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1. INTRODUCTION

The Matched Field Processing for source localization has long 
history, and remains a viable area of research as well as appli-
cation of SONAR. The development of MFP is from the conven-
tional to other MFPs [1-5] in order to increase its reliability and 
resolution and to avoid mismatch conditions. Some methods 
such as empirical mode decomposition, adaptive MFP, com-
pressive MFP and MFP using Riemannian geometry have been 
introduced recently [6-9] but they are not covered the ocean 
variability scenario completely. When ocean environment vari-
ability or lack of ocean information or mismatch of ocean envi-
ronment leading to many modeled field replicas (the number 
of degree of freedom is increased), as a result the true source 
selection becomes more complexity.

The fact that Cross Spectral Density Matrices (CSDMs) 
which are not randomly but Hermite and positive definite, 
form a manifold that each CSDM is a point on it. One alwa-
ys uses Euclidean distance (ED) to compare the similarity 
between two CSDMs or two points in a manifold.  However, 
Riemannian distance (RD) has been suggested recently due 
to the principle of Riemannian geometry appropriate to the 
curvature of acoustic ray [10]. In this case, RD is a comparis-
on of geodesic distance between two points in a manifold. To 
reduce the complexity of RD calculation, we use an isometric 
mapping i.e., the mapping from the tangent space of a mani-
fold to the tangent space of an Euclidean subspace. Firstly, this 
idea is the methodology of pattern classification [11], then it is 
applied to the problem of acoustic source inversion in ocean 
waveguide [9].
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In this paper, we use a new isometric mapping which is called 
Sine Isometric Mapping (SIM)    ,
where

 is a point in the tangent space of a manifold and  
  is the corresponding point in the tangent space of an  

Euclidean space. Thanks to the isometric mapping, the  
minimum distance of all the parameterization paths l  
connecting two fix points (a,b) leading to the corresponding 
RD in a manifold. Then the Riemannian matched field proces-
sor is defined using the minimum of the RD in order to locate 
the true source position in a more realistic manner.

The paper is organized as follows. Part 2 introduces Rie-
mannian distance and SIM. The matched field processors ba-
sed on Riemannian geometry are described in Part 3. Some 
simulations are given in Part 4. Finally, we conclude the paper 
in Part 5.

2. SINE-ISOMETRIC MAPPING AND RIEMANN-
IAN DISTANCE

2.1 CSDM MATRIX manifold
An CSDM manifold (Μ,    ) is a manifold M which con-

sists of CSDM matrices and is equipped with inner product  
(Riemannian metric)       on the tangent space .Given the 
inner product     on, each point m that varies smoothly 
from point to point in the sense that if X and Y are differentia-
ble vector fields on M, then  is a smooth 
function.
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where tr is trace operator for a matrix as in [12]. 
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In this paper, we use a new isometric mapping which is called Sine Isometric

Mapping (SIM),
 sinm m , where m is a point in the tangent space of a manifold and

m is the corresponding point in the tangent space of an Euclidean space. Thanks to

the isometric mapping, the minimum distance of all the parameterization paths l(θ)

connecting two fix points (a,b) leading to the corresponding RD in a manifold. Then

the Riemannian matched field processor is defined using the minimum of the RD in

order to locate the true source position in a more realistic manner.

The paper is organized as follows. Part 2 introduces Riemannian distance and

SIM. The matched field processors based on Riemannian geometry are described in

Part 3. Some simulations are given in Part 4. Finally, we conclude the paper in Part 5.
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where 

tr is trace operator for a matrix as in [12].

3. MATCHED FIELD PROCESSORS BASED ON RIEMANNIAN GEOMETRY

An acoustic pressure field on a vertical array of N sensors with locations 
( , ), , a a ap r z a 1 N

and from the true source coordinate 
( , )s s sp r z

is given by

( , ) . ( , ) ( ) 
s s a s a ap

F p p S G p p W p

(10)

where 

S is a spectral component of the source, 

G is Green function which is calculated by Normal mode model and  

W represents uncorrelated additive ambient noise.

The cross-spectral density matrix is written as
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Normalization of CSDM using Frobenius norm, we have
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The Frobenius norm define that  

2
( )  H

ijF ij
trA a AA

 where  ija is element of matrix  A

and  H  is  the  transpose  conjugate  [12].  The  corresponding  normalization  of  CSDM  of

modeled field replica from estimated source coordinate 
 ( , )  p r z denoted by 

p
R

.

The matched field processor based on Riemannian Geometry is received by obtaining the

space  coordinates  of  modeled  field  replicas  which  are  scanning  over  all  modeled  field

replicas position ( , )
  

p r z with a subject constraint of minimization of specific Riemannian

distance.
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In another way, the diagram of matched field processors based on Riemannian geometry is
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 is sea water density, 

m is amplitude of mth mode, and 

mk is mth eigenvalue (wavenumber).

4.2 Input acoustic data
Passive  array  data  SONAR  from  SACLANTC1993  North  Elba  experiment  available  in
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smooth function. 
 
2.2 SINE-ISOMETRIC MAPPING (SIM) 
Theorem 1:  
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In this paper, we use a new isometric mapping which is called Sine Isometric

Mapping (SIM),
 sinm m , where m is a point in the tangent space of a manifold and

m is the corresponding point in the tangent space of an Euclidean space. Thanks to

the isometric mapping, the minimum distance of all the parameterization paths l(θ)

connecting two fix points (a,b) leading to the corresponding RD in a manifold. Then

the Riemannian matched field processor is defined using the minimum of the RD in

order to locate the true source position in a more realistic manner.

The paper is organized as follows. Part 2 introduces Riemannian distance and

SIM. The matched field processors based on Riemannian geometry are described in

Part 3. Some simulations are given in Part 4. Finally, we conclude the paper in Part 5.
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The Sound Speed Profile (SSP) from [14] is described in Fig. 2.

Fig. 2: SSP of SACLANTC 1993 North Elba

4.3 Simulation results
-Each simulation uses 10 replicas of SONAR array data 

which provided by SACLANC and SNR level of 10 dB and the 
number of snapshot is greater than 30 samples. Twenty mo-
deled field replicas are obtained from variable sound speeds 
that changed to depth according to SSP as depicted in Fig. 2 
(In reality modeled field replicas could be caused from other 
factor such as internal-wave, bottom parameter mismatch 
and others). From Fig. 3 it can be seen that the true source 
can be detected at depth of 60 m and range of 6000 m if 20 
modeled field replicas and 10 data replicas were used for the 
proposed Riemannian matched field processor. In Fig. 4 the 
performance of the proposed Riemannian matched field pro-
cessor used only 6 modeled field replicas shows that beside 
the true source location there are a number of spurious peak 
locations which are corresponding to ocean variability or mi-
smatch conditions. Since the true source location is higher 
than other spurious peak locations, one can find it. However, 
we could not detect the source in the case in Fig. 5 when only 
3 modeled field replicas were used and all peak location are al-
most equally.  It is always the case of MFP when the number of 
modeled field replicas could not provide enough fluctuation 
of ocean environment. 

The comparison of Riemannian matched field processors is 
not easy since the complexity of physical interpretation of Ri-
emannian distance. However, the performance of conventio-
nal MFP is equivalent to the low level of Riemannian matched 
field processor (is not shown here).

On the basis the Riemannian distance of SIM (Part 2.3),  the 
proposed Riemanian matched field processor is written as

						             (16)
In another way, the diagram of matched field processors ba-
sed on Riemannian geometry is described in Fig. 1 as follows

Fig. 1: Classification of Matched Field Processors based on Rie-
mannian geometry

4. SIMULATIONS

4.1 Acoustic model
The acoustic model in this paper using Normal mode model, in 
this case the acoustic pressure from [13] is given by

	 	       (17)
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is sea water density,

is amplitude of mth mode, and
is mth eigenvalue (wavenumber).

4.2  Input acoustic data
Passive array data SONAR from SACLANTC1993 North Elba 
experiment available in Internet was used for processing [14].
The vertical underwater acoustic array data was collected in 
shallow-water off the Italia west coast by the NATO SACLANT 
Center in La Spezia, Italy. The original SACLANT time series has 
been converted to a series of MATLAB .mat files each of which 
contains a matrix “dat” that is 48 sensors by 64K data points 
long. Each file represents about 1 minute of data. The vertical 
array consists of 48 hydrophones with spacing 2 m between 
elements at total aperture length 94 m (18.7 m to 112.7 m in 
depth). The source emitted PRN signal with center frequency 
of 170 Hz.

According to [9] we have three matched field processors which are based on Riemannian

Geometry as follows
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r is range, 

z is depth, 

sz is the depth of the source, 
 is sea water density, 

m is amplitude of mth mode, and 
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5. CONCLUSION

In view of Riemannian Geometry, Sine-Isometric Mapping 
(SIM) is introduced as well as the RD from SIM is derived. Then 
the Riemannian MFP based on the RD is analyzed and valida-
ted by simulation in the case of variable modeled field repli-
cas. The simulation results show that the true source could be 
found in a more realistic manner and it can be detected more 
precisely if the more modeled field replicas are used.

Fig. 3: Riemannian ambiguity surface for 20 modeled field replicas and 10 data replicas, SNR=10dB, No of snapshot> 30 samples

Fig. 4: Riemannian ambiguity surface for 6 modeled replicas and 10 data replicas, SNR=10 dB, No of snapshot>30 samples

Fig. 5: Riemannian ambiguity surface for 3 modeled replicas and 10 data replicas, SNR=10dB, No of snapshot>30 samples
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