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Abstract Phosphorylation, which is catalyzed by kinase proteins, is in the top
two most common and widely studied types of known essential post-translation
protein modification (PTM). Phosphorylation is known to regulate most cel-
lular processes such as protein synthesis, cell division, signal transduction,
cell growth, development and aging. Various phosphorylation site prediction
models have been developed, which can be broadly categorized as being kinase-
specific or non-kinase specific (general). Unlike the latter, the former requires
a large enough number of experimentally known phosphorylation sites anno-
tated with a given kinase for training the model, which is not the case in
reality: less than 3% of the phosphorylation sites known to date have been an-
notated with a responsible kinase. To date, there are a few non-kinase specific
phosphorylation site prediction models proposed.
This paper proposes SKIPHOS, a non-kinase specific phosphorylation site pre-
diction model based on random forests on top of a continuous distributed rep-
resentation of amino acids. Experimental results on the benchmark dataset
and the independent test set demonstrate that SKIPHOS compares favorably
to recent state-of-the-art related methods for three phosphorylation residues.
Although being trained on phosphorylation sites in mamals, SKIPHOS can
yield predictions for Y residues better than PHOSFER, a recently proposed
plants-specific phosphorylation prediction model.

Keywords First keyword · Second keyword · More

∗To whom correspondence should be addressed.

Thanh Hai Dang
VNU - University of Engineering and Technology
E-mail: hai.dang@vnu.edu.vn



2 T.H. Dang

1 Introduction

Among known essential post-translation protein modification (PTM) types,
phosphorylation is of the top two most common and widely studied one [20].
A protein kinase catalyzes phosphorylation by adding a phosphate group to
certain protein substrates on specific residues, including serine (S), threonine
(T), and tyrosine (Y). Phosphorylation is known to regulate most cellular pro-
cesses such as protein synthesis, cell division, signal transduction, cell growth,
development and aging [17]. There are approximately at least 30% of all hu-
man proteins are likely to be phosphorylated and about 518 protein kinases
encoded in the human genome [22, 1]. The mouse proteome has more than
540 putative protein kinases [6] while plant genomes encodes more than 1,000
protein kinases [32].

An increasing number of phosphorylation sites in various species have
been being experimentally validated, collected and compiled into specialized
databases, motivating bioinformatics community to develop advanced in silico
prediction models as fast, lower-cost and efficient complements. As a result,
various phosphorylation site prediction models have been developed over the
past years.

Those models can be broadly categorized as being kinase-specific or non-
kinase specific (general). The former aims at building computational models
that predicts whether a residue is phosphorylated by a given kinase while the
latter to predict irrespective to the kinases. The former thus requires that
there are a large enough number of experimentally known phosphorylation
sites with a given known catalyzing kinase for the model training. This guar-
antees the resulting trained models to have satisfactory and significantly per-
sistent kinase-specific phosphorylation predictions. However, note the fact that
less than 3% of the phosphorylation sites known to date have been annotated
with information about responsible kinases [26]. As a consequence, the num-
ber of kinases known to phosphorylate a large amount residues is still limited.
To give an example, Phospho.ELM version 9.0 [9], the benchmark dataset for
most phosphorylation prediction studies to date [30, 11, 19, 29], has only 9
kinases each catalyzes more than 100 phosphorylation sites. The total residues
phosphorylated by such 9 are 1,616, out of 42,500. Over the last decade, an
increasing number of non-model organisms’ genomes were sequenced thank
to the emerging development of the next generation sequencing technologies,
leading to more protein kinases and putative phosphorylaton sites being iden-
tified. Therefore, the development of novel non-kinase specific phosphorylation
site prediction models is of high demand as an essentially initial phase in phos-
phorylation studies for a widespread of species. [30].

To date, there are a few non-kinase specific phosphorylation site predic-
tion models proposed. Most of them employs advanced machine learning al-
gorithms, such as neural networks in NetPhos [3], Support Vector Machines
in Musite [16], PPRED [2], PhosphoSVM [11], and random forests in PHOS-
FER [31] and RFPhos [19]. Note that most efforts in the development of
phosphorylation prediction models are focused on the kinase-specific [30, 29].
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However, kinase-specific models when being re-adapted for non-kinase specific
predictions often generates more false-positives [11]. To this end, this paper
introduces a non-kinase specific phosphorylation site prediction model based
on random forests on top of a continuous distributed representaion of amino
acids. Experimental results demonstrate that our model compares favorably to
three recent state-of-the-art methods, namely PhosphoSVM [11], iPhos-PseEn
[27] and RFPhos [19]. Our method out-performs PhosphoSVM, RFPhos and
iPhos-PseEn in predictions for S, Y and T residues in terms of overall scoring
metrics.

2 Materials and methods

2.1 Datasets

Experimentally validated phosphorylation sites were extracted from Phos-
pho.ELM version 9.0 [9], the benchmark dataset for most phosphorylation
prediction studies to date [30, 11, 19, 29]. All redundant protein sequences were
eliminated by CD-HIT [14] with a cutoff of 70% sequence identity. The total
number of protein sequences and phosphorylation sites remained for down-
stream analyses after the redundancy removal are listed in Table 1. For each

Table 1 The number of potential phosphorylation sites in non-redundant protein sequences
from the benchmark dataset P.ELM

Residue Number of sequences Number of sites
S 7525 24175
T 3545 6408
Y 1572 2579

potential phosphorylation residues (S, Y and T), surrounding windows of cer-
tain sizes centering at such are extracted. Resulting subsequences are taken
as input to CD-HIT with a 70% cutoff of identity to keep only non-redundant
subsequences. A subsequence that has the verified phosphorylation site in the
middle is considered a positive, otherwise a negative. In order to avoid the bias,
CD-HIT with a 30% identity cutoff were applied to each of both the positive
and negative sets to remove redundant corresponding subsequences. Because
the numbers of negative subsequences are much larger than that of positive
subsequences for S/Y/T [11], a subset of negative subsequences was randomly
selected such that the ratio of negatives to corresponding positives is 1:1 for
each S/Y/T. This ratio has been demonstrated to be optimal for phosphoryla-
tion site prediction model [2]. Our dataset (called P.ELM) for cross-validating
SKIPHOS is made of these remained non-redundant positive and negative
subsequences.

For the independent test set (called PPA), non-redundant Arabidopsis
thaliana protein sequences from PhosphAt version 3.0 [34] are used to ex-
tract experimentally verified positive and negative subsequences. Note that
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P.ELM contains phosphorylation sites from mammals whereas PPA contains
those from Arabidopsis thaliana. Such two are shown to be independent of each
other [11]. The number of Ser, Thr and Tyr subsequences for specific window
sizes in P.ELM and PPA are provided in Table 2. These chosen sizes are the
same as in PhosphoSVM and RFPhos, two recent state-of-the-art correspond-
ing methods to which we compared our model.

Table 2 The number of non-redundant known phosphorylation sites for different context
window sizes in the benchmark dataset P.ELM and the independent test set PPA

Dataset Residue Window
size

Positive num-
ber

Negative num-
ber

P.ELM

S
21 12657 12657
9 837 837

T
19 3370 3370
9 437 437

Y
15 1191 1191
9 321 321

PPA
S 21 12657 12657
T 19 3370 3370
Y 15 1191 1191

2.2 Random forests based prediction

Random Forest is a popular ensemble algorithm for classification and regres-
sion on high dimensional data [5]. This algorithm constructs a number of
decision trees during the training phase and uses the majority vote for predic-
tion. Trees are constructed using bootstrap samples with randomly selected
features from the training dataset. The tree construction is guided with the
Gini impurity index calculated for each of such selected features. Various re-
cent bioinformatics studies have employed random forests, demonstrating its
benefit and robustness for high dimensional datasets [19, 29].

In this study, random forests with 500 decision trees is used for prediction of
phosphorylation sites from rich features derived from subsequences, including:
amino acid embeddings, Composition, Transition and Distribution features,
Sequence Order Coupling Number features, Quasi Sequence Order features and
protein disorder features. The model is implemented using a popular machine
learning tool called sklearn (version ) [4].

2.2.1 Feature extraction

Composition, Transition and Distribution (CTD)
In 1995, Dubchak et al. introduced the Composition, Transition and Distribu-
tion (CTD) features for predicting protein folding, which is based on 7 physico-
chemical properties of amino acids, namely charge, hydrophobicity, normalized
van der Waals volume, polarity, polarizability, secondary structure and solvent
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accessibility [12]. Based on a given physicochemical properties, twenty amino
acids can be categorized into three groups (i.e. 1, 2 and 3). Each amino acid
was then encoded as 1, 2, or 3 according to the group it belongs to. For ex-
ample, based on the charge property, the subsequence ”LLAKKGYQERDLE”
is encoded as ”1113311123212”. For each such 7 physicochemical properties,
there are three types of features could be derived for a subsequence of the
length L [21, 8, 7], including:

– Composition of a given group (namely 1, 2 or 3) is the global percentage
of such group in the subsequence and is calculated as follows:

Ct =
Nt

L
, t = 1, 2, 3

where Nt is the number of times group t appears in the subsequence.
– Transition for a given pair of groups (t, v) characterizes the percent fre-

quency with which group t is followed by group v or vice versa. It is cal-
culated as follows:

Tt,v =
Nt,v +Nv,t

L− 1
, t, v = 1, 2, 3

where Nt,v is the number of times group t is followed by group v.
– Distribution descriptor of each group comprises five values, i.e. the frac-

tions of the subsequence where the group is located for the first time, and
where 25%, 50%, 75% and 100% of the group are included.

Sequence Order Coupling Number (SOCN)
Using the Schneider-Wrede physicochemical distance matrix [28] and chemi-
cal distances Grantham matrix [15], the kth rank Sequence Order Coupling
Number of a L amino acid subsequence was calculated as follows:

τk =

L−k∑
i=1

(di,i+k)2, k = 1, ...,m

where di,i+k is the distance between amino acids at position i and position
i+ k, m = 30 is the maximum lag.

Quasi Sequence Order (QSO)
The quasi sequence order comprises two types of features: the first 20 features
reflect the frequency ratios of amino acids in a subsequence and the remain
reflects the sequence order calculated on the Schneider-Wrede physicochemical
distance matrix [28] and the Grantham chemical distance matrix [15].
The first twenty QSO features are calculated as:

Xi =
fi∑20

i=1 fi + w
∑30

k=1 τk
, i = 1, 2, 3..., 20



6 T.H. Dang

where fi is the normalized frequency of the amino acid i, w = 0.1 is a weighting
factor.
The remaining QSO features are given by:

Xd =
wτd−20∑20

i=1 fi + w
∑30

k=1 τk
, d = 21, 22, ..., 50

Protein Disorder (DIS)
Protein Disorder is an important piece of information of protein functions
[18]. Many phosphorylation prediction studies have used protein disorder as
an enriched feature to increase the model accuracy [16, 19]. In this study, we
use DISOPRED [33] to predict the disorder feature of protein sequences and
then the disorder scores predicted for amino acids within a subsequence were
extracted.

Amino acid embeddings (AAE)
In natural language processing, a word embedding is an algorithm to learn
a high-dimensional dense vector representation for words from a very large
textual corpus (i.e. training corpus) with billions of words. Words with simi-
lar syntax and semantic are embedded to close vectors in the space. It works
based on the basic idea that the meaning of a word is affected by surrounding
words within its context.

Recently, Mikolov et al. have introduced the Skip-gram model, a novel
word embedding architecture based on the neural network language model
[23]. Since then, Skip-gram has been employed for numerous natural language
processing studies, demonstrating its power and effectiveness in providing good
vector representations of words in terms of syntax and semantic relationships.

Given a sentence of N words w1, w2..., wN in the training corpus, the word
embedding aims to maximize the probability of observer contexts conditioned
on each of such N words at the center:

1

N

N∑
t=1

∑
−c≤j≤c,j 6=0

logp(wt+1|wt)

where 2c is the size of the context window centering at wi. The probability
p(wt+i|wt) is calculated by using the softmax function:

ρ(wi+j |wi) =
exp(v′Twi+j

vwi
)∑W

k=1 exp(v
′T
wk
vwi

)

where W is the total number of words in the training corpus,

For the sake of computational efficiency, this full softmax function is ap-
proximated with the hierarchical softmax [25], in which all W words are rep-
resented as leaves of a binary Huffman tree.
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The Skip-gram model was then further improved with Negative sampling
in which the log probability by the softmax is replaced with the new one as
follows [24]:

logσ(v′wo

T
vwI

) +

k∑
i=1

EwiPn(w)[logσ(−v′wi

T
vwI

)]

Where the noise distribution Pn(w) was empirically chosen to be the un-
igram distribution U(w) raised to the 3/4rd power (i.e., U(w)3/4/Z) and k is
a predefined number of negative samples for each data sample. The authors
have experimentally shown that k should be in the range 5-20 for small training
datasets and 2-5 for large datasets [24].

In the context of protein bioinformatics, we note that protein sequences
or peptides can be considered as ”biological” sentences in which each amino
acid acts as a distinct ”biological” word. Functions of each amino acid on a
protein sequence/peptide are affected by neighboring ones surrounding such.
In this regard, protein sequences remained after the redundancy removal were
used as the training corpus for the Skip-gram. We employ word2vec [23, 24],
which implements the state-of-the-art Skip-gram model, to learn continuous
vector representations of 300 dimensions for 20 amino acids. This number
was experimentally shown to help our proposed model to produce the best
performance for S, Y and T phosphorylation predictions.

2.3 Model evaluation

10-fold cross validation was implemented for the model evaluation. Five well-
known evaluation metrics were used to score the model performance, including
the area under the ROC curve (AUC), F1 score, precision, recall and Metthew’s
correlation coefficient (MCC), which are given as follows:

Presision =
TP

TP + FP
∗ 100

Recall =
TP

TP + FN
∗ 100

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

MCC =
TP ∗ TN + FP ∗ FN√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)

where TP, TN, FP, and FN respectively represent the number of true pos-
itives, true negatives, false positives, and false negatives in the fusion matrix.
We run a 10-fold cross validation procedure 30 times and the average of re-
sulting aforementioned performance scores are reported for evaluation.
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3 Results and Discussion

Our proposed general phosphorylation site prediction model SKIPHOS uses
subsequences of 9, 15 and 19 amino acids centering at S, Y and T, respec-
tively. Such three lengths have been experimentally demonstrated to produce
the best performance correspondingly for S, Y and T when compared with
other lengths. We here only present our model’s performance using the length
21, 9 and 9 for S, Y and T respectively as an extra reference for the compar-
ison with two recent state-of-the-art corresponding models, namely RFPhos
[19] and PhosphoSVM [11]. These extra lengths allow our models to work
on subsequences of the same lengths as such two models: RFPhos uses subse-
quences of 9 amino acids for S, Y and T while PhosphoSVM uses subsequences
of 21, 15 and 19 for S, Y and T, respectively. We re-implemented these two
models for the (cross-validated) comparison with SKIPHOS on our subse-
quence datasets. The reasons include: (i) the authors of RFPhos only provide
three trained models (for S, Y, and T), coupled with the subsequence dataset
on which their models were trained, and (ii) the authors of PhosphoSVM do
provide neither and do not release its source code as well.

Experimental results show that our proposed model yields favorable perfor-
mance on non-kinase specific prediction of S, Y and T phosphorylation sites,
when compared to iPhos-PseEn [27], RFPhos [19] and PhosphoSVM [11], three
recent state-of-the-art corresponding models.

For 10-fold cross validation on the subsequence dataset of RFPhos, SKIPHOS
yields excellent prediction performance. It archives the AUC values of 90%,
91.7% and 91.3% for S, Y and T residues, respectively, which are better than
those from both RFPhos (i.e. 88%, 91% and 90%) and phosphoSVM (i.e. 84%,
74% and 82%). Futher, when using random forests of 100 decision trees, which
is the same number as in RFPhos, SKIPHOS can yield performance with the
AUC values of 89.5%, 91.3% and 90.8%, respectively, out-performing RFPhos.
This demonstrates the predictive power of SKIPHOS’s features. Note that the
RFPhos model implemented by us performs exactly on-par with the trained
model given by the RFPhos authors (data not shown), guaranteeing that RF-
Phos was correctly re-implemented by us.

Further, SKIPHOS is also compared with iPhos-PseEn [27], a human-
specific non-kinase phosphorylation site predictor based on ensemble random
forests. The same 5-fold cross validation scheme as used in iPhos-PseEn is
employed for SKIPHOS on the dataset provided by iPhos-PseEn. To this end,
SKIPHOS yields excellent performance for S, Y and T in terms of AUCs, i.e.
91.96%, 88.23% and 84.43%, respectively. Prediction results show that, for S
and Y, SKIPHOS out-performs iPhos-PseEn and vice versa for T. The pre-
diction accuracy values of iPhos-PseEn are all less than 80% (79.76% for S,
76.28% for Y and 79.88% for T) while those of SKIPHOS are 86.66% for S,
80.52% for Y and 76.28% for T. We note that the MCC values of SKIPHOS
are much better than those of iPhos-PseEn (see Table 3 for more details).

For cross-validation on our P.ELM subsequence dataset, SKIPHOS yields
good prediction performance for Y (AUC = 75.5%) and very good for S
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Table 3 Performance of SKIPHOS and iPhos-PseEn [27] on the dataset provided by the
iPhos-PseEn’s authors. The best value of each scoring metric is in bold.

Methods
Residue = Y
F1 AUC MCC Recall Precision Accuracy Specificity

SKIPHOS 0.7939 0.8823 0.6119 0.7680 0.8234 0.8052 0.8353
Iphos–
PreEn

0.7622 N/A 0.3244 0.7618 0.7626 0.7628 0.7629

Methods
Residue = T
F1 AUC MCC Recall Precision Accuracy Specificity

SKIPHOS 0.7265 0.8443 0.5389 0.6428 0.8383 0.7628 0.8760
Iphos–
PreEn

0.7322 N/A 0.3444 0.7151 0,7501 0.7988 0.7618

Methods
Residue = S
F1 AUC MCC Recall Precision Accuracy Specificity

SKIPHOS 0.8467 0.9196 0.7024 0.8323 0.8619 0.8510 0.8666
Iphos–
PreEn

0.7970 N/A 0.3901 0.7964 0.7975 0.7976 0.7978

(AUC = 84.5%) and T (AUC = 84.4%). It, however, still out-performs Phos-
phoSVM (for S, Y and T sites) and RFPhos (for both Y and T) in terms of
all aforementioned scoring metrics (see Table 4 for more details).

Table 4 Performance of SKIPHOS in comparison with two recent state-of-the-art related
models using 10-fold cross-validation on the benchmark dataset P.ELM. (*) indicates the
use of the same context window sizes as in SKIPHOS, i.e. 15 for Y and 19 for T. The best
value of each scoring metric is in bold.

Methods
Residue = Y
F1 AUC MCC Recall Precision

SKIPHOS 0.700 0.755 0.396 0.711 0.691
RFPhos* 0.660 0.713 0.318 0.668 0.654
PhosphoSVM 0.627 0.677 0.253 0.628 0.627
RFPhos 0.607 0.656 0.226 0.603 0.616

Methods
Residue = T
F1 AUC MCC Recall Precision

SKIPHOS 0.765 0.844 0.547 0.744 0.788
RFPhos* 0.747 0.824 0.502 0.741 0.753
PhosphoSVM 0.729 0.804 0.464 0.720 0.738
RFPhos 0.747 0.815 0.475 0.784 0.716

Methods
Residue = S
F1 AUC MCC Recall Precision

SKIPHOS 0.765 0.845 0.521 0.785 0.749
PhosphoSVM 0.743 0.819 0.499 0.724 0.762
RFPhos 0.781 0.842 0.547 0.816 0.751

For S residues, it performs on-par with RFPhos. However, SKIPHOS can
predict better than RFPhos at low false positive rate (i.e. ¡20%) (see Figure 1).
It can be argued that the out-performance of SKIPHOS over RFPhos for Y
and T may come from the larger context windows used by SKIPHOS. We thus
evaluate RFPhos with the larger context windows as used in SKIPHOS, i.e.
15 amino acids for Y and 19 for T. To this end, this variant of RFPhos still
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Fig. 1 The ROC curves of SKIPHOS and two recent state-of-the-art related models using
10-fold cross-validation on the benchmark dataset P.ELM. (*) indicates the use of the same
context window sizes as in SKIPHOS, i.e. 15 for Y and 19 for T.

Table 5 Performance of SKIPHOS with the use of different feature types. All models are
tested with 10-fold cross-validation on the benchmark dataset P.ELM. * indicates that DIS
is replaced with QSO in the case of T.

Features
Residue = Y
AUC F1 Recall MCC Accuracy

AAE 0.653 0.607 0.603 0.225 0.612
AAE+CTD 0.720 0.666 0.677 0.326 0.663
AAE+DIS 0.677 0.632 0.620 0.281 0.640
AAE+QSO 0.667 0.617 0.613 0.244 0.622
AAE+SOCN 0.661 0.613 0.608 0.239 0.619
AAE+CTD+DIS* 0.748 0.694 0.707 0.382 0.690
CTD 0.615 0.580 0.587 0.157 0.578
DIS 0.616 0.588 0.587 0.182 0.591
QSO 0.676 0.630 0.639 0.256 0.627
SOCN 0.545 0.529 0.532 0.059 0.529
All-AAE 0.739 0.683 0.685 0.368 0.684

Features
Residue = T
AUC F1 Recall MCC Accuracy

AAE 0.804 0.706 0.644 0.476 0.734
AAE+CTD 0.835 0.752 0.713 0.536 0.767
AAE+DIS 0.803 0.718 0.677 0.475 0.736
AAE+QSO 0.808 0.709 0.647 0.479 0.736
AAE+SOCN 0.807 0.707 0.643 0.478 0.735
AAE+CTD+DIS* 0.838 0.754 0.714 0.541 0.769
CTD 0.581 0.582 0.581 0.171 0.585
DIS 0.649 0.631 0.666 0.228 0.613
QSO 0.769 0.715 0.723 0.430 0.715
SOCN 0.604 0.576 0.584 0.148 0.574
All-AAE 0.801 0.741 0.758 0.476 0.737

Features
Residue = S
AUC F1 Recall MCC Accuracy

AAE 0.801 0.714 0.666 0.476 0.736
AAE+CTD 0.815 0.725 0.682 0.490 0.744
AAE+DIS 0.809 0.727 0.690 0.489 0.744
AAE+QSO 0.805 0.716 0.668 0.478 0.737
AAE+SOCN 0.804 0.716 0.669 0.478 0.737
AAE+CTD+DIS* 0.824 0.741 0.711 0.509 0.754
CTD 0.659 0.637 0.651 0.264 0.632
DIS 0.645 0.651 0.729 0.233 0.612
QSO 0.766 0.712 0.730 0.417 0.708
SOCN 0.614 0.584 0.587 0.170 0.585
All-AAE 0.810 0.751 0.787 0.484 0.741
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performs worse than ours, demonstrating the great utility of features used in
SKIPHOS (Table 4).

Interestingly, experimentally results showed that extending the context
windows surrounding Y and T brings significant performance improvements
to SKIPHOS and RFPhos, as well. It is, however, vice versa for S. This phe-
nomenon suggests that factors determining the phosphorylation status of S
residues are likely to be located in the windows of only 9 amino acids center-
ing at them. However, for Y and T residues, these windows are much larger,
i.e. 15 and 19, respectively.

We do evaluate the impact of every feature type for SKIPHOS in predic-
tion of non-kinase specific phosphorylation sites by 10-fold cross validating
SKIPHOS with such each. Table ?? shows the greatest impact of the amino
acid embeddings when they contribute up to 96.6%, 86.5% and 95.3% of the
SKIPHOS predictive capacity for S, Y and T, respectively. Among all feature
types, the amino acid embeddings contribute most to the predictive strength
of SKIPHOS for S and T. For Y, it takes the second place, a little bit after
the QUASI. Surprisingly, the contributions of the amino acid embeddings for
SKIPHOS in prediction of S and T are on-par with those of all remaining
others together. Note that the amino acid embeddings are calculated offline
just only for one time while such all remaining features are calculated upon
protein sequences. It is useful when using SKIPHOS to make prediction for a
newly given protein sequence.

3.1 Performance on the independent test set

Fig. 2 The ROC curves of SKIPHOS and recent state-of-the-art related models on the
independent dataset PPA.

SKIPHOS, PhosphoSVM re-implemented by us and the trained RFPhos
given by its authors are used to make predictions of S, Y and T phospho-
rylation sites for the independent test set PPA. Predictions by PHOSFER
are obtained by submitting all protein sequences in PPA to its freely online
available webserver.

For S residues, SKIPHOS achieves the prediction performance with AUC of
69.1% (F1 of 55.2%). They are respectively of 63.4% (62%) and 65.7% (54.3%)
for Y and T (see Table 6 for more scoring metrics). The AUC values of RFPhos
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for S, Y and T are 49.6%, 52% and 52.6%, respectively, demonstrating the
outperformance of SKIPHOS over RFPhos. It is also the case for PhosphoSVM
when its AUC values for S, Y and T are 66%, 57.8% and 63.1%, respectively.

Looking deeper into the ROC curves of 3 models in Figure 2 it can be ob-
served that the ROCs of SKIPHOS for S, Y and T are respectively above those
of both RFPhos and PhosphoSVM in the upper left regions, in which recall
values are high (let says ≥ 50%) and false positive rates (FPR) are low (let
says ≤ 40%), implying the better performance. Within the lower left regions
(recall ≤ 32.5% and FPR ≤ 18%) SKIPHOS performs better than RFPhos
and PhosphoSVM, except only for the case of T predicted by PhosphoSVM.

Compared with the plant-specific model PHOSFER, the SKIPHOS per-
formance is better only at the recall values greater than 35% (associated with
FPR > 21%) for Y and only up to 59% (37.5%) for T. The ROC curve of
SKIPHOS for S is totally under that of PHOSFER, implying the worse per-
formance, which is not a surprise since PHOSFER are trained from a much
larger training dataset from 9 organisms including plants while SKIPHOS is
not trained on plant phosphorylation sites. However, this fact, in turn, demon-
strates the predictive strength and stability of SKIPHOS when it can yield pre-
dictions in the upper left regions (high recall and possibly allowed low FPR)
of ROCs that are better than PHOSFER for Y and T (Figure 2).

Table 6 Performance of SKIPHOS in comparison with recent state-of-the-art related mod-
els on the independent test set PPA. The best values of scoring metrics for the models of
the same type (i.e. SKIPHOS, RFPhos and PhosphoSVM) are in bold.

Methods
Residue = Y
F1 AUC MCC Recall Precision

SKIPHOS 0.620 0.634 0.197 0.658 0.586
RFPhos 0.649 0.520 0.008 0.926 0.500
PhosphoSVM 0.508 0.578 0.106 0.462 0.563
PHOSFER 0.542 0.604 0.121 0.521 0.566

Methods
Residue = T
F1 AUC MCC Recall Precision

SKIPHOS 0.543 0.657 0.224 0.467 0.649
RFPhos 0.667 0.526 0.000 1.000 0.500
PhosphoSVM 0.489 0.631 0.189 0.394 0.642
PHOSFER 0.612 0.682 0.229 0.610 0.615

Methods
Residue = S
F1 AUC MCC Recall Precision

SKIPHOS 0.552 0.691 0.265 0.462 0.686
RFPhos 0.585 0.496 -0,01 0.713 0.496
PhosphoSVM 0.624 0.660 0.237 0.632 0.615
PHOSFER 0.714 0.807 0.390 0.773 0.663

4 Accessibility

We developed a web server with user-friendly graphic interface for SKIPHOS
and deployed it online accessible free for non-commercial use at http://fit.uet.vnu.edu.vn/SKIPHOS.
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Users just only need to provide a protein sequence, choose phosphorylation
types for which they want SKIPHOS to make prediction. When completed,
the web server returns a list of all phosphorylation residues predicted for each
of chosen types.

5 Conclusion

In this paper we present SKIPHOS, a novel computational model for non-
kinase specific prediction of phosphorylation sites using random forests and
amino acid skip-gram embeddings. Experimental results from rigorous valida-
tion schemes demonstrate the favorable strength and stability of SKIPHOS
when compared to recent state-of-the-art related models, namely Phospho-
SVM [11], iPhos-PseEn [27] and RFPhos [19]. The SKIPHOS performance
cross-validated on the benchmark dataset is better than that of iPhos-PseEn,
RFPhos and PhosphoSVM for all cases, except for S residue when being com-
pared with RFPhos, with which on-par performance is observed. However,
SKIPHOS outperforms both RFPhos and PhosphoSVM on the independent
data set of phosphorylation sites in plants. Surprisingly, SKIPHOS can yield
high-recalled predictions for Y and T that are better than those of PHOSHER.
Note that PHOSFER is trained on a large dataset containing phosphorylation
sites in plants whereas SKIPHOS is only trained on a smaller dataset of those
in mammals.

We anticipate that SKIPHOS with a freely available web server will fa-
cilitate other basic and/or translational researches related to identification of
phosphorylation sites, accelerating discoveries of new important bio-chemical
insights at low costs.
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