼ I1
o2w

ot2
þ 2eI1

ow

ot

þ I5
o3/x

ot2ox
þ I�5

o3/y

ot2oy
þ I7

o4w

ot2ox2
þ I�7

o4w

ot2oy2
;

L21 wð Þ þ L22 /xð Þ þ L23 /y

� �
þ L24 fð Þ

þ L�21ðw�Þ ¼ I3
o2/x

ot2
� I5

o3w

ot2ox
;

L31 wð Þ þ L32 /xð Þ þ L33 /y

� �
þ L34 fð Þ

þ L�31ðw�Þ ¼ I�3
o2/y

ot2
� I�5

o3w

ot2oy
;

ð26Þ

in which

L�11ðw�Þ ¼ X11

o2w�

ox2
þX12

o2w�

oy2
; S� w�; fð Þ

¼ o2f

oy2

o2w�

ox2
� 2

o2f

oxoy

o2w�

oxoy
þ o2f

ox2

o2w�

oy2
;

L�21ðw�Þ ¼ X21

ow�

ox
; L�31ðw�Þ ¼ X31

ow�

oy
;

ð27Þ

Introduction of Eqs. (17) into Eq. (23) gives the

compatibility equation of the imperfect the carbon

nanotube polymer composite elliptical cylindrical

shell as

I21

o4f

ox4
þ I11

o4f

oy4
þ J1

o4f

ox2oy2
þ J2

o3/x

ox3
þ J3

o3/x

oxoy2
þ J4

o3/y

oy3

þ J5

o3/y

oyox2
� c1I25

o4w

ox4
� c1I16

o4w

oy4
þ J6

o4w

ox2oy2

� o2w

oxoy

2

� o2w

ox2

o2w

oy2
þ 2

o2w

oxoy

o2w�

oxoy
� o2w

ox2

o2w�

oy2
� o2w

oy2

o2w�

ox2
� 1

R

o2w

ox2

 !

¼ 0

ð28Þ

where the detail of coefficients Jiði ¼ 1; 6Þ are repre-

sented in ‘‘Appendix D’’.

Equations (26) and (28) are nonlinear governing

equations in terms of four variablesw;/x;/y and f and

they are used to study the nonlinear dynamic response

and vibration of the imperfect carbon nanotube

polymer composite elliptical cylindrical shells.

Specifically, the natural frequency and the deflec-

tion–time curves could be determined from this

equations system.

8 Boundary conditions and approximate solutions

8.1 Boundary conditions

In the present study, the edges of the carbon nanotube

polymer composite elliptical cylindrical shells are

assumed to be simply supported and immovable. The

boundary conditions in this case are

w ¼ u ¼ Mx ¼ 0; Nx ¼ Nx0 at x ¼ 0 and x ¼ L;

ð29Þ

where Nx0 is pre-buckling compressive force effect on

edges x ¼ 0; L.
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8.2 Approximate solutions

Based on the boundary condition (29), the approxi-

mate solutions are assumed to be the forms as (Duc

et al. 2015)

w x; y; tð Þ ¼ W tð Þ sin kmx sin dny;

/x x; y; tð Þ ¼ Ux tð Þ cos kmx sin dny;

/y x; y; tð Þ ¼ Uy tð Þ sin kmx cos dny;

ð30Þ

in which km ¼ mp=L; dn ¼ n=R; m; n are odd natural

numbers and W ; Ux; Uy are amplitude of the deflec-

tion and rotation angle, respectively.

In this study, we assume that the initial imperfec-

tion w� has the same form with the shell deflection, i.e.

w� x; y; tð Þ ¼ W0 sin kmx sin dny; ð31Þ

where W0 is amplitude of the imperfect function.

Composing Eqs. (30) and (31) into Eq. (28) then

solving obtained equation for unknown variable f leads

to

f x; y; tð Þ ¼ P1 tð Þ cos 2kmxþ P2 tð Þ cos 2dny

þ P3ðtÞ sin kmx sin dnyþ
1

2
Nx0y

2; ð32Þ

with

P1 ¼ d2
n

32I21k
2
m

WðW þ 2lhÞ;

P2 ¼ k2
m

32I11d
2
n

WðW þ 2lhÞ;

P3 ¼ Q1W þ Q2Ux þ Q3Uy;

ð33Þ

and

Q1 ¼
k2
m

R
þ c1I25k

4
m þ c1I16d

4
n � J6k

2
md

2
n

I21k
4
m þ J1k

2
md

2
n þ I11d

4
n

;

Q2 ¼ �ðJ2k
3
m þ J3kmd

2
nÞ

I21k
4
m þ J1k

2
md

2
n þ I11d

4
n

;

Q3 ¼ �ðJ4d
3
n þ J5k

2
mdnÞ

I21k
4
m þ J1k

2
md

2
n þ I11d

4
n

:

ð34Þ

9 Vibration analysis

Substituting Eqs. (30)–(32) into Eqs. (26) and using

the Galerkin method to the resulting equations gives

r11W þ r12Ux þ r13Uy þ r14ðW þ lhÞUx

þ r15ðW þ lhÞUy þ n1 � Nx0k
2
m

	 

ðW þ lhÞ

þ n2WðW þ lhÞ þ n3WðW þ 2lhÞ
þ n4WðW þ lhÞðW þ 2lhÞ

þ n5q ¼ I0
o2W

ot2
þ 2eI1

oW

ot
� kmI5

o2Ux

ot2

� dnI�5
o2Uy

ot2
;

r21W þ r22Ux þ r23Uy þ n6ðW þ lhÞ

þ n7WðW þ 2lhÞ ¼ I3
o2Ux

ot2
� kmI5

o2W

ot2
;

r31W þ r32Ux þ r33Uy þ n8ðW þ lhÞ

þ n9WðW þ 2lhÞ ¼ I�3
o2Uy

ot2
� dnI�5

o2W

ot2
;

ð35Þ

in which the coefficients r1iði ¼ 1; 3Þ; rjkðj ¼ 2; 3; k ¼
1; 2Þ; nmðm ¼ 1; 9Þ are given in ‘‘Appendix E’’.

9.1 Temperature field

The condition showing the immovability of the edges

of the carbon nanotube polymer composite elliptical

cylindrical shells is satisfied in an average sense as

(Duc et al. 2015)

Z2pR

0

ZL

0

ou

ox
dxdy ¼ 0: ð36Þ

Form Eqs. (11) and (17) we have

ou

ox
¼ I11f;yy � I12f;xx � I13/x;x þ I14/y;y

þ c1I15 /x;x þ w;xx

� �
� c1I16 /y;y þ w;yy

� �
þ I17U1

þ I18U2 �
1

2

ow

ox

� �2

� ow

ox

ow�

ox
:

ð37Þ

Replacing Eqs. (30)–(32) into Eq. (37) and substi-

tuting the results into Eq. (36) gives

Nx0 ¼ k2
m

8I11

W W þ 2W0ð Þ � I17

I11

U1 �
I18

I11

U2: ð38Þ

9.2 Nonlinear deflection amplitude–time curves

Assume that the carbon nanotube polymer composite

elliptical cylindrical shells subjected to uniformly
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distributed transverse load q ¼ Q sinXt (Q is the

amplitude of uniformly excited load, X is the

frequency of the load). Introduction of Eqs. (38) into

Eq. (35) gives

r11W þ r12Ux þ r13Uy þ r14 W þW0ð ÞUx

þ r15 W þW0ð ÞUy

þ n�1 W þW0ð Þ þ n2W W þW0ð Þ
þ n3W W þ 2W0ð Þ þ n�4W W þW0ð Þ W þ 2W0ð Þ
þ n5Q sinXt

¼ I0
o2W

ot2
þ 2eI1

oW

ot
� kmI5

o2Ux

ot2
� dnI�5

o2Uy

ot2
;

r21W þ r22Ux þ r23Uy þ n6 W þW0ð Þ

þ n7W W þ 2W0ð Þ ¼ I3
o2Ux

ot2
� kmI5

o2W

ot2
;

r31W þ r32Ux þ r33Uy þ n8 W þW0ð Þ

þ n9W W þ 2W0ð Þ ¼ I�3
o2Uy

ot2
� dnI�5

o2W

ot2
;

ð39Þ

where

n�1 ¼ n1 þ k2
m

I17

I11

U1 þ
I18

I11

U2

� �
; n�4 ¼ n4 �

k4
m

8I11

:

ð40Þ

Equation (39) is the nonlinear governing equation

which is used to study the nonlinear vibration for the

imperfect carbon nanotube polymer composite ellip-

tical cylindrical shells with immovable edges. The

fourth-order Runge–Kutta method is applied to solve

Eq. (39). The initial conditions are given as

Wð0Þ ¼ 0;
dW

dt
ð0Þ ¼ 0; Uxð0Þ ¼ 0;

dUx

dt
ð0Þ ¼ 0; Uyð0Þ ¼ 0;

dUy

dt
ð0Þ ¼ 0:

ð41Þ

9.3 Natural frequencies

In the absence of external forces and viscous damping,

the natural frequencies of the perfect shell can be

determined by solving the following equation

l11 þ n�
1
þ I0x2 l12 � kmI5x

2 l13 � dnI�5x
2

l21 þ n6 � kmI5x
2 l22 þ I3x

2 l23

l31 þ n8 � dnI�5x
2 l32 l33 þ I�3x

2

�������

�������
¼ 0:

ð42Þ

Three values of natural frequencies are obtained

from Eq. (42) and the lowest value of them is

considered.

10 Numerical results and discussion

10.1 Comparison studies

To verify the accuracy of the present method, the

dimensionless frequencies of isotropic cylindrical

shell are calculated and compared in Table 3 with

the results presented by Lam and Loy (1995) based on

Love’s first approximation theory, Xuebin (2008)

using the Flugge classical thin shell theory and Shen

(2012) based on the higher order shear deformation

shell theory with the material properties and the

geometrical parameters are chosen as E ¼
210 GPa; v ¼ 0:3; q ¼ 7850 kg/m3;

R=L ¼ 2; h=R ¼ 0:06. The results from the Table 3

show that a good agreement is obtained in this

comparison.

Next, Table 4 shows the comparison of fundamen-

tal frequencies of the carbon nanotube polymer

composite elliptical cylindrical shells using the higher

order shear deformation theory in this paper with the

results of Shen and Xiang (2012) in cases of two

values of ratio �Z ¼ L2=Rh. The geometric parameters

of the shell are chosen as R=h ¼ 10; m; nð Þ ¼
1; 1ð Þ; h ¼ 5 mm: Again, the results from this

approach are so close with the existing results.

10.2 Natural frequency

The effects of temperature increment DT ; geometrical

parameter L=R and modes m; nð Þ on the natural

Table 3 Comparison of dimensionless frequencies - ¼
X h=pð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 þ vð Þq=E

p
for an isotropic cylindrical shell

m; nð Þ (1,1) (1,2) (1,3) (1,4)

Lam and Loy (1995) 0.03748 0.03671 0.03635 0.03720

Xuebin (2008) 0.03739 0.03666 0.03634 0.03723

Shen (2012) 0.03712 0.03648 0.03620 0.03700

Present 0.03717 0.03654 0.03627 0.03709
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frequency of the carbon nanotube polymer composite

elliptical cylindrical shells are considered in Table 5.

It is clear that the value of the natural frequency of the

shell increases when the values temperature increment

DT ; ratio L=R and modes m; nð Þ increase. Moreover,

the lowest natural frequency corresponds to the modes

of vibration of shells m; nð Þ ¼ 1; 1ð Þ. Note that, this

mode will be used as a representative mode to

investigate the natural frequencies and nonlinear

dynamic responses of the carbon nanotube polymer

composite elliptical cylindrical shells.

Table 6 shows influences of volume fraction of

carbon nanotube V�
CNT , geometrical parameter b=h,

type of carbon nanotube reinforcement and elastic

Table 4 Comparison of fundamental frequencies X ¼ X R2=hð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
q0=E0

p
for the carbon nanotube polymer composite elliptical

cylindrical shells ðT ¼ 300 K; R=h ¼ 10; m; nð Þ ¼ 1; 1ð Þ; h ¼ 5 mmÞ

V�
CNT

Type of reinforcement of carbon nanotube Z ¼ 100 Z ¼ 500

Present Shen and Xiang (2012) Present Shen and Xiang (2012)

0.12 UD 5.1051 5.0998 2.3672 2.3671

V 5.0795 5.0951 2.3950 2.3979

X 5.2331 5.2333 2.3876 2.3886

0.17 UD 6.5515 6.5462 3.0467 3.0456

V 6.5489 6.5686 3.0924 3.0960

X 6.7269 6.7292 3.0838 3.0848

0.28 UD 6.9906 6.9803 3.2223 3.2221

V 7.0626 7.0597 3.3193 3.3132

X 7.3320 7.3295 3.3318 3.3242

Table 5 Effects of

temperature increment, L=R
ratio and mode m; nð Þ on

natural frequencies (s-1) of

the carbon nanotube

polymer composite

elliptical cylindrical shells

DT L=R m; nð Þ

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

0 1 6306.05 6615.57 7265.29 8147.67 9181.61 10,317.23

1.5 5182.54 5568.31 6355.99 7363.66 8500.66 9719.32

2 4693.16 5151.24 6012.96 7077.05 8256.64 9507.87

200 1 6068.89 6432.63 7118.00 8023.22 9072.03 10,216.85

1.5 5023.19 5466.99 6280.82 7302.11 8446.38 9668.09

2 4579.33 5088.19 5967.98 7040.27 8223.33 9474.83

Table 6 Effects of carbon nanotube volume fraction, ratio b=h, type of carbon nanotube reinforcemnt and elastic foundations on

natural frequencies (s-1) of the carbon nanotube polymer composite elliptical cylindrical shells

b=h k1; k2 V�
CNT ¼ 0:12 V�

CNT ¼ 0:17

UD V X UD V X

10 (0,0) 3240.3 3188.8 3337.7 4153.2 4111.8 4283.1

15 (0,0) 2084.2 2070.7 2122.0 2681.7 2678.7 2736.6

20 (0,0) 1541.2 1537.6 1560.5 1986.4 1991.7 2017.3

10 (0.3,0.02) 7140.9 7117.5 7185.7 7570.8 7548.0 7642.9

15 (0.3,0.02) 5423.0 5417.7 5437.6 5656.3 5654.8 5682.5

20 (0.3,0.02) 4694.4 4693.2 4700.7 4837.5 4839.7 4850.3
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foundations on the natural frequencies s�1ð Þ of the

carbon nanotube polymer composite elliptical cylin-

drical shells. Clearly, the natural frequency of the

nanocomposite elliptical cylindrical shell increases

when the carbon nanotube volume fraction and the

modulus k1 ðGPa/mÞ; k2 ðGPa mÞ of elastic founda-

tions increase and the ratio b=h decreases. Moreover,

the carbon nanotube polymer composite elliptical

cylindrical shells with type carbon nanotube rein-

forcement X has the highest value of the natural

frequency and the carbon nanotube polymer compos-

ite elliptical cylindrical shells with type carbon

nanotube reinforcement V has the lowest value of

the natural frequency of all.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-1.5

-1

-0.5

0

0.5

1

1.5
x 10-3

ΔT=200K, a/b=1.5, b/h=20, (k
1
=,k

2
)=(0,0), L/R=2, (m,n)=(1,1) W

0
=0.

ε=0.1, q=10sin700t kPa.

t(s)

W
(m

)

V
CNT
* =0.12 V

CNT
* =0.17 V

CNT
* =0.28

Fig. 3 Influences of carbon

nanotube volume fraction on

the nonlinear deflection

amplitude–time curves of

the carbon nanotube

polymer composite elliptical

cylindrical shells

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-1.5

-1

-0.5

0

0.5

1

1.5
x 10-3

ΔT=200K, a/b=1.5, b/h=20, k
2
=0.0, L/R=2,(m,n)=(1,1), W

0
=0.

ε=0.1, q=10sin700t kPa.

t(s)

W
(m

)

k
1
=0 k

1
=0.3GPa/m k

1
=0.5GPa/m

Fig. 4 Influences of the

Winkler foundation on the

nonlinear deflection

amplitude–time curves of

the carbon nanotube

polymer composite elliptical

cylindrical shells
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10.3 Nonlinear deflection amplitude–time curves

Figure 3 describes the effect of carbon nanotube

volume fraction V�
CNT on the nonlinear deflection

amplitude–time curves of the carbon nanotube poly-

mer composite elliptical cylindrical shells with

b=h ¼ 20; a=b ¼ 1:5; L=R ¼ 2. We can see that the

deflection amplitude of the carbon nanotube polymer

composite elliptical cylindrical shells decreases when

the factor V�
CNT increases. In other words, the carbon

nanotube enhances the stiffness of the carbon nan-

otube polymer composite elliptical cylindrical shells.

Figures 4 and 5 show the effects of elastic founda-

tions with two coefficients k1 and k2 on the nonlinear

deflection amplitude–time curves of the carbon nan-

otube polymer composite elliptical cylindrical shells.

From the figures, it is clear that the deflection

amplitude of the nanocomposite elliptical cylindrical
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shell decreases significantly when the shell is rested on

the elastic foundations. Furthermore, the beneficial

effect of the Pasternak foundation with the shear layer

stiffness k2 on the nonlinear deflection amplitude–time

curves of the carbon nanotube polymer composite

elliptical cylindrical shells is stronger than the Winkler

one with the modulus k1.

Figure 6 illustrates the effect of temperature change

DT on the nonlinear deflection amplitude–time curves

of the carbon nanotube polymer composite elliptical

cylindrical shells. Three values of DT : 0; 200 K and

400 K are considered. Obviously, an increase of the

temperature increment DT leads to an increase of the
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deflection amplitude of the carbon nanotube polymer

composite elliptical cylindrical shells.

Figure 7 indicates the nonlinear deflection ampli-

tude–time curves of the carbon nanotube polymer

composite elliptical cylindrical shells with various

values of the imperfection amplitude W0. As can be

observed, the imperfection amplitude has a strong

effect on the nonlinear deflection amplitude–time

curves of the carbon nanotube polymer composite

elliptical cylindrical shells; the amplitude of the shell

increases when the initial imperfection amplitude

increases.
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Figures 8, 9 and 10 give the influences of the

geometrical factors L=R; a=b and b=h on the nonlin-

ear deflection amplitude–time curves of the carbon

nanotube polymer composite elliptical cylindrical

shells, respectively. It can be seen that the fluctuation

amplitude of the carbon nanotube polymer composite

elliptical cylindrical shells increases when increasing

the ratio L=R; a=b and b=h.

The effect of excitation force amplitude Q0 on the

nonlinear deflection amplitude–time curves of the

carbon nanotube polymer composite elliptical cylin-

drical shells is shown in Fig. 11. As can be seen, the

higher excitation force amplitude is, the higher

vibration amplitude of the carbon nanotube polymer

composite elliptical cylindrical shells is.

11 Concluding remarks

The nonlinear dynamic response and vibration of the

carbon nanotube polymer composite elliptical cylin-

drical shells on elastic foundations subjected to the

combination of the mechanical and thermal loads are

presented in this paper. The material properties of the

shells are supposed to depend on temperature and the

shell thickness direction. The basic equations are

derived based on the Reddy’s higher order shear

deformation shell theory. The Galerkin method and

fourth-order Runge–Kutta method are used to

determine the natural frequencies and nonlinear

deflection amplitude–time curves of the shells. The

accuracy of present approach is also verified by

comparing with the ones of other authors. From the

obtained results in the study, there are some

conclusions:

• The initial imperfection and temperature incre-

ment significant negative effect on the nonlinear

vibration and dynamic response of the carbon

nanotube polymer composite elliptical cylindrical

shells. The deflection amplitude increases and the

natural frequency decreases according to the

increase of the initial imperfection amplitude and

temperature increment.

• The elastic foundations dramatically enhance the

natural frequencies and reduce the deflection

amplitude of the carbon nanotube polymer com-

posite elliptical cylindrical shells. Moreover, the

influence of linear Winkler foundation is weaker

than one of Pasternak foundation.

• The carbon nanotubes could be used to strengthen

the mechanical properties of the carbon nanotube

polymer composite elliptical cylindrical shells

because they increase the natural frequencies and

decrease the fluctuation amplitude of the shells.

• The geometrical parameters ratios have strongly

effects on the nonlinear vibration and dynamic

response of the carbon nanotube polymer compos-

ite elliptical cylindrical shells.
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