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ABSTRACT 

Building ancestral recombination graphs (ARG) with minimum 
number of recombination events for large datasets is a challenging 
problem. We have proposed ARG4WG and REARG heuristic 
algorithm for constructing ARGs with thousands of whole 
genome sequences. However, these algorithms do not result in 
ARGs with minimal number of recombination events. In this work, 
we propose GAMARG algorithm, an improvement of ARG4WG, 

to optimize the number of recombination events in ARG building 
process. Experiment with different datasets showed that 
GAMARG algorithm outperforms other heuristic algorithms in 
building ARGs for large datasets. It also is much better than other 
heuristic algorithms and comparable to exhaustive search methods 
for small datasets.   

CCS Concepts 
Applied computing →  Life and medical sciences → 

Bioinformatics 
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1. INTRODUCTION 
Ancestral recombination graph (ARG) plays a central role in the 
analysis of within-species genetic variations [1]. The relationships 
between current species and common ancestors can be described 
by coalescence, mutation and recombination events in the ARG 
(Figure 1). Looking backward in time, the coalescence events 
merge two identical sequences to one; the mutation events make 
change in a site of the sequence; the recombination events break 

one sequence to two subsequences that then make change in the 
genetic information of the next generations. So the mutation and 
recombination events are important factors in consideration when 
building ARGs. 

Approaches have been proposed to infer ARGs. Most of methods 
use the infinite-sites assumption that does not allow back and 
recurrent mutation in a single site. Thus, they try to build ARGs 

with the minimum number of recombination events. This is 
proved an NP-hard problem [2]. 

Several methods have been proposed to construct ARGs with 

optimal number of recombination events (called minimal ARGs) 
for small datasets. Song et al. [3] built minimal ARGs by scanning 
all possible ways and selecting the best way to move trees for 
each marker from left to right along the sequence to optimize the 
number of recombination events. Given a number of 
recombination events, Lyngsø et al. [4] tried to construct an ARG 
using a branch and bound algorithm. If it is impossible to have an 
ARG, the number of recombination events is increased by one. 

The process is continued until an ARG is constructed. All these 
exhaustive search methods have very high computational 
complexity. They are just able to work with up to dozens of short 
sequences. 

To deal with larger datasets, other heuristic methods have been 
proposed. In spite of focusing on building minimal ARGs, they try 
to build plausible ARGs. Margarita proposed by Minichiello and 
Durbin [5] can handle a thousand sequences with hundreds of 

markers; ARG4WG of our group [6] can handle thousands of 
whole human genomes. The longest shared ends criterion in 
building ARGs allows ARG4WG to work on large datasets with 
less number of recombination events than Margarita. Our 
experiments showed that ARG4WG is able to build ARG with 
fewer number of recombination events than Margarita but still 
does not reach the minimal ARGs. 

To build large ARGs with minimum number of recombination 
events, we evaluated the effect of different factors on reducing the 

number of recombination events in ARG building process for 
genome-wide and suggested a new design of ARG4WG, called 
REARG [7]. Specifically, we combined some other factors such 
as similarity between sequences and the length of sequences into 
REARG. This strategy enables REARG to build ARGs with a 
smaller number of recombination events in comparison to 
ARG4WG. However, REARG still is not as good as other 
exhaustive search methods. 

As the longest shared ends criterion does not result in the 
minimum number of recombination events (Figure 2b), we should 
combine ARG4WG with other optimal criteria to reduce the 
recombination events.  Notably, the four-gamete test [8] is the key 
idea leading to various methods either to find the lower bound of 
the number of recombination events or to construct explicitly 
minimum recombination ARG. In this work, we propose 
GAMARG method to build large ARGs with the minimum 

number of recombination events. Our experiments on different 
datasets showed that GAMARG algorithm is able to handle 
thousands sequences with tens of thousands of markers, and also 
could reach the minimum recombination ARGs. 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies 

are not made or distributed for profit or commercial advantage and 

that copies bear this notice and the full citation on the first page. 

Copyrights for components of this work owned by others than ACM 

must be honored. Abstracting with credit is permitted. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. Request permissions 

from Permissions@acm.org. 

ICBBB '19, January 7–9, 2019, Singapore, Singapore 

© 2019 Association for Computing Machinery. 

ACM ISBN 978-1-4503-6654-0/19/01$15.00 

DOI: https://doi.org/10.1145/3314367.3314385 

36



 

Figure 1. An example of an ARG for 5 sequences of length 5 

The paper is organized as follows. In section II, we introduce the 
ARG building problem. Some problems in choosing the 
breakpoint position in recombination step of four-gamete test 

method and ARG4WG algorithm that directly affect to the 
number of recombination events in ARG building process are 
pointed out in section III. The GAMARG algorithm will also be 
proposed in this section. The performance of our algorithm in 
comparison to other heuristics and exhaustive search methods is 
discussed in section IV. Finally, we conclude our work and 
suggest some future works. 

2. ARG BUILDING PROBLEM 
Given a set D = {S1, …, SN} of N input sequences (haplotypes), Sx 
has m markers, 1 ≤ x ≤ N; Sx[i] denotes site i of Sx that has the value 

of either 0 (one of the SNP alleles), or 1 (another allele), 1 ≤ i ≤ m. 

The ARG building problem is to construct the relationships 
between sequences in D through three events: coalescence, 
mutation, and recombination. The coalescence events merge two 
identical sequences to one. The mutation event makes change in a 
site of the sequence. The recombination event breaks one 

sequence to two subsequences, one subsequence contains the 
prefix of the sequence and one contains the suffix of the sequence.  
Our task is to build an ARG with the minimum number of 
recombination events under the infinite-sites assumption. 

Consider a data set D(5) = {S1, S2, S3, S4, S5} of 5 sequences with 5 
sites as below: 

    1         2       3        4        5 

S1  =  1  1  0  0  1 

S2  =  0  1  0  1  0 

S3  =  0  0  0  1  0 

S4  =  1  0  0  0  0 

S5  =  1  0  0  0  1 

 

Figure 1 is an example of an ARG building process for D(5). An 
ARG with 12 events (numbered from 1 to 12 in circles) is built 
backward in time, starting from the input data, until a single 
common ancestor (10001) is reached. A "*" at a site denotes a non-

ancestral material. 3 different evolutionary events are performed in 
the building process. A recombination event as in the state 1 breaks 
a sequence 01010 into two sub-sequences: 01*** contains the prefix 
and **010 contains the suffix of the sequence 01010. A coalescence 
event as in the state 2 combines two sequences **010 and 00010 
into one sequence 00010. A mutation event as in the state 3 
changes a mutated site 4 from 1 to 0. 

3. METHOD 

3.1 Four-Gamete Test 
Under the infinite-site assumption, we called two sites i and j 

incompatible if they contain all four gametic types 00, 01, 10, 11 
[3]. There will be at least one recombination event between two 
incompatible sites i and j. The exhaustive methods aim to find out 
the optimal breakpoints, that is, the smallest number of 
recombination events, to break all these incompatible sites. 

Let FreqGametei,j = {freq00i,j, freq01i,j, freq10i,j, freq11i,j} be the 
frequencies of gametic types 00, 01, 10, 11 occurring between 
sites i and site j, respectively. 

In the data set D(5), there are three pairs of incompatible sites: site 
1 and site 2; site 2 and site 4; site 2 and site 5. The frequencies of 
4 gametic types are FreqGamete1,2 = {1,1,2,1}; FreqGamete2,4 = 
{2,1,1,1}; FreqGamete2,5 = {2,1,1,1}, respectively. In this case, at 
least two recombination events must be happened in the 
evolutionary history of the sequences. Figure 1 is a minimal ARG 
with two recombination events representing the evolutionary 
history of data set D(5). 

We observed that there are three gametic types having frequency 

1. So breaking one of these gametic types between these sites will 
give us better solution. For example, performing a recombination 
between site 1 and site 2 on one of three sequences S1, S2, S3 will 
break this pair of incompatible sites. However, as freq101,2 equals 
2, so if we perform a recombination between site 1 and site 2 on 
one of two sequences S4, S5, we just reduce the frequency of 
occurrence of gametic type 10 by one and we do not break this 
pair of incompatible sites. In this case, we need one more 

recombination event to break this pair of incompatible sites 
(Figure 2a). 

3.2 ARG4WG Algorithm 
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Working backward in time, ARG4WG first performs all possible 
coalescence and mutation events. The algorithm then searches for 
a pair of sequences that have the longest shared ends, that is, the 
longest match in term of ancestral material from the left or the 
right of two sequences. A recombination is performed on a 
sequence to break a sequence into two subsequences. A 
subsequence containing the longest shared region will be 
coalesced with the remaining sequence right after the 

recombination step. 

The longest shared ends strategy helps ARG4WG to work with 
thousands of whole genome sequences. It aims to build plausible 
ARGs and cannot give us the minimal ARGs. Figure 2b illustrates 
briefly the way ARG4WG works with data set D(5). As we see, in 
this case, ARG4WG always performs recombination on S4 or S5 
first. This choice does not give us the optimal solution and require 
at least 3 recombination events to build an ARG. 

3.3 GAMARG Algorithm 
We propose GAMARG algorithm that combines the four-gamete 
test constraint with the longest shared ends strategy in ARG4WG 
to optimize the number of recombination events in ARG building 
process. 

As using four-gamete test to build minimal ARG is not possible 
for large datasets. From the observation described in Section 3.1, 
we propose a simplification of the four-gamete test by considering 
only pairs of incompatible sites having frequency 1 for at least 
one gametic type. This assumption guarantees that we always 
break at least one pair of incompatible sites when performing a 
recombination between a pair of incompatible sites i and j. 

Let ઠ be a size of sliding window that we will scan to find all pairs 

of incompatible sites in this region. In particular, we scan through 
all markers. For each marker i (0 ≤ i < m), we will scan to find all 

pairs of incompatible sites in a range [i, i+ ઠ]. 

 

(a) 
 

 

(b) 
 

Figure 2. ARG building process for data set D={ S1, S2, S3, S4, S5} (a) based on four gametic tests and (b) in ARG4WG algorithm  
    
→  denotes a recombination event between site i and site j; 

  
→ denotes xth coalescence event; 

  
→  denotes a mutation event at site i. (a) The 

ARG building  process started by choosing S4 to do a recombination event between site 1 and site 2 (R1,2(1)). As freq011,2 = 2, this 
recombination event help to reduce the frequency of gametic type 01 between site 1 and site 2 by one and FreqGamete1,2 = {1,1,1,1} on 

the next generation. So we need to do one more recombination event between those sites (R1,2(2)) to break this pair of incompatible sites. 
So this choice (and also the same with S5) will waste two recombination events while choosing S1, S2, S3 (that all have the frequency of 
occurence of gametic type equal 1) to break between those sites just waste one recombination events. (b) The longest shared end is 
detected between S4 and S5 (covered by rectangles), a recombination event between site 4 and site 5 is putted on S4 (or S5) to produce 2 

subsequences. By this way, ARG4WG always need 3 recombination events to build ARGs for this data set. 
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Let Sx(i,j) be a sequence containing a gametic type with frequency 

1 at a pair of incompatible sites i and j (0 ≤ i < m, j - i ≤ ઠ). That is, 

Sx(i,j) satisfies the following conditions: 

{
                                                           

                                                        
 

We use the same definitions as in [1]: 

 Sx[i] matches Sy[i] if Sx[i] = Sy[i] or Sx[i] = * or Sy[i] = *. 

 (Sx,Sy){d,l} is a shared end pair of sequence Sx and sequence 
Sy with the maximal matching length l from the left (d = left) 
or from the right (d = right). 

 (Sx,Sy){d,l} exists if and only if there are at least one marker i 

in matching region that Sx[i] = Sy[i]  *. 

For a shared end pair (Sx,Sy){d,l}, following the longest shared 
end strategy, the breakpoint is specified between: 

 l and l + 1 where d = left and Sx[i] match Sy[i] for all 1  i  l 

and Sx[l+1]  Sy[l+1]. 

 l -1 and l where d = right and Sx[i] match Sy[i] for all l  i  

m  and Sx[l-1]  Sy[l-1]. 

Given a candidate sequence Sx(i,j), we need to find the best 
breakpoint in range [i,j]. We once again tackle this problem by 

using the longest shared end strategy. We find out the longest 
shared end between this sequence and all other sequences. If there 
exists a sequence Sz that a shared end pair (Sx, Sz){d,l} satisfies i ≤ 

l ≤ j, then Sx will be broken at marker l as mentioned above. If no 

shared end pair in range [i,j] exists, the breakpoint is chosen 
randomly between site i and i+1 or between site j-1 and j. 

GAMARG algorithm: The GAMARG algorithm starts from 
time t = 1. The set of sequences at time t is denoted as Dt (D1=D). 
For each Dt, the candidate lists for coalescence, mutation and 
recombination events are constructed as the following: 

 Coalescence list C: For a shared end pair (Sx,Sy){d,l} of 
sequences Sx and Sy, if l = m, then (Sx,Sy){d,l} is added into 

the coalescence list. 

 Mutation list M: For a marker i (1 ≤ i ≤ m), if Sx[i] = 1 and 

       *  +   , -    or S
x
[i] = 0 and        

*  +   , -   , then Sx[i] is added into mutation list. 

 Gamete list G: For a pair of incompatible sites (i,j) (0 ≤ i < m, 

j - i ≤ ઠ), if exist a sequence Sx that contains a gametic type 

with frequency 1, then Sx(i,j) is added into gamete list. 

 Shared-end list S: For a shared end pair (Sx,Sy){d,l} of 
sequences Sx and Sy, if 0 < l < m, (Sx,Sy){d,l} is added into the 

recombination list. 

When one of three events occurs, the next sequence set Dt+1 is 
created from the current sequence set Dt as described below and 
four candidate lists are updated. 

 If a coalescent event occurs between two sequences Sx and Sy, 

two sequences Sx and Sy are merged into a common ancestor 

S’: 

     (   {     })  *  +. 

 If a mutation event occurs on a sequence S, a new sequence S’ 

is created from sequence S with the mutation: 

     (   * +)  *  +. 

 If a recombination occurs on a sequence Sx(i,j), a breakpoint 

is put in [i,j]. Two new subsequences Sx1 and Sx2 are created 

from sequence Sx: 

     (   *  +)  *       + 

 

 If a recombination occurs on a shared end pair (Sx, Sy){d,l}, 

pick a sequence having less ancestral material in its shared 

end part to do recombination. Assuming Sx is chosen, 

sequence Sx will be broken into two new subsequences Sx1 

and Sx2: 

     (   *  +)  *       + 

 

The GAMARG algorithm 

Input: A set of N sequences with m markers (snps) 

Output: An ARG containing coalescence, mutation and 
recombination events among sequences. 

 Step 1: If Coalescence list C is not empty, do all possible 
coalescence events. 

 Step 2: If Mutation list M is not empty, do all possible 
mutation events then go to Step 1. If no mutation 
possible, go to Step 3. 

 Step 3: If Gamete list G is not empty, do a recombination 
then go to Step 1. 

 Step 4: If Shared-end list S is not empty, do a 
recombination followed by a coalescence. Go to Step 1. 

 Step 5: Repeat Step 1, Step 2 and Step 3, Step 4 until a 
single common ancestor is reached. 

 

Candidates from four lists are selected as the following: 

 The candidate from the coalescence list or the mutation list to 

perform coalescence or mutation is taken randomly. 

 In the Gamete list, if a candidate sequence Sx(i, j) having the 
shortest distance from site i to site j, that is, (j – i) has the 

smallest value, Sx is the first priority to perform 
recombination. If there is more than one candidate having the 
same shortest distance, we will choose one randomly. 

 In the Shared-end list, the pair of sequences with the longest 

shared end in term of ancestral material will be the first 
choice for recombination. If there is more than one candidate 
having the same longest shared end, one is picked randomly. 

The random choices in GAMARG algorithm result in different 
ARGs for different runs. 

4. EXPERIMENTS AND RESULTS 
To evaluate the performance of GAMARG, we conducted 
experiments on different datasets. First, we measured GAMARG, 
Margarita, ARG4WG, REARG, and exhaustive algorithms on 
Kreitman's dataset [9] that included 11 sequences of length 43. 
This small dataset is a benchmark used in evaluating the 
performance of many algorithms either to find lower bound of 

recombination or to build minimal ARGs. 
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Second, we tested all 4 above algorithms on two simulation 
datasets: SDS1 included 50 sequences of length 54 and SDS2 

included 75 sequences of length 45 that were public at 
https://people.eecs.berkeley.edu/~yss/lu.html. 

Third, we examined GAMARG algorithm on the datasets used in 
[7] that extracted from the 1000 Genomes Project [10]. Note that 
experiment results from [7] showed that Margarita was not stable 
and needed a huge number of recombination events to build an 
ARG for these datasets. We compared GAMARG with ARG4WG 
and REARG in terms of the number of recombination events and 

the runtime. We could not perform exhaustive search methods as 
they were not applicable for these large datasets. 

REARG has three versions called REARG_SIM, REARG_LEN, 
REARG_COM. The output of REARG is the best output from all 
these versions. 

4.1 Kreitman’s Dataset 

1000 ARGs were built by each algorithm and we recorded the 
ARG having the smallest number of recombination events. 
ARG4WG and REARG got ARG with 10 recombination events 
as their best results. Margarita could build an ARG with 8 
recombination events. The GAMARG could generate different 
ARGs with 7 recombination events using        . This 

result is the optimal solution as is also found by exhaustive search 

methods [3], [4]. This result shows that GAMARG is as good as 
exhaustive searches for small datasets. Moreover, it takes only 8 
seconds to build 1000 ARGs (i.e., as fast as ARG4WG). 

4.2 Simulation Datasets 

10000 ARGs were built by each algorithm on each dataset and we 

recorded the ARG having the smallest number of recombination 

events. We ran GAMARG with different ઠ and we had best results 
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Figure 3. The smallest number of recombination events found by 3 algorithms for 100 and 200 haplotypes with 2000, 5000, and 
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with         for SDS1 and         for SDS2. The 

results of all algorithms are described in Table 1. 

The experiment results show that GAMARG can reach to minimal 
ARGs for SDS1 and only one recombination more than the 
optimal solutions for SDS2. The results of Margarita, ARG4WG, 
and REARG are very far from the optimal solutions. 

 

Table 1. The results from different algorithms on simulated 

datasets 

 SDS1 SDS2 

Minimal ARG 10 12 

Margarita 14 18 

ARG4WG 17 18 

REARG 17 20 

GAMARG 10 13 

 

4.3 Datasets from the 1000 Genomes Project 
We compared the runtime and the number of recombination 
events on 18 datasets of 100, 200 haplotypes with 2000, 5000, 
10000 SNPs extracted from 3 different regions (i.e. DS1, DS2, 

DS3) of Chromosome 1 from the 1000 Genomes Project. 

As in [7], on each data set, 1000 ARGs were built by each 
algorithm and the ARG with the smallest number of 
recombination events was recorded. In these tests, we ran 

GAMARG using ઠ = 5. 

Experiment results (see Figure 3) show that GAMARG algorithm 
produces ARGs with much smaller number of recombination 
events in comparison to that of ARG4WG and REARG in all tests. 
The outperformance of GAMARG in comparison to other 
algorithms is clearly significant for 100 sequences. For larger 
datasets with more sequences, the diversity of the data increases. 
Thus, there are many incompatible sites, however, only few of 
many of them might satisfy the constraint that at least one gametic 

type having frequency 1. In this case, the advantage of GAMARG 
over ARG4WG and REARG is not very significant. 

The average running times to build an ARG by 
each algorithm were calculated for each test. As shown in Figure 
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Figure 4. Average of runtimes (second) of ARG4WG, REARG, and GAMARG for 100 and 200 haplotypes with 2000, 5000, 

and 10000 SNPs of DS1, DS2, and DS3 datasets 
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4, for 2000 SNPs, there are not much different in the running 
times between algorithms. For longer sequences (i.e., 5000 and 
10000 SNPs), GAMARG is slower than ARG4WG but faster than 
REARG. 

4.4 Discussion 
Four-gamete test is the well-known technique in computing the 
minimal recombination ARG for small datasets. The longest 
shared end strategy in ARG4WG algorithm is very effective for 
large datasets. The combination of them in GAMARG algorithm 
allows it not only to work with thousands sequences with tens of 

thousands of SNP markers but also to find minimal recombination 
ARGs. 

The results on small datasets indicate that both ARG4WG and 
REARG algorithms are not suitable for small datasets. The 
longest shared segment strategy of Margarita has obtained the 
better results than ARG4WG and REARG for small datasets. 
However, this strategy causes Margarita much more 
recombination events and runtime than ARG4WG and REARG 

for medium or large datasets [6], [7]. 

The proposed GAMARG algorithm performs well in all cases, not 
only for small datasets but also for large datasets. However, we 

need to investigate the best choice for ઠ parameter more. For 

small datasets, it is not a problem because GAMARG requires 
only small time to build thousands ARGs. 

For human genome data set, we examined GAMARG with 

different values for ઠ (i.e., 5, 10, 15, 20, 25, and 30) on different 

datasets with different sizes. 5000 ARGs were built and ARG 
with the smallest number of recombination events was recorded 
on each dataset. The results show that GAMARG produces 

similar results while   has one of values 5, 10, 15 for 500 SNPs. 

However, for longer sequences (i.e., 1000 and 2000 SNPs), the 
algorithm works best in term of number of recombination events 
with    . 

5. CONCLUSION 
Constructing minimal ARGs from large datasets is still an open 
problem. ARG4WG algorithm can build ARG for thousands of 
whole genome sequences, however, it is not designed to construct 

minimal ARGs. In this work, we propose GAMARG algorithm 
that combines four-gamete test with the longest shared end 
strategy in recombination step to optimize the number of 
recombination events in ARG building process. The GAMARG 
algorithm infers ARGs with smaller number of recombination 
events than all other heuristic methods. Specially, the GAMARG 
algorithm can competitive with exhaustive search methods as it 
can find minimal ARGs for small datasets in very little time. 

In the future, we will consider more about methods to calculate 
the haplotype blocks to have a better estimation for parameter  . 
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