

International Journal of Information and Communication Sciences
2019; 4(4): 70-78

http://www.sciencepublishinggroup.com/j/ijics

doi: 10.11648/j.ijics.20190404.11

ISSN: 2575-1700 (Print); ISSN: 2575-1719 (Online)

A Benchmarking Tool for Elastic MQTT Brokers in IoT
Applications

Linh Manh Pham
1, *

, Truong-Thang Nguyen
2
, Manh-Dong Tran

2

1Faculty of Information Technology, VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
2Institute of Information Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Email address:

*Corresponding author

To cite this article:
Linh Manh Pham, Truong-Thang Nguyen, Manh-Dong Tran. A Benchmarking Tool for Elastic MQTT Brokers in IoT Applications.

International Journal of Information and Communication Sciences. Vol. 4, No. 4, 2019, pp. 70-78. doi: 10.11648/j.ijics.20190404.11

Received: October 16, 2019; Accepted: November 13, 2019; Published: November 22, 2019

Abstract: Cloud computing is an evolution in IT consumption and delivery which makes available self-management on the

Internet with a flexible, pay-as-you-go business model. Within the context of Internet of Things, the MQTT (Message Queuing

Telemetry Transport) protocol that is implemented broadly by the applications of “Publish-Subscribe” paradigm has a vital role.

However, MQTT brokers are saturated easily if they have to cope with huge and speedy data generated by IoT “chatty” devices.

With capability of provisioning/deprovisioning granular virtual resources, Cloud computing empowered MQTT brokers by

enabling its elasticity feature. Elasticity helps the brokers deal with a very large variety of data integrated into the IoT every

single day. However, there was lack of sturdy benchmarking tools that judge all the aspects of MQTT brokers in order to advocate

correct elastic decision-making. This article focuses on the work of benchmarking MQTT by introducing a new developed tool

called MQTTBrokerBench. With this tool, users not only can benchmark MQTT brokers but also can specify saturation points

where the IoT load makes the brokers be saturated. Those saturation points can be used to set thresholds for elastic

decision-making. Furthermore, the article also demonstrates the results acquired by this tool through the experiments on

Windows Azure Cloud Platform.

Keywords: Benchmarking, MQTT, Cloud Computing, Internet of Things

1. Introduction

The Internet of Things (IoT) is currently changing into a

reality, with the supply of low cost buried communication

devices like RFID tags, wireless sensors, mobiles, etc. IoT

offers new opportunities for firms from fashionable economic

models (e.g. pay-as-you-go style) improving the standard of

service (QoS) provided to their customers (individuals or

companies) and meet their legal or written agreement

obligations. It established itself as the new economical and

productive tool (i.e. just-in-time) for e-agile businesses and

organizations. The communication paradigm principally

employed in the IoT infrastructure is that the

“Publish-Subscribe” one (PubSub in brief) that disseminates

mensuration messages collected by the device nodes and

delivered to intensive applications [1]. Message Queuing

Telemetry Transport (MQTT) protocol is that the most

well-liked implementation of PubSub model in context of

IoT normally and in context of Machine to Machine (M2M)

specially [2]. With MQTT the messages are sent and oriented

by topics, not by servers (a.k.a. brokers). A challenge of the

IoT and MQTT is that the ability to supply a service with

capability of dynamic resource management (the resources

are going to be (de)provisioned supported actual demand).

Thus, it is necessary to define the concept of “elastic topic”

that may handle connections optimally. To outline the

threshold, by that a broker will support in point of fact, it is

necessary to realize the MQTT tests of performance.

In this paper, we have a tendency to create following

contributions: (1) propose MQTTBrokerBench, a

benchmarking tool which allows realizing numerous MQTT

tests of performance; (2) offer an approach to analyse the

results statistically by examination the definitions of MQTT

in theory and to reveal scaling thresholds. The remainder of

the paper is organized as follows. Section 2 presents the

71 Linh Manh Pham et al.: A Benchmarking Tool for Elastic MQTT Brokers in IoT Applications

general context where our proposal locates. The architecture

and components of our developed tool are elaborated in

Section 3. Section 4 describes substantiating experiments and

discusses results from different scenarios that correspond to

practice in IoT context. Once highlighting numerous related

works in Section 5, we have a tendency to conclude and

present future work in Section 6.

2. Context

2.1. Cloud Computing

Cloud computing is a term pertaining to a network model

within which a program or application runs on one or several

connected servers, rather than on a local computing device

like a PC, tablet or smartphone. As the ancient client-server

mode, a user connects to a server to perform a task. In

additional detail, the “Cloud computing” refers to a machine

or cluster of machines, ordinarily called servers, connected

through a network like the Internet, an Intranet, a local area

network (LAN) or wide area network (WAN). All users who

have permission to access the server will use its computing

power to run an application, store information or perform

alternative computing tasks. Therefore, rather than employing

a notebook computer to run the application, the individual can

now run the application from anyplace within the world.

The distinction of “Cloud computing” is that the calculating

process can be operated on one or multiple computers at the

same time, using the ideas of virtualization. With

virtualization, one or a lot of physical servers may be designed

and divided into many virtually independent servers, referred

to as virtual machines (VMs). All physical servers work

independently and appear to the user as one physical machine.

The VMs do not physically exist and can be moved or scaled

up/down without affecting the end user. The information

resources have become more and more granular, that provides

benefits for the end users and the operators, including the

demand for self-management, broad access through multiple

devices, pooling of resources, speedy elasticity and the ability

to service mensuration.

2.2. Internet of Things

The Internet of Things may be a network of networks that,

with standardized systems and wireless electronic

identification, identifies and communicates digitally with

physical objects so as to live and exchange information

between the physical and virtual worlds. IoT refers to single

objects and their virtual representations in an Internet-like

structure [3]. The new construct of IoT is a necessary

foundation for the vision of a better planet (Smarter Planet -

IBM) [4]. What is more, considering the looks of various

devices referred to as “smart”, the net is absolute to evolve IoT

within the close to future. Let imagine some exceptional

things we are able to do with IoT in next ten or twenty years:

1. A doctor will examine a patient in an exceedingly distant

town and see the state of health in real time still as

numerous data like vital sign or vital sign.

2. An energy company could monitor oil and gas pipelines

placed many miles away and bring to a halt the flow if

issues are detected.

3. An owner will see his house on an Internet page, via

devices like a security alarm, a heat, and more.

IoT is even on the far side these examples. Devices act not

solely with the users however additionally with one another,

that might become a long type of central system.

2.3. Publish-Subscribe Paradigm

The communication paradigm “Publish-Subscribe” may be

a model within which the message senders, referred to as

Publishers, do not transmit their messages on to specific

receivers, referred to as Subscribers [1, 5]. Instead, the

Publishers send messages on the specified topics while not

information of the existence or location of Subscribers. The

Subscribers, in turn, receive messages from topics that interest

them regardless the Publishers who sent them.

2.4. MQTT

Telemetry technology permits activity or dominant remote

things. Moreover, today, enhancements within the measure

technology enable inter-connected sensors and devices to be

monitored at totally different locations still as scale back the

price of making applications that may run on the good devices.

People, firms and governments are turning to good appliances

and measure technology to act a lot of showing intelligence

with the planet.

MQTT provides measure technology to satisfy the

challenges related to data exchange of the net stakeholders

nowadays. MQTT is a very straightforward and light-weight

electronic messaging protocol. Its PubSub design is intended

to be simple to implement, with many thousands of remote

clients could also be supported by one server. These options

create the MQTT ideal to be used in strained environments,

wherever information measure is low or high-latency, with

remote devices that will have restricted memory or process

capabilities. The construct of electronic messaging in MQTT

communication rather more versatile than request/response

attributable to biface asynchronous “push” communication,

and therefore the decoupling of Publishers and Subscribers.

This approach additionally makes the MQTT protocol notably

appropriate to the association between machines (M2M), that

is a necessary side of the emergence of the IoT construct.

MQTT has an open specification [2]. There are over forty

totally different client and server implementations of this

specification like Mosquitto, ActiveMQ, Apollo, Jboss, Joram,

Carpet, RabbitMQ, HiveMQ. During this paper, we have a

tendency to target MQTT protocol standardized by OASIS

(Organization for the Advancement of Structured Information

Standards).

2.5. MQTT with Elasticity

Elasticity is one in all outstanding action that Cloud

computing brings to our world. Elasticity is capability to

regulate granularly the virtual computing resources (i.e.

 International Journal of Information and Communication Sciences 2019; 4(4): 70-78 72

scaling out/in or up/down) to fluctuation of atmosphere in

brief periods of your time. Nowadays, IoT applications

sometimes get large information from numerous sources.

Additionally, some applications need this information to be

processed in real time to adapt the changes of giant data flows

like text messages, social media posts, exchange feeds. Like

said, the foremost fashionable communication technique in

context of IoT is MQTT that advantages abundant from

advantages of Cloud computing like elasticity. So as to try to

to therefore, it is essential to possess the benchmarking tools

to fret MQTT brokers that reveals the ultimate saturation

points. These points are going to be valuable inputs for Cloud

elastic engines to grant correct scaling selections like the

engine proposed by Pham et al. [6]. Such a benchmarking tool,

MQTTBrokerBench, is delineated in details through ensuing

section.

3. MQTTBrokerBench

MQTTBrokerBench may be a distributed MQTT check

platform for IoT applications, that follows main principles of

the component-based design [7]. It is designed to recycle

totally different COTS (component-off-the-shelf) parts and

mix them flexibly. Therefore, the core of MQTTBrokerBench

is unbroken light-weight with simplified APIs in operation as

docks to port the plug-ins specific to the COTS parts. Figure 1

shows overall software package design of

MQTTBrokerBench, that consists of many modules.

3.1. Test Performance Platform API

The “Test Performance Platform API” module is enforced

in Java for generating and injecting load profiles on numerous

systems and activity performance. It absolutely was originally

designed for checking MQTT brokers in IoT applications

however has been swollen to alternative test functions. We

have a tendency to developed a plug-in for this module to plug

to our Apache JMeter system, an open supply testing software

package that supports portability naturally [8]. JMeter

provides the flexibility to perform check of high load, and

check of performance with differing kinds of

services/protocols (Web - hypertext transfer protocol, HTTPS,

SOAP, FTP, info via JDBC, Message Oriented Middleware

via JMS, etc.). It permits the construct of multi-threading and

may be accustomed accelerate the tests. JMeter’s competitors

are CLIF Server [9] and Gatling [10]. However, all of them

lack a Load gadget for MQTT protocol and it is wherever we

have a tendency to contribute our work.

So far, all developers were to jot down their own code

snippets to check MQTT as needed. It is waste of your time for

a developer who desires to review MQTT however cannot

notice a tool to check his code utterly. If the developer does

not notice any snippets that may facilitate him for the check,

he has got to do the code himself. If he found any codes,

extracted codes could not be essentially all-mains with

reference to languages, systems operation and therefore the

developer can still have to be compelled to rewrite their code.

Alternative developers also will be needed to hold out

identical add the long run. continuation identical work, for

several folks, may be a waste of your time and energy. On the

opposite hand, it is dangerous for a beginner to jot down his

own code to check a protocol. And even for the developers, it

is not attention-grabbing to put in all the mandatory

environments, so that they will write some lines of codes

solely to check MQTT. Currently, all API libraries for MQTT

are in Java, therefore this creates a heavy downside for

developers, who do not know Java however need to grasp

MQTT. With a graphical tool, the testing for MQTT can

abundant easier and easier. The user will try and perceive the

MQTT protocol, then use it merely. The importance of MQTT

protocol within the world of the IoT is the maximum amount

as hypertext transfer protocol in the world of internet. Indeed,

we have got already had sturdy tools for testing hypertext

transfer protocol, what we have a tendency to miss may be a

comprehensive tool for testing MQTT.

Figure 1. Overall software package design of MQTTBrokerBench.

3.2. MQTT Client API for Publishers and Subscribers

There are several check automation tools, however most of

them are for the practical check. To boot, they are ineffective

to emulate the mandatory traffic for the strain check. The

“MQTT Client API” module is developed as a tool to simulate

MQTT clients. We have a tendency to additionally developed

interface for the client tool supported graphical user interface

and CLI provided by JMeter. As a result of all the applications

do not seem to be identical, every application should have

tailor-made check eventualities to live actual real-world traffic

performance [11]. We are able to use the graphical user

interface to develop check cases and use CLI to perform the

particular tests. Moreover, MQTTBrokerBench additionally

provides a spread of graphical analysis performance reports.

On the opposite hand, JMeter incorporates a Java API that is

simple to develop for graphical user interface and every one

alternative necessary parts. Therefore, we have a tendency to

might target the looks of MQTT while not losing an excessive

amount of time to make a brand new design graphical user

interface or samplers for an unwell-known check tool. The

MQTT client module includes 2 components: a Publisher that

represents a client who publishes information to topics within

the brokers, and a Subscriber that represents a client who

receives information from broker in step with specific topics

that he has signed.

With MQTT publisher, we are able to notice several

eventualities of check because of its numerous choices, so all

aspects of the protocol may be evaluated. The Publisher

73 Linh Manh Pham et al.: A Benchmarking Tool for Elastic MQTT Brokers in IoT Applications

involves four sub-modules: association data, Encoding,

Option, and Content. The association data module permits us

to enter the client id and a group of topics that we wish to

publish to. It additionally allows the authentication, the clean

session (server do not bear in mind its client once

disconnection) and 2 totally different ways to publish:

Random or spherical Robin. By Random strategy, the client

publishes information to random topic at intervals the set of

entered topics, otherwise, by spherical Robin strategy, the

client publishes information to the topics in equal parts and in

circular order. The encryption module permits us to send

messages in type of non-coding, binary, base64, binhex and

plain text with totally different codecs. The choice module

allows capability to send preserved or not retained messages,

to feature a timestamp or variety sequence to message. It

permits to manage 3 levels of QoS: at the most once (0), a

minimum of once (1), specifically once (2). The Content

module provides four forms of messages to be published: a

text, a generated price at intervals an optioned vary, a hard and

fast price, or a random computer memory unit array. These

four forms of message adapt to numerous eventualities of

check, from the easy check (send a text) to the difficult one, in

which, the messages represent the device information to be

sent in little volume however in large amount. The MQTT

Subscriber includes 2 sub-modules: association data and

possibility which give identical properties for subscriber’s and

publisher’s connections. Mqtt-client FuseSource API is

additionally used since it provides American sign language a

pair of Apache software package License API and it will pay

attention of automatic reconnection to MQTT brokers and

restore client sessions if network outages occur [12].

4. Evaluation

We conducted an entire performance check with multiple

eventualities to validate the practicableness of

MQTTBrokerBench.

4.1. Testbed

The IoT information are synthesized by configuring the

Content module of MQTT publishers. Within the experiments,

a MQTT publisher plays the role of the IoT entry between

sensors and IoT applications implementing on the Cloud. The

information browsing the gateways are delivered to the

MQTT brokers.

The tests are deployed on Window Azure cloud platform

(32 central processor licenses). The Azure Virtual Machines

Service provides on-demand, scalable IT resources. An Azure

VM may be a server within the cloud that we have a tendency

to piece and maintain in step with our desires. It provides us

the pliability of virtualization while not the price of buying

and maintaining instrumentality to host it. With a VM in

Azure, we are able to deploy the accessible versions of

Windows Server or distributions of Linux operating system by

selecting the preconfigured images. We have a tendency to can

also load a Virtual magnetic disc (VHD) that contains a

software package Server then use it to make VMs. Window

Azure Platform additionally provides the potential of making

and connecting multiple VMs in order that we are able to

balance traffic between them. It uses each automatic and

manual thanks to produce, manage and delete VMs. We are

able to use the online portal (Azure Management Portal),

Windows PowerShell or API for IaaS management. With them,

we are able to delete and recreate VMs as again and again as

necessary. For every VM, Ubuntu 16.04 LTS is employed as

software package. Virtual Network Windows Azure provides

us the flexibility to expand and handle the deployments as a

natural extension of our network on web site. In our

experiments, the VMs are deployed in an exceedingly

ten.0.0.0/24 virtual network.

An important step within the benchmarking is to outline

metrics. This can be done through a tool referred to as Sysstat

[13]. It allows assembling information on system activities

and treating them. The measured metrics are central processor

load, idle CPU, Memory, I/O activity, Network statistics.

We used Mosquitto as MQTT message broker [14].

Mosquitto is free message broker software package (BSD

license) that implements the MQTT protocol 3.1. Mosquitto

provides a basic configuration, therefore, once putting in, it

should be designed specifically for the corresponding options

of what we wish to check. In our expertise, a haul sometimes

arises once the tests are administered with nice variety of

clients (e.g. thousands). Linux does not enable to exceed a

most of outlined connections, therefore the tests do not

provide a correct result. This comes from the very fact that

Linux is designed by default to avoid a “Denial-of-service

attack” (DoS). Therefore, we have a tendency to should

increase the most variety of open file to 200000 in given that a

socket association corresponds to one open file.

Another downside could seem once playing the check with

various connections. There is a corresponding object in Java

code (Fuse supply MQTT client API) to handle every

association. Therefore, if there are thousands of connections,

there will be thousands of created objects, in consequence, the

JVM does not have enough Heap memory, it causes the

breakdown of machine. Therefore, increasing the Heap

memory by a configuration in MQTTBrokerBench is critical.

4.2. Scenarios

As mentioned, there is presently no open supply tool that

measures MQTT brokers for IoT applications in cloud

atmosphere. Therefore, we have a tendency to produce

numerous check eventualities running on MQTTBrokerBench

to validate the practicality of this tool. For the experiments,

there are ninety generated check plans representing a

minimum of 67.5 hours of experimentation on Azure cloud.

Following three check eventualities represent the specialised

forms of MQTT protocol.

4.2.1. Multi Publishers - Zero Subscriber

This situation implements the case of the many of

Publishers, while not Subscriber to consume messages. It

analyses the price of publication used for the second situation

in 4.2.2 (see Figure 2).

 International Journal of Information and Communication Sciences 2019; 4(4): 70-78 74

Figure 2. Situation Multi Publishers - Zero Subscriber.

4.2.2. Multi Publishers - Single Subscriber

This situation implements several of Publishers with one Subscriber. This corresponds to the case of employing a terribly

sizable amount of sensors or sources of crowdsourcing (e.g. smart-phone) that measures are sent back to a central IT system (See

Figure 3).

Figure 3. Situation Multi Publishers - Single Subscriber.

4.2.3. Some Publishers - Multi Subscribers

This situation uses a small number of Publishers and a large number of Subscribers. This corresponds to the case of using period

of time notification of an oversized variety of smart-phones transmitted by a central IT system (See Figure 4).

Figure 4. Situation Some Publishers - Multi Subscribers.

75 Linh Manh Pham et al.: A Benchmarking Tool for Elastic MQTT Brokers in IoT Applications

For the experiments, MQTTBrokerBench is employed in

non-GUI mode. To achieve an oversized variety of clients in

parallel, MQTTBrokerBench is additionally employed in a

distributed manner, within which one master machine controls

four slave machines (which are MQTTBrokerBench brokers).

The test result is statistically recovered by MQTTBrokerBench

summariser. The bash scripts are put in to live the metrics of all

machines within the check situation. They are attack every

machine to handle Sysstat remotely via SSH.

For each situation, a corresponding script is formed to come

up with all the check set up. For instance, with the situation

Multi Publishers - Single Subscriber, the script generated

thirty check plans. The generation depends on variety and sort

of parameters that have an effect on the brokers (QoS,

Retained, Clean session, etc.). For instance, if testing with

three QoS levels, the amount of check plans can increase three

times compared to testing with one QoS level. Scripts are

created in step with every situation. They are at the master

machine (10.0.0.4) then the opposite VMs are controlled by

SSH session. Logs, results, statistics, metrics are collected

centrally and are retrieved for additional analysis.

The identity of clients (IDs) from publishers and

subscribers collaborating within the experiments are

generated indiscriminately with the weather of a group of 62

characters and numbers. With the IDs of length n, we are able

to produce 62n cases. If we have a tendency to run the ID

generation a hundred thousand times consecutively, the

chance of getting 2 identical IDs is:

1 – (1 – 1/62
n
) (1 – 2/62

n
) …. (1 – 99999/62

n
)

We can see that the chance to possess 2 identical IDs in tests

with high variety of connections is sort of zero, which is able

to not influence the check.

4.3. Result and Discussion

In this section, we have a tendency to discuss in details

regarding results of 2 eventualities Multi Publishers - Zero

Subscriber and Multi Publishers - Single Subscriber. The

remaining situation is omitted attributable to restricted house.

4.3.1. Multi Publishers - Zero Subscriber

Figures 5 and 6 show an example during this situation with

one master publisher (A3 instance, 4 cores, 1.6GHz, 7GB

Ram), four slave publishers (also A3 instance, 4 cores,

1.6GHz, 7GB Ram), one target Mosquitto broker (A2 instance,

2 cores, 1.6GHz, 3.5GB Ram). Variety of threads in every

slave are 2100. every thread performs five connections.

Therefore, total variety of connections are 42000.

The”2100.0.false” indication implies that variety of threads of

every slave is 2100, QoS level is zero and false implies

“Message no-Retained”. In step with the graphs, we are able to

conclude that with 3 levels of QoS:

1. The Mosquitto broker consumes the central processor in

step with the order: QoS 0 > QoS 1 ≈ QoS 2.

2. The Mosquitto broker consumes the memory in step with

the order: QoS 0 > QoS 1 > QoS 2.

This is explained by the definition of QoS in MQTT. With

QoS zero the publishers publish their messages while not

looking ahead to confirmation from the broker. The quantity

of queued messages at the broker is therefore hugely

fluctuated. The broker has got to method quickest and thus

central processor load is largest. On the opposite hand, with

QoS one and a pair of the graphs are a lot of stable. The

quantity of queued messages is a lot more stable, therefore the

result is more credible. We have a tendency to additionally get

saturation points (where graphs get peak) and use them to

specify thresholds utilized by the elastic engines for scaling

selections.

4.3.2. Multi Publishers - Single Subscriber

In Figures 7 and 8, the “2100.0.falseSub.1.0.false” indicates

variety of threads of every slave is 2100, QoS level is zero,

false implies “Message no-Retained”, Sub stands for

Subscriber, QoS of the subscriber is zero and “Clean Session”

is ready to false for the subscriber.

According to the graphs, it is found that within the situation

Multi Publishers - Single Subscriber, the Mosquitto broker

should method a lot of to send messages to the subscribers that

has signed, therefore each metrics (CPU load and Memory)

are consumed a lot of compared with the situation Multi

Publishers - Zero Subscriber. In each eventuality, the QoS a

pair of provides us the foremost reliable results and therefore

the planned graphs therewith level of QoS are a lot of stable.

4.3.3. Discussion

In IoT atmosphere, handiness of services is that the key

issue. For the environments using MQTT this implies that the

publisher desires a decent and stable association to the broker.

In alternative words, brokers should work all the time.

During this context, how to avoid the waste of resources by

making certain the performance and persistent of MQTT

system? This leads the necessity of developing a brand new

style of MQTT topic: “Elastic Topic”. This style ought to

enable us to unravel the matter of making certain the

quantifiability of MQTT services to soak up an employment

once the MQTT broker saturates or to get rid of brokers when

the load decreases so as to avoid a waste of resources.

The horizontal elasticity may be employed in this context.

Brokers are deployed by a PaaS (Platform as a Service) on

the Cloud, and a VM operating sort of a load reconciliation

device could distribute the MQTT connections from the

employment. It will attempt to produce a brand new VM

broker to handle connections once the present total

employment exceeds a threshold. On the opposite hand, it

will take away the superfluous VM brokers once the

employment is small.

5. Related Work

The seamless and versatile network of everyday objects can

become a crucial application field for Internet-based

communication, in step with the vision of the net of Things. The

performance of IoT systems may be an important issue,

 International Journal of Information and Communication Sciences 2019; 4(4): 70-78 76

particularly with period of time needs. For a few IoT systems

using batteries like wireless device network, energy consumption

may be an important concern. However, putting in a performance

analysis atmosphere for IoT system is complicated and quite

difficult to the developer. Thus, the necessity of a friendly and

economical tool for benchmarking MQTT is crucial and below

are some works on the point of our approach.

Figure 5. CPU load of the broker in situation Multi Publishers - Zero Subscriber.

Figure 6. Memory of the broker in situation Multi Publishers - Zero Subscriber.

77 Linh Manh Pham et al.: A Benchmarking Tool for Elastic MQTT Brokers in IoT Applications

Figure 7. CPU load of the broker in situation Multi Publishers - Single Subscriber.

Figure 8. Memory of the broker in situation Multi Publishers - Single Subscriber.

Durkop has conducted experiments to check 3 IoT

communication protocols - CoAP, MQTT and OPC UA -

with relation to their transport mechanisms to evaluate the

transmission times and analysing potentials for optimisation

[15]. By employing a common middleware, a pursuit team in

National University of Singapore has performed experiments

to review the performance of MQTT and CoAP in terms of

end-to-end delay and information measure consumption [16].

There do not seem to be several analysis firms like Ekito and

Scalagent did MQTT benchmarking [17, 18]. However, all of

 International Journal of Information and Communication Sciences 2019; 4(4): 70-78 78

them used their own codes and self-developed tools to try to

to those works.

There are some fashionable testing tools like JMeter, CLIF

Server or Gatling. They are all designed for simple use,

maintainability and high performance. Like

MQTTBrokerBench, they are provided a platform which

permit to appreciate load checking for a few forms of servers

and permits to simulate the test of performance. Except for the

message queuing protocols, all of them solely support JMS.

Solely a tool for MQTT check existed on the net is SmartBear,

however it is not open supply and is fixed just for some basic

options of MQTT protocol [19]. To the most effective of our

information, there is presently no open supply tool that

measures MQTT brokers for IoT applications within the cloud

atmosphere. By developing MQTTBrokerBench plug-in, we

have a tendency to stuffed within the gap existing in IoT world

a couple of versatile benchmarking tool for MQTT, the

widely-used electronic messaging protocol.

MQTTBrokerBench is developed from JMeter, therefore all

JMeter users currently will expertise each JMS and MQTT with

their acquainted tool. What is more, totally different analysis

teams have a standard, friendly, versatile tool to guage utterly

MQTT brokers. As consequence, it will be easier for these

teams to check their analysis results with one another.

6. Conclusion

IoT and Cloud computing each are getting more and more

fashionable and vital in the computer world. During this IT

revolution, MQTT protocol is crucial as it helps to accelerate

IoT technology that provides interconnected things that we

have never seen. We contribute partly to this revolution by

providing MQTTBrokerBench, a holistic tool to benchmark

the MQTT protocol implemented on the state-of-the-art

brokers. By using this tool, we simulated a use case of 42000

MQTT connections to a Mosquitto broker with only seven

virtual machines on Window Azure Cloud Platform. We

divided this use case into 2 scenarios with different number of

publishers and subscribers. The result shows that even in the

same scenario, the saturation points in various QoS

adjustments are totally different. These sophisticated

adjustments can be done easily using the friendly GUI of

MQTTBrokerBench. Thus our proposed broker benchmark

tool is completely efficient and suitable if we wish to

benchmark the brokers and realize performance or stress tests

in order to figure out saturation points for elasticity in which

the number and the performance of brokers may be provided

and adjusted as needed optimally.

Acknowledgements

This research is funded by Graduate University of Science and

Technology and partly by Institute of Information Technology

and National Key Laboratory of Networking and Multimedia,

Vietnam Academy of Science and Technology under grant

number GUST.STS.ĐT2019-TT02, CS19.19, and PTNTĐ19.02,

respectively. This work also has been partly supported by

Vietnam National University, Hanoi/ VNU University of

Engineering and Technology under Project CN19.09.

References

[1] P. T. Eugster, P. A. Felber, R. Guerraoui and A. M. Kermarrec,
The many faces of publish/subscribe, ACM Computing Survey,
vol. 35, no. 2, pp. 114-131, Jun. 2003.

[2] MQTT, http://mqtt.org/, visited on June 2019.

[3] I. M. Llorente, Key challenges in Cloud Computing to Enable
Future Internet of Things, Keynote speech, Jan 2012. [Online].
Available:
http://fr.slideshare.net/llorente/challenges-incloud-computing-t
o-enable-future-internet-of-things-v03.

[4] Smarter Planet, http://www.ibm.com/smarterplanet/us/en/,
visited on June 2019.

[5] Y. Zhao, K. Kim and N. Venkatasubramanian, DYNATOPS: a
dynamic topic-based publish/subscribe architecture, ACM
DEBS 2013, pp. 75-86.

[6] L. M. Pham and T. T. Nguyen, Flexible deployment of
component-based distributed applications on the Cloud and
beyond, KSII Transactions on Internet and Information
Systems, 13, 3, (2019), 1141-1163.

[7] MQTTBrokerBench, https://github.com/fimocode/mqttbench,
visited on June 2019.

[8] Apache JMeter, http://jmeter.apache.org/, visited on June 2019.

[9] CLIF Server, http://clif.ow2.org, visited on June 2019.

[10] Gatling, http://gatling.io, visited on June 2019.

[11] E. Cecchet, V. Udayabhanu, T. Wood and P. Shenoy, BenchLab:
An Open Testbed for Realistic Benchmarking of Web
Applications, in usENIX WebApps, 2011, pp. 4-4.

[12] MQTT FuseSource, https://github.com/fusesource/mqtt-client,
visited on June 2019.

[13] Sysstat, http://sebastien.godard.pagesperso-orange.fr/, visited
on June 2019.

[14] Mosquitto, http://mosquitto.org/, visited on June 2019.

[15] L. Durkop, B. Czybik and J. Jasperneite, Performance
evaluation of M2M protocols over cellular networks in a lab
environment, ICIN, pp. 70, 75, 17-19 Feb. 2015.

[16] D. Thangavel, X. Ma, A. Valera, H. Tan and C.K.-Y. Tan,
Performance evaluation of MQTT and CoAP via a common
middleware, IEEE ISSNIP, pp. 1, 6, 21-24 April 2014.

[17] A. Giuliani, MQTT benchmarks with RabbitMQ & ActiveMQ,
June 2014. [Online]. Available:
http://www.ekito.fr/people/mqtt-benchmarks-rabbitmq-active
mq/.

[18] Scalagent, Benchmark of MQTT servers, Jan 2015. [Online].
Available: http://www.scalagent.com/IMG/pdf/Benchmark
MQTT servers-v1-1.pdf.

[19] SmartBear, MQTT Test Steps, [Online]. Available:
https://smartbear.com/plugins/mqtt-teststeps-page/, visited on
June 2019.

