
A Hybrid Approach to Optimize the Number of
Recombinations in Ancestral Recombination Graphs

Nguyen Thi Phuong Thao
Institute of Information Technology

Vietnam Academy of Science and Technology
+84-9-1621-8689

thaontp@ioit.ac.vn

Le Sy Vinh
University of Technology and Engineering

Vietnam National University, Hanoi
+84-9-0226-2444

vinhls@vnu.edu.vn

ABSTRACT

Building ancestral recombination graphs (ARG) with minimum
number of recombination events for large datasets is a challenging
problem. We have proposed ARG4WG and REARG heuristic
algorithm for constructing ARGs with thousands of whole
genome sequences. However, these algorithms do not result in
ARGs with minimal number of recombination events. In this work,
we propose GAMARG algorithm, an improvement of ARG4WG,

to optimize the number of recombination events in ARG building
process. Experiment with different datasets showed that
GAMARG algorithm outperforms other heuristic algorithms in
building ARGs for large datasets. It also is much better than other
heuristic algorithms and comparable to exhaustive search methods
for small datasets.

CCS Concepts
Applied computing → Life and medical sciences →

Bioinformatics

Keywords

Ancestral recombination graphs; Minimal ARG; Minimum
number of recombinations; Recombination breakpoint

1. INTRODUCTION
Ancestral recombination graph (ARG) plays a central role in the
analysis of within-species genetic variations [1]. The relationships
between current species and common ancestors can be described
by coalescence, mutation and recombination events in the ARG
(Figure 1). Looking backward in time, the coalescence events
merge two identical sequences to one; the mutation events make
change in a site of the sequence; the recombination events break

one sequence to two subsequences that then make change in the
genetic information of the next generations. So the mutation and
recombination events are important factors in consideration when
building ARGs.

Approaches have been proposed to infer ARGs. Most of methods
use the infinite-sites assumption that does not allow back and
recurrent mutation in a single site. Thus, they try to build ARGs

with the minimum number of recombination events. This is
proved an NP-hard problem [2].

Several methods have been proposed to construct ARGs with

optimal number of recombination events (called minimal ARGs)
for small datasets. Song et al. [3] built minimal ARGs by scanning
all possible ways and selecting the best way to move trees for
each marker from left to right along the sequence to optimize the
number of recombination events. Given a number of
recombination events, Lyngsø et al. [4] tried to construct an ARG
using a branch and bound algorithm. If it is impossible to have an
ARG, the number of recombination events is increased by one.

The process is continued until an ARG is constructed. All these
exhaustive search methods have very high computational
complexity. They are just able to work with up to dozens of short
sequences.

To deal with larger datasets, other heuristic methods have been
proposed. In spite of focusing on building minimal ARGs, they try
to build plausible ARGs. Margarita proposed by Minichiello and
Durbin [5] can handle a thousand sequences with hundreds of

markers; ARG4WG of our group [6] can handle thousands of
whole human genomes. The longest shared ends criterion in
building ARGs allows ARG4WG to work on large datasets with
less number of recombination events than Margarita. Our
experiments showed that ARG4WG is able to build ARG with
fewer number of recombination events than Margarita but still
does not reach the minimal ARGs.

To build large ARGs with minimum number of recombination
events, we evaluated the effect of different factors on reducing the

number of recombination events in ARG building process for
genome-wide and suggested a new design of ARG4WG, called
REARG [7]. Specifically, we combined some other factors such
as similarity between sequences and the length of sequences into
REARG. This strategy enables REARG to build ARGs with a
smaller number of recombination events in comparison to
ARG4WG. However, REARG still is not as good as other
exhaustive search methods.

As the longest shared ends criterion does not result in the
minimum number of recombination events (Figure 2b), we should
combine ARG4WG with other optimal criteria to reduce the
recombination events. Notably, the four-gamete test [8] is the key
idea leading to various methods either to find the lower bound of
the number of recombination events or to construct explicitly
minimum recombination ARG. In this work, we propose
GAMARG method to build large ARGs with the minimum

number of recombination events. Our experiments on different
datasets showed that GAMARG algorithm is able to handle
thousands sequences with tens of thousands of markers, and also
could reach the minimum recombination ARGs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

ICBBB '19, January 7–9, 2019, Singapore, Singapore

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6654-0/19/01$15.00

DOI: https://doi.org/10.1145/3314367.3314385

36

Figure 1. An example of an ARG for 5 sequences of length 5

The paper is organized as follows. In section II, we introduce the
ARG building problem. Some problems in choosing the
breakpoint position in recombination step of four-gamete test

method and ARG4WG algorithm that directly affect to the
number of recombination events in ARG building process are
pointed out in section III. The GAMARG algorithm will also be
proposed in this section. The performance of our algorithm in
comparison to other heuristics and exhaustive search methods is
discussed in section IV. Finally, we conclude our work and
suggest some future works.

2. ARG BUILDING PROBLEM
Given a set D = {S1, …, SN} of N input sequences (haplotypes), Sx
has m markers, 1 ≤ x ≤ N; Sx[i] denotes site i of Sx that has the value

of either 0 (one of the SNP alleles), or 1 (another allele), 1 ≤ i ≤ m.

The ARG building problem is to construct the relationships
between sequences in D through three events: coalescence,
mutation, and recombination. The coalescence events merge two
identical sequences to one. The mutation event makes change in a
site of the sequence. The recombination event breaks one

sequence to two subsequences, one subsequence contains the
prefix of the sequence and one contains the suffix of the sequence.
Our task is to build an ARG with the minimum number of
recombination events under the infinite-sites assumption.

Consider a data set D(5) = {S1, S2, S3, S4, S5} of 5 sequences with 5
sites as below:

 1 2 3 4 5

S1 = 1 1 0 0 1

S2 = 0 1 0 1 0

S3 = 0 0 0 1 0

S4 = 1 0 0 0 0

S5 = 1 0 0 0 1

Figure 1 is an example of an ARG building process for D(5). An
ARG with 12 events (numbered from 1 to 12 in circles) is built
backward in time, starting from the input data, until a single
common ancestor (10001) is reached. A "*" at a site denotes a non-

ancestral material. 3 different evolutionary events are performed in
the building process. A recombination event as in the state 1 breaks
a sequence 01010 into two sub-sequences: 01*** contains the prefix
and **010 contains the suffix of the sequence 01010. A coalescence
event as in the state 2 combines two sequences **010 and 00010
into one sequence 00010. A mutation event as in the state 3
changes a mutated site 4 from 1 to 0.

3. METHOD

3.1 Four-Gamete Test
Under the infinite-site assumption, we called two sites i and j

incompatible if they contain all four gametic types 00, 01, 10, 11
[3]. There will be at least one recombination event between two
incompatible sites i and j. The exhaustive methods aim to find out
the optimal breakpoints, that is, the smallest number of
recombination events, to break all these incompatible sites.

Let FreqGametei,j = {freq00i,j, freq01i,j, freq10i,j, freq11i,j} be the
frequencies of gametic types 00, 01, 10, 11 occurring between
sites i and site j, respectively.

In the data set D(5), there are three pairs of incompatible sites: site
1 and site 2; site 2 and site 4; site 2 and site 5. The frequencies of
4 gametic types are FreqGamete1,2 = {1,1,2,1}; FreqGamete2,4 =
{2,1,1,1}; FreqGamete2,5 = {2,1,1,1}, respectively. In this case, at
least two recombination events must be happened in the
evolutionary history of the sequences. Figure 1 is a minimal ARG
with two recombination events representing the evolutionary
history of data set D(5).

We observed that there are three gametic types having frequency

1. So breaking one of these gametic types between these sites will
give us better solution. For example, performing a recombination
between site 1 and site 2 on one of three sequences S1, S2, S3 will
break this pair of incompatible sites. However, as freq101,2 equals
2, so if we perform a recombination between site 1 and site 2 on
one of two sequences S4, S5, we just reduce the frequency of
occurrence of gametic type 10 by one and we do not break this
pair of incompatible sites. In this case, we need one more

recombination event to break this pair of incompatible sites
(Figure 2a).

3.2 ARG4WG Algorithm

37

Working backward in time, ARG4WG first performs all possible
coalescence and mutation events. The algorithm then searches for
a pair of sequences that have the longest shared ends, that is, the
longest match in term of ancestral material from the left or the
right of two sequences. A recombination is performed on a
sequence to break a sequence into two subsequences. A
subsequence containing the longest shared region will be
coalesced with the remaining sequence right after the

recombination step.

The longest shared ends strategy helps ARG4WG to work with
thousands of whole genome sequences. It aims to build plausible
ARGs and cannot give us the minimal ARGs. Figure 2b illustrates
briefly the way ARG4WG works with data set D(5). As we see, in
this case, ARG4WG always performs recombination on S4 or S5
first. This choice does not give us the optimal solution and require
at least 3 recombination events to build an ARG.

3.3 GAMARG Algorithm
We propose GAMARG algorithm that combines the four-gamete
test constraint with the longest shared ends strategy in ARG4WG
to optimize the number of recombination events in ARG building
process.

As using four-gamete test to build minimal ARG is not possible
for large datasets. From the observation described in Section 3.1,
we propose a simplification of the four-gamete test by considering
only pairs of incompatible sites having frequency 1 for at least
one gametic type. This assumption guarantees that we always
break at least one pair of incompatible sites when performing a
recombination between a pair of incompatible sites i and j.

Let ઠ be a size of sliding window that we will scan to find all pairs

of incompatible sites in this region. In particular, we scan through
all markers. For each marker i (0 ≤ i < m), we will scan to find all

pairs of incompatible sites in a range [i, i+ ઠ].

(a)

(b)

Figure 2. ARG building process for data set D={ S1, S2, S3, S4, S5} (a) based on four gametic tests and (b) in ARG4WG algorithm

→ denotes a recombination event between site i and site j;

→ denotes xth coalescence event;

→ denotes a mutation event at site i. (a) The

ARG building process started by choosing S4 to do a recombination event between site 1 and site 2 (R1,2(1)). As freq011,2 = 2, this
recombination event help to reduce the frequency of gametic type 01 between site 1 and site 2 by one and FreqGamete1,2 = {1,1,1,1} on

the next generation. So we need to do one more recombination event between those sites (R1,2(2)) to break this pair of incompatible sites.
So this choice (and also the same with S5) will waste two recombination events while choosing S1, S2, S3 (that all have the frequency of
occurence of gametic type equal 1) to break between those sites just waste one recombination events. (b) The longest shared end is
detected between S4 and S5 (covered by rectangles), a recombination event between site 4 and site 5 is putted on S4 (or S5) to produce 2

subsequences. By this way, ARG4WG always need 3 recombination events to build ARGs for this data set.

38

Let Sx(i,j) be a sequence containing a gametic type with frequency

1 at a pair of incompatible sites i and j (0 ≤ i < m, j - i ≤ ઠ). That is,

Sx(i,j) satisfies the following conditions:

{

We use the same definitions as in [1]:

 Sx[i] matches Sy[i] if Sx[i] = Sy[i] or Sx[i] = * or Sy[i] = *.

 (Sx,Sy){d,l} is a shared end pair of sequence Sx and sequence
Sy with the maximal matching length l from the left (d = left)
or from the right (d = right).

 (Sx,Sy){d,l} exists if and only if there are at least one marker i

in matching region that Sx[i] = Sy[i]  *.

For a shared end pair (Sx,Sy){d,l}, following the longest shared
end strategy, the breakpoint is specified between:

 l and l + 1 where d = left and Sx[i] match Sy[i] for all 1  i  l

and Sx[l+1]  Sy[l+1].

 l -1 and l where d = right and Sx[i] match Sy[i] for all l  i 

m and Sx[l-1]  Sy[l-1].

Given a candidate sequence Sx(i,j), we need to find the best
breakpoint in range [i,j]. We once again tackle this problem by

using the longest shared end strategy. We find out the longest
shared end between this sequence and all other sequences. If there
exists a sequence Sz that a shared end pair (Sx, Sz){d,l} satisfies i ≤

l ≤ j, then Sx will be broken at marker l as mentioned above. If no

shared end pair in range [i,j] exists, the breakpoint is chosen
randomly between site i and i+1 or between site j-1 and j.

GAMARG algorithm: The GAMARG algorithm starts from
time t = 1. The set of sequences at time t is denoted as Dt (D1=D).
For each Dt, the candidate lists for coalescence, mutation and
recombination events are constructed as the following:

 Coalescence list C: For a shared end pair (Sx,Sy){d,l} of
sequences Sx and Sy, if l = m, then (Sx,Sy){d,l} is added into

the coalescence list.

 Mutation list M: For a marker i (1 ≤ i ≤ m), if Sx[i] = 1 and

 * + , - or S
x
[i] = 0 and

* + , - , then Sx[i] is added into mutation list.

 Gamete list G: For a pair of incompatible sites (i,j) (0 ≤ i < m,

j - i ≤ ઠ), if exist a sequence Sx that contains a gametic type

with frequency 1, then Sx(i,j) is added into gamete list.

 Shared-end list S: For a shared end pair (Sx,Sy){d,l} of
sequences Sx and Sy, if 0 < l < m, (Sx,Sy){d,l} is added into the

recombination list.

When one of three events occurs, the next sequence set Dt+1 is
created from the current sequence set Dt as described below and
four candidate lists are updated.

 If a coalescent event occurs between two sequences Sx and Sy,

two sequences Sx and Sy are merged into a common ancestor

S’:

 ({ }) * +.

 If a mutation event occurs on a sequence S, a new sequence S’

is created from sequence S with the mutation:

 (* +) * +.

 If a recombination occurs on a sequence Sx(i,j), a breakpoint

is put in [i,j]. Two new subsequences Sx1 and Sx2 are created

from sequence Sx:

 (* +) * +

 If a recombination occurs on a shared end pair (Sx, Sy){d,l},

pick a sequence having less ancestral material in its shared

end part to do recombination. Assuming Sx is chosen,

sequence Sx will be broken into two new subsequences Sx1

and Sx2:

 (* +) * +

The GAMARG algorithm

Input: A set of N sequences with m markers (snps)

Output: An ARG containing coalescence, mutation and
recombination events among sequences.

 Step 1: If Coalescence list C is not empty, do all possible
coalescence events.

 Step 2: If Mutation list M is not empty, do all possible
mutation events then go to Step 1. If no mutation
possible, go to Step 3.

 Step 3: If Gamete list G is not empty, do a recombination
then go to Step 1.

 Step 4: If Shared-end list S is not empty, do a
recombination followed by a coalescence. Go to Step 1.

 Step 5: Repeat Step 1, Step 2 and Step 3, Step 4 until a
single common ancestor is reached.

Candidates from four lists are selected as the following:

 The candidate from the coalescence list or the mutation list to

perform coalescence or mutation is taken randomly.

 In the Gamete list, if a candidate sequence Sx(i, j) having the
shortest distance from site i to site j, that is, (j – i) has the

smallest value, Sx is the first priority to perform
recombination. If there is more than one candidate having the
same shortest distance, we will choose one randomly.

 In the Shared-end list, the pair of sequences with the longest

shared end in term of ancestral material will be the first
choice for recombination. If there is more than one candidate
having the same longest shared end, one is picked randomly.

The random choices in GAMARG algorithm result in different
ARGs for different runs.

4. EXPERIMENTS AND RESULTS
To evaluate the performance of GAMARG, we conducted
experiments on different datasets. First, we measured GAMARG,
Margarita, ARG4WG, REARG, and exhaustive algorithms on
Kreitman's dataset [9] that included 11 sequences of length 43.
This small dataset is a benchmark used in evaluating the
performance of many algorithms either to find lower bound of

recombination or to build minimal ARGs.

39

Second, we tested all 4 above algorithms on two simulation
datasets: SDS1 included 50 sequences of length 54 and SDS2

included 75 sequences of length 45 that were public at
https://people.eecs.berkeley.edu/~yss/lu.html.

Third, we examined GAMARG algorithm on the datasets used in
[7] that extracted from the 1000 Genomes Project [10]. Note that
experiment results from [7] showed that Margarita was not stable
and needed a huge number of recombination events to build an
ARG for these datasets. We compared GAMARG with ARG4WG
and REARG in terms of the number of recombination events and

the runtime. We could not perform exhaustive search methods as
they were not applicable for these large datasets.

REARG has three versions called REARG_SIM, REARG_LEN,
REARG_COM. The output of REARG is the best output from all
these versions.

4.1 Kreitman’s Dataset

1000 ARGs were built by each algorithm and we recorded the
ARG having the smallest number of recombination events.
ARG4WG and REARG got ARG with 10 recombination events
as their best results. Margarita could build an ARG with 8
recombination events. The GAMARG could generate different
ARGs with 7 recombination events using . This

result is the optimal solution as is also found by exhaustive search

methods [3], [4]. This result shows that GAMARG is as good as
exhaustive searches for small datasets. Moreover, it takes only 8
seconds to build 1000 ARGs (i.e., as fast as ARG4WG).

4.2 Simulation Datasets

10000 ARGs were built by each algorithm on each dataset and we

recorded the ARG having the smallest number of recombination

events. We ran GAMARG with different ઠ and we had best results

100
seqs.

 2000 SNPs 5000 SNPs 10000 SNPs

200

seqs.

 2000 SNPs 5000 SNPs 10000 SNPs

 ARG4WG REARG GAMARG

Figure 3. The smallest number of recombination events found by 3 algorithms for 100 and 200 haplotypes with 2000, 5000, and

10000 SNPs of DS1, DS2, and DS3

1480

1780

2080

2380

2680

DS1 DS2 DS3
3900

4200

4500

4800

5100

5400

5700

DS1 DS2 DS3

8200

8500

8800

9100

9400

9700

10000

10300

10600

DS1 DS2 DS3

2500

2800

3100

3400

3700

4000

4300

DS1 DS2 DS3
6400
6700
7000
7300
7600
7900
8200
8500
8800
9100
9400

DS1 DS2 DS3

13500
13800
14100
14400
14700
15000
15300
15600
15900
16200
16500
16800
17100

DS1 DS2 DS3

40

with for SDS1 and for SDS2. The

results of all algorithms are described in Table 1.

The experiment results show that GAMARG can reach to minimal
ARGs for SDS1 and only one recombination more than the
optimal solutions for SDS2. The results of Margarita, ARG4WG,
and REARG are very far from the optimal solutions.

Table 1. The results from different algorithms on simulated

datasets

 SDS1 SDS2

Minimal ARG 10 12

Margarita 14 18

ARG4WG 17 18

REARG 17 20

GAMARG 10 13

4.3 Datasets from the 1000 Genomes Project
We compared the runtime and the number of recombination
events on 18 datasets of 100, 200 haplotypes with 2000, 5000,
10000 SNPs extracted from 3 different regions (i.e. DS1, DS2,

DS3) of Chromosome 1 from the 1000 Genomes Project.

As in [7], on each data set, 1000 ARGs were built by each
algorithm and the ARG with the smallest number of
recombination events was recorded. In these tests, we ran

GAMARG using ઠ = 5.

Experiment results (see Figure 3) show that GAMARG algorithm
produces ARGs with much smaller number of recombination
events in comparison to that of ARG4WG and REARG in all tests.
The outperformance of GAMARG in comparison to other
algorithms is clearly significant for 100 sequences. For larger
datasets with more sequences, the diversity of the data increases.
Thus, there are many incompatible sites, however, only few of
many of them might satisfy the constraint that at least one gametic

type having frequency 1. In this case, the advantage of GAMARG
over ARG4WG and REARG is not very significant.

The average running times to build an ARG by
each algorithm were calculated for each test. As shown in Figure

100
seqs.

 DS1 DS2 DS3

200

seqs.

 DS1 DS2 DS3

 ARG4WG REARG GAMARG

Figure 4. Average of runtimes (second) of ARG4WG, REARG, and GAMARG for 100 and 200 haplotypes with 2000, 5000,

and 10000 SNPs of DS1, DS2, and DS3 datasets

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

2000 5000 10000

0

10

20

30

40

50

60

2000 5000 10000

0

10

20

30

40

50

60

2000 5000 10000

0

50

100

150

200

2000 5000 10000
0

20

40

60

80

100

120

140

160

2000 5000 10000

0

50

100

150

200

2000 5000 10000

41

4, for 2000 SNPs, there are not much different in the running
times between algorithms. For longer sequences (i.e., 5000 and
10000 SNPs), GAMARG is slower than ARG4WG but faster than
REARG.

4.4 Discussion
Four-gamete test is the well-known technique in computing the
minimal recombination ARG for small datasets. The longest
shared end strategy in ARG4WG algorithm is very effective for
large datasets. The combination of them in GAMARG algorithm
allows it not only to work with thousands sequences with tens of

thousands of SNP markers but also to find minimal recombination
ARGs.

The results on small datasets indicate that both ARG4WG and
REARG algorithms are not suitable for small datasets. The
longest shared segment strategy of Margarita has obtained the
better results than ARG4WG and REARG for small datasets.
However, this strategy causes Margarita much more
recombination events and runtime than ARG4WG and REARG

for medium or large datasets [6], [7].

The proposed GAMARG algorithm performs well in all cases, not
only for small datasets but also for large datasets. However, we

need to investigate the best choice for ઠ parameter more. For

small datasets, it is not a problem because GAMARG requires
only small time to build thousands ARGs.

For human genome data set, we examined GAMARG with

different values for ઠ (i.e., 5, 10, 15, 20, 25, and 30) on different

datasets with different sizes. 5000 ARGs were built and ARG
with the smallest number of recombination events was recorded
on each dataset. The results show that GAMARG produces

similar results while has one of values 5, 10, 15 for 500 SNPs.

However, for longer sequences (i.e., 1000 and 2000 SNPs), the
algorithm works best in term of number of recombination events
with .

5. CONCLUSION
Constructing minimal ARGs from large datasets is still an open
problem. ARG4WG algorithm can build ARG for thousands of
whole genome sequences, however, it is not designed to construct

minimal ARGs. In this work, we propose GAMARG algorithm
that combines four-gamete test with the longest shared end
strategy in recombination step to optimize the number of
recombination events in ARG building process. The GAMARG
algorithm infers ARGs with smaller number of recombination
events than all other heuristic methods. Specially, the GAMARG
algorithm can competitive with exhaustive search methods as it
can find minimal ARGs for small datasets in very little time.

In the future, we will consider more about methods to calculate
the haplotype blocks to have a better estimation for parameter .

6. ACKNOWLEDGMENTS
We thank Centre for Informatics Computing (VAST) for allowing
us to use their HPC. This research is supported by Vietnam
Academy of Science and Technology (ĐLTE00.01/19-20).

7. REFERENCES
[1] M. Arenas, “The importance and application of the ancestral

recombination graph,” Front. Genet., vol. 4, p. 206, 2013.

[2] L. Wang, K. Zhang, and L. Zhang, “Perfect phylogenetic
networks with recombination,” J. Comput. Biol., vol. 8, no. 1,
pp. 69–78, 2001.

[3] Y. S. Song and J. Hein, “Constructing minimal ancestral

recombination graphs,” J. Comput. Biol., vol. 12, no. 2, pp.
147–169, 2005.

[4] R. B. Lyngsø, Y. S. Song, and J. Hein, “Minimum

recombination histories by branch and bound,” in
International Workshop on Algorithms in Bioinformatics,
2005, pp. 239–250.

[5] M. J. Minichiello and R. Durbin, “Mapping trait loci by use
of inferred ancestral recombination graphs,” Am. J. Hum.
Genet., vol. 79, no. 5, pp. 910–922, 2006.

[6] T. T. P. Nguyen, V. S. Le, H. B. Ho, and Q. S. Le, “Building
ancestral recombination graphs for whole genomes,”
IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 14, no. 2,
pp. 478–483, 2017.

[7] T. T. P. Nguyen and V. S. Le, “Building minimum
recombination ancestral recombination graphs for whole
genomes,” in 2017 4th NAFOSTED Conference on
Information and Computer Science, NICS 2017 -
Proceedings, 2017, vol. 2017–Janua, pp. 248–253.

[8] R. R. Hudson and N. L. Kaplan, “Statistical properties of the
number of recombination events in the history of a sample of
DNA sequences,” Genetics, vol. 111, no. 1, pp. 147–164,
1985.

[9] M. Kreitman, “Nucleotide polymorphism at the alcohol
dehydrogenase locus of Drosophila melanogaster,” Nature,
vol. 304, no. 5925, p. 412, 1983.

[10] 1000 Genomes Project Consortium and others, “A map of
human genome variation from population-scale sequencing,”
Nature, vol. 467, no. 7319, p. 1061, 2010.

42

