Journal of Heuristics
https://doi.org/10.1007/s10732-019-09431-y

®

Check for
updates

A hybrid genetic algorithm for the traveling salesman
problem with drone

Quang Minh Ha' - Yves Deville! - Quang Dung Pham? - Minh Hoang Ha3

Received: 21 December 2018 / Revised: 12 August 2019 / Accepted: 10 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

This paper addresses the traveling salesman problem with drone (TSP-D), in which a
truck and drone are used to deliver parcels to customers. The objective of this prob-
lem is to either minimize the total operational cost (min-cost TSP-D) or minimize the
completion time for the truck and drone (min-time TSP-D). This problem has gained
a lot of attention in the last few years reflecting the recent trends in a new delivery
method among logistics companies. To solve the TSP-D, we propose a hybrid genetic
search with dynamic population management and adaptive diversity control based
on a split algorithm, problem-tailored crossover and local search operators, a new
restore method to advance the convergence and an adaptive penalization mechanism
to dynamically balance the search between feasible/infeasible solutions. The compu-
tational results show that the proposed algorithm outperforms two existing methods
in terms of solution quality and improves many best known solutions found in the lit-
erature. Moreover, various analyses on the impacts of crossover choice and heuristic
components have been conducted to investigate their sensitivity to the performance of
our method.

Keywords Traveling salesman problem with drone - Metaheuristic - Genetic
algorithm - Hybrid approach

B Minh Hoang Ha
minhhoang.ha@vnu.edu.vn

Quang Minh Ha
quang.ha@uclouvain.be

Yves Deville
yves.deville@uclouvain.be

Quang Dung Pham

dungpq@soict.hust.edu.vn

ICTEAM, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
SOICT, Hanoi University of Technology, Hanoi, Vietnam

ORLab, VNU University of Engineering and Technology, Hanoi, Vietnam

Published online: 13 November 2019 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-019-09431-y&domain=pdf
http://orcid.org/0000-0002-9923-6309

Q.M. Haetal.

1 Introduction

The past few years have witnessed a rapid growth of interest in research on utilizing
drones with trucks for delivering parcels to customers. This new method deploys drones
with trucks to not only reduce delivery time and operational cost but also improve
service quality. A problem related to this new delivery method is called the routing
problem with drones, which is a generalization of the well-known traveling salesman
problem (in the case of one truck and one drone) and vehicle routing problem (in the
case of a fleet of trucks and drones); they are denoted TSP-D and VRP-D, respectively,
and their objective is to minimize either the total operational cost (min-cost) or the
completion time for a truck and drone (min-time).

In the literature, the very first work on this class of problems is the work of Murray
and Chu (2015), in which the authors proposed two subproblems. The first is a TSP-D
problem, called the flying sidekick traveling salesman problem (FSTSP) in which a
truck and drone cooperate with each other to deliver parcels. The authors introduced
a mixed integer programming formulation and a simple and fast heuristic with the
objective of minimizing the completion time for two vehicles. In the second problem,
the parallel drone scheduling TSP (PDSTSP), a single truck and a fleet of drones
are in charge of delivering parcels. The truck is responsible for parcels far from the
distribution centre (DC), and the drones are responsible for serving customers in its
flight range around the DC. Again, the objective is to minimize the latest time that a
vehicle returns to the depot. The problem description and hypothesis used in FSTSP
has been adapted in numerous subsequent studies such as in Ha et al. (2018), Ponza
(2016) and Freitas and Penna (2018) as well as in this paper.

Agatz et al. (2018) also introduced a TSP-D problem with assumptions differing
from those of the FSTSP. The most notable is that the drone may be launched and
returned to the same location (whereas this is forbidden in FSTSP). Additionally,
the two vehicles (truck and drone) share the same road network, hence the same
distance matrix (they are in different networks in FSTSP). The authors proposed a
mathematical model for this problem and developed several route-first, cluster-second
heuristics based on local search and dynamic programming to solve it with instances
with up to 10 customers. The above work has been extended further by Bouman et al.
(2018), who presented exact solution approaches, proving that the problem with larger
instances can be solved.

In a recent work, Freitas and Penna (2018) proposed a hybrid heuristic named
HGVNS to solve two TSP-D variants by Murray and Chu (2015) and Agatz et al.
(2018) with the min-time objective. In detail, HGVNS first obtains the initial solu-
tion by using a mixed-integer program (MIP) solver to solve the TSP optimally and
then applies a heuristic in which some trucks’ customers are removed and reinserted
as drone customers. Next, the initial solution is used as the input for a general vari-
able neighbourhood search in which eight neighbourhoods are shuffled and chosen
randomly. The authors conducted the experiments on three instance sets from Ponza
(2016) and Agatz et al. (2018) and TSPLIB. The computational results show that the
proposed approach can decrease delivery time by up to 67.79%.

A generalization of the TSP-D called the vehicle routing problem with drones
(VRPD or VRP-D) was first studied by Wang et al. (2017) where a fleet of trucks

@ Springer

A hybrid genetic algorithm for the traveling salesman...

and drones is responsible for delivering parcels. Several theoretical aspects have been
studied in terms of bounds and worst cases. An extension of that work was studied
in Poikonen et al. (2017), in which the author considered more practical aspects such as
drone endurance and cost. In addition, connections between VRPD and other classes
of VRPs have been made in the form of bounds and asymptotic results. Other works
related to drone applications are also presented in a survey conducted by Otto et al.
(2018).

In this paper, we introduce a new hybrid genetic algorithm (HGA) with adaptive
diversity control to effectively solve the TSP-D under both min-cost and min-time
objectives. HGA is a combination of the genetic algorithm and local search technique
together with a population management, diversity control and penalization mechanism
to balance the search between feasible and infeasible search spaces. This method was
initially proposed by Vidal et al. (2012) and has been used to solve many variants of
VRP efficiently, as in Vidal et al. (2012, 2013, 2014) and Bulhdes et al. (2018). We
also present problem-tailored components to significantly improve the performance of
the algorithm. Different computational experiments show the improvements in terms
of solution quality under both objectives and different instance sets and the importance
of the new proposed elements.

The main contributions of this paper are as follows.

— We propose an efficient hybrid genetic algorithm that includes a new crossover, a
set of 16 local search operators, and a penalization and restore mechanism to solve
the TSP-D under both min-cost and min-time objectives.

— We conduct extensive computational experiments to evaluate the performance of
HGA under instance sets from Murray and Chu (2015), Ha et al. (2018) and Freitas
and Penna (2018). The proposed method outperforms two existing approaches
(GRASP and Murray et al.’s best) in terms of solution quality and can improve
upon a number of best known solutions among three instance sets.

— We analyze the efficiency and importance of the new components to the perfor-
mance of the overall algorithm.

The remaining parts of the paper are organized as follows. Section 2 introduces
the TSP-D and related assumptions considered in the problem. Section 3 discusses
the proposed hybrid genetic algorithm (HGA). Section 4 presents the computational
results, and Sect. 5 concludes the paper.

2 Problem description

In this section, we briefly discuss the description of the TSP-D, which was first pro-
posed in Murray and Chu (2015) and then developed further in Ha et al. (2018) to solve
the min-cost objective. In this problem, given a graph G = (V, A), V ={0...n+ 1}
is a set of depot and customer locations and A is a set of arcs that link two pair of nodes
in V. We need to deliver parcels to aset N = {1, ...n} customers using a truck and a
drone (an unmanned aerial vehicle used for delivery). In this graph, O is the depot, and
n + 11is its duplication. We denote d;; and ;; (d; j and ti/. /') as the distance and time
traveled from node i to node j by truck (drone), respectively. The effective arrival

@ Springer

Q.M. Haetal.

times of the truck and drone are denoted by #; and tl.’ . We have 1y = t(’) = 0. Different
from actual arrival time, the effective arrival time of a vehicle (drone or truck) takes
into account both the actual arrival time and the time required to retrieve and (possi-
bly) prepare the drone for the next launch. This definition was initially described in
the work of Murray and Chu (2015). The drone is managed by the truck driver and
is carried in the truck while not in service. To make a delivery, the drone is launched
from either the truck at a customer location or the starting depot and later returns to the
truck at a different customer location or the return depot. The delivery plan of these
two vehicles (truck and drone) is subjected to the following requirements.

— Both vehicles (truck and drone) must start from and return to the depot.

— Each customer can only be serviced once by either a truck or drone. If a customer
is served by a truck (a drone), we call it a truck delivery (drone delivery).

— A drone delivery is represented as a 3-tuple (i, j, k), where i, j, k are customer
locations that are described as follows:

— 1 is the node where the truck launches the drone, which we call the launch
node. We also denote s, as the time required for the truck driver to prepare the
drone for launch.

— j is the node the drone will fly to and make the delivery. We call it the drone
node. Most importantly, node j must be eligible for the drone to visit, as not
all parcels can be delivered by the drone due to capacity limitation (i.e., the
parcel is too heavy). We denote the set of nodes that can be served by drone
as Vp C N.

— k is the rendezvous node, where the drone—after making a delivery—rejoins
the truck to have its battery replaced and to be made ready for the next launches.
The time required for the truck driver to replace drone’s battery and load new
parcel for possible next launch is called recovery (or retrieval) time and is
denoted as sg. In addition, two vehicles are required to wait for each other at
the rendezvous point, and while waiting for the truck, the drone is assumed to
be in constant flight.

— In a drone delivery, both truck and drone are required to satisfy the endurance
constraint, which is, in detail:

— Truck travel time constraint the truck travel time from the launch node to the
rendezvous node plus its recovery time cannot exceed the drone endurance
(the maximum operational time of a drone without recharging),

Tk + Diuck < €

where 7;_, 1 is the truck travel time from i to k, and I}, is the time taken for
the truck to recover the drone and possibly prepare it for the next launch. More
specifically, if the truck just recovers the drone without relaunching it at the
same location, then I7,,.x = sg. Otherwise, if the truck relaunches the drone
at the same location, then I},,cx = sg + sz. This constraint is not imposed
when the launch node is the depot (node 0).

@ Springer

A hybrid genetic algorithm for the traveling salesman...

— Drone travel time constraint the drone travel time plus its recovery time
cannot exceed the drone endurance:

’ /
Tij + Tjk + Tirone < €

where [0 = Sg is the time taken to recover the drone.

— We denote P, the set of all possible drone deliveries, as follows:

P={(i,j.k):i,keV,jeVpi#j#kt+1y <€, (1)
where € is the drone endurance.
— Each vehicle has its own transportation cost per unit of distance, denoted C; and
C, for the truck and drone, respectively.
— When two vehicles have to wait for each other at the rendezvous point, waiting
costs are added to the transportation cost to form the total operational cost of the
system. These waiting costs of the truck and drone, respectively, are calculated as

wr = a X Y, and (2)
wp = ﬂ X lI/D, (3)

where Y7 and ¥ are the waiting times, and « and § are the per-unit-time waiting
fees of the truck and drone, respectively.

The objective of the TSP-D is either to minimize the total operational cost of the
system or to minimize the completion time of two vehicles. We denote the problem
with the first objective as “min-cost TSP-D” and with the latter as “min-time TSP-D”.

3 A hybrid genetic algorithm for TSP-D (HGA)

In this section, we describe a hybrid genetic algorithm with adaptive diversity control
method for solving TSP-D. The framework, as proposed in Vidal et al. (2012), is a
hybrid metaheuristic that combines the exploration capability of genetic algorithms
with efficient local search and diversity control. We adapt this general framework
with modifications to match the characteristics of the TSP-D. They include new local
search operators, crossovers, a penalized mechanism and a restoration method to con-
vert from a TSP-D solution to a giant-tour chromosome. We describe the approach
in Algorithm 1. In detail, starting from an initial population (Line 1), for each iter-
ation, two parents are selected to generate an offspring individual using a crossover
operator (Line 4). This offspring then goes through a split procedure [proposed in Ha
et al. (2018)] to obtain the drone delivery and truck delivery chromosome (Line 5).
Subsequently, the offspring is “educated” by a local search method—which contains
multiple operators—to improve its quality. The educated offspring then employs a
restore method to update its giant tour chromosome (Line 7). The offspring is then
checked for feasibility and is added to the appropriate subpopulation (feasible or
infeasible). It also has a probability of being repaired of P,., = 50% and is added

@ Springer

Q.M. Haetal.

to a feasible subpopulation if the repair succeeds (Lines 8—14). In the next step, if
a subpopulation reaches its maximum size, a survivor selection method is called to
eliminate a number of individuals in that subpopulation, keeping only the best ones
(Lines 15—17). The method then adjusts the penalty parameters (Line 18) and calls
the diversification procedure if the search is not improved after a certain number of
iterations (Line 19). Finally, we return the best feasible solution found (Line 22).

Algorithm 1 HGA for TSP-D

1: Initialize population

2: while number of iterations without improvement < /tery; do
3: Select parents P1 and P2

4: Generate offspring individual C from P1 and P2
5: Apply spliton C

6: Educate C using local search

7: Call restore method to update the giant-tour chromosome in C
8: if C is infeasible then

9: insert C into infeasible subpopulation

10: repair C with probability Prep

11: endif

12: if C is feasible then

13: insert C into feasible subpopulation

14: endif

15: if maximum subpopulation size reached then
16: Select survivors

17: endif

18: Adjust the penalty parameters for violating the drone endurance constraint

19: if best solution is not improved for Iterpy iterations then Diversify population
20: endif

21: end while

22: Return the best feasible solution

The rest of this section is arranged as follows. We first define the search space in
Sect. 3.1. Section 3.2 describes the solution representation. Section 3.3 presents the
evaluation of individuals. Parent selection and crossover are described in Sect. 3.4.
Section 3.5 discusses the local search procedure, and various operators are presented.
The restore method is introduced in Sect. 3.6. Finally, Sect. 3.7 regards the population
management with the population initialization, adjustment of penalty coefficients,
survivor selection and diversity control.

3.1 Search space

It has been well studied that by exploiting infeasible solutions, we can significantly
improve the performance of a heuristic (Glover and Hao 2011). In this section, we
define the search space S, which includes the feasible and infeasible solutions s €
S. Infeasible solutions comprise drone deliveries that violate the drone endurance
constraint. More specifically, a drone delivery in a TSP-D solution is not valid in the
following two scenarios.

@ Springer

A hybrid genetic algorithm for the traveling salesman...

— The truck travel time constraint is violated (except for the case where the launch
node is the depot, as described in the problem description above):

Tisk + Dipuck > €,

where t;_, is the truck travel time from i to k.
— The drone travel time constraint is violated:

ri/j + r}k + Trone > €.

In these two cases, the drone cannot feasibly be flown because its battery will be
depleted before the retrieval operation undertaken by the truck driver is completed.

Let sol(s) represent a TSP-D solution in the search space. We have sol(s) =
(TD, DD), where TD = (eq, ...et), e; € V is the truck tour, and DD C P is the
set of drone deliveries in solution s.

We now define the fitness evaluation function for min-time and min-cost TSP-D
separately.

3.1.1 Min-cost TSP-D

For min-cost TSP-D, the operational cost of solution s, denoted cost(T D, D D), is
calculated as

cost(TD, DD) = cost(T D) 4 cost(DD) + costw (DD), 4)
where
k—1
— cost(TD) = Y_ Cid; j+1 is the cost of the truck tour;
i=
—cost(DD)= Y. ((di’j + d;.k) is the cost of drone deliveries; and
{i,j.kyeDD
— costw(DD) = Y costl,({i, j, k) +costi({i, j, k) is the wait cost of the
(i.j.kyeDD

truck and drone. We have cost%, =aoa xmax(0, T — tl.’jk), where t;_ is the
truck travel time from i to k (in the truck tour), and rl.’j ¢ 18 the drone travel time

from i to j to k. In addition, costVDV = B x max (0, Ti/jk — Tik).

Let w represent the penalty for violating the drone endurance constraint. We define
the penalized cost of a solution s as the sum of the operational cost and the weighted
sum of the truck’s or drone’s excess travel time during drone deliveries. This penalized
cost is computed as

¢(s) =cost(TD,DD) + w Z max (0, T, x + Tpuck — €) X T x Cy
(i,j.k)eDD (5)

'C-/-+'L'J/-k+rdrone_€) X TD XCZ»

+ max (0, ij

@ Springer

Q.M. Haetal.

where o is the penalty for violating the constraint, and 77 and 1p are the speeds of the
truck and drone, respectively. This penalized cost is then used as the fitness function
to compute the fitness of the individuals.

3.1.2 Min-time TSP-D

In min-time TSP-D, the completion time of a solution s, denoted time(s), is calculated
as

time(s) = max(tp41.ty,). (6)

Similar to min-cost TSP-D, we also have the penalized cost of a solution s in the min-
time objective as the sum of the completion time of two vehicles and the penalties for
violating the constraint. It is computed as follows:

@ (s) = time(s) + Z max (0, max (v + Itruck.
(i,j.kyeDD (7)

’ /
Tij + Tjk + Ldrone) — €).

Again, this is used to compute the fitness of individuals.

3.2 Solution representation

A solution in HGA is represented as a giant TSP tour (giant tour) with the two depots
removed. We also denote this as a (giant-tour) chromosome. When a TSP-D solution
is needed for a local search method, it can be obtained using the split procedure, which
runs in polynomial time (Ha et al. 2018). Conversely, we can retrieve a giant tour from
a TSP-D solution by using a restore method, which will be discussed in the coming
section. To conclude, by having a transformation between a giant tour and TSP-D
solution using the split and restore method, we can use the fast and efficient operators
in both the crossover and local search step. A demonstration of this transformation is
described in Fig. 1.

3.3 Individual evaluation

This section discusses the individual assessment method which has been proposed
in Vidal et al. (2012). To evaluate any individual P; in the population, we consider
two factors: its penalized cost ¢ (Py) (described in Sect. 3.1) and its contribution to the
diversity of the population, denoted A(P;) and calculated as the average “distance”
from Pj to its closest neighbours in the population. By taking into account these two
factors, we can obtain a balance between intensification and diversification. Other-
wise, the heuristic might either converge too soon and too quickly (focusing only on
improving the penalized cost) or will always explore completely different giant tours,
leading to a random search. In detail, the diversity contribution described above is
presented in Eq. 8:

@ Springer

A hybrid genetic algorithm for the traveling salesman...

[a]7]6[1[3]8]s5]10[9]2]

(Updated chromosome)

[7]a]e6]1]3]8][s]10]2]9]
h

[o]aJ7]e]1]3]8]s]10]9]2]11]
RESTORE
METHOD

COMPLETE TSP-D SOLUTION

a) Drone deliveries (DD):
4 3 2
(0,1) | (1,8) | (10,11)

b) Truck deliveries (TD):
[o]7]6]1]8[s]1o]9]11]

Fig. 1 Transformations between giant-tour chromosome and TSP-D solution

A(Py) = > s, Py, ®)

Nclose
Py eMlose

where 7.5 is the number of considered closest neighbours, and NV, is the set of
closest neighbours of Py (i.e., the set of elements sorted using Eq. 9). The distance
between two individuals P; and P, denoted §(P;, P>), is a normalized Hamming
distance based on the differences between the nodes in the same positions of the
giant-tour chromosome. This distance is shown in Eq. 9, where 1(condition) is a
valuation function that returns 1 if the condition is true and O otherwise.
1
3(Pr, Py) =~ (1P @) # PS ()], ©)
n i:;,n : ?
where 1(P£' (i) # P5'(i)) returns 1 if the node in position i of the giant-tour chro-
mosome in Pj is different than the node in position i of the giant-tour chromosome of
P», and 0 otherwise.

The evaluation of an individual P, or as we call it, the biased fitness, denoted
BF(P),is then computed as in Eq. 10, where fiz(P) is the rank of P in the subpopu-
lation of size nbIndiv with respect to its penalized cost ¢ (P), and dc(P) is the rank
of P in the subpopulation in terms of diversity contribution. The parameter nbElite
ensures that a certain number of elite individuals will survive to the next generation
during the survival selection process [proven in Vidal et al. (2012)].

BF(P) = fit(P) + (1 - M) dc(P) (10)
= fi nblndiv ¢

@ Springer

Q.M. Haetal.

3.4 Parent selection and crossover

Each iteration in HGA includes a generation of a new child chromosome. This is
done by first merging two subpopulations into one population and randomly selecting
two parents, Py and P>, in that population using the tournament selection method. In
detail, to choose a parent, we pick two individuals from the complete population above
and select the one with the best biased fitness. Two parents have then gone through a
crossover step.

For crossover operators, one can use the classical TSP crossovers—OX (order
crossover), PMX (partially mapped crossover), OBX (order-based crossover), and
PBX (position-based crossover) (Potvin 1996). In this paper, we propose a problem-
dependent crossover called DX that can solve the TSP-D more effectively. The most
important feature of DX is that it exploits the characteristics of a TSP-D solution—the
drone deliveries and truck deliveries—and try to transmit that information from the
parents to the offspring. A detailed description of this crossover is presented in Fig. 2,
and the crossover is described in Algorithm 2.

Algorithm 2 Crossover DX for TSP-D

: Input: Parents P, P, and the corresponding TSP-D solution of P; whichis (T Dy, DDp)
: Let TS Py = Py with 2 depots added, TSP, = P> with 2 depots added
: Let C = An empty chromosome with 2 depots added
: Let r = A random number in range of [0, 1];
. if r < 0.5 then
Choose 2 cut points a, b, a < b in T Dy and copy the nodes between these cut points to C while
respecting its position in 7S Py
: else
8: Choose 2 cut points a@, b, a < b in DD and copy the nodes between these cut points to C while
respecting its position in 7S P,
9: end if
10: Fill the other positions of C, starting at position 1, by taking the remaining nodes of 7'S Py while keeping
their relative orders in 7S P5.
11: Return C with 2 depots removed.

AN AW N =

3

In detail, Algorithm 2 first takes the two parents P;, P, as one of its inputs.
Moreover, in line 1, it also takes into account the corresponding TSP-D solution
(T D1, DDy) of P, which was obtained during the “education” process (Line 6 of
Algorithm 1). Subsequently, it defines two TSP tours, 7S Py, T S P», in Line 2 by tak-
ing two parents and adding two depots to them. An empty offspring with two depots
is also initialized in Line 3. In Line 4, a random number is generated to decide from
which component—7 D or D Dj—the algorithm will inherit. In either case, it will
choose a random segment of the chosen component by generating two random cut
points, a, b, with a < b, and copy the nodes between those cut points to C while
keeping their original positions in 7'S P (Lines 5-9). Finally, the remaining nodes of
C are filled one by one, starting from position 1, by taking the remaining nodes of
T S P; and copying to C while keeping their relative orders in 7S P, (Line 10). The
offspring is returned by removing two depots of C (Line 11).

@ Springer

A hybrid genetic algorithm for the traveling salesman...

P1 P2

Chromosome with depots: Chromosome with depots:
[o]a[7]6]1]3]8[s]10]9f2]11]|[o]2]6]2]s5]9]afr0[7[8]3]11]

Corresponding TSP-D solution Corresponding TSP-D solution
a) Drone delivery: a) Drone delivery chromosome:
7 1 8 10 2 6 5 4 7
46) | 63)] 35 [(59 [(5,11) (1,2) | 2,9 [(9,10) [(10,8)
b) Truck delivery chromosome: b) Truck delivery chromosome:
[o] a6 3]s]9 1] [oT 12T 2] 910 8] 37]1]

STEP 0: Randomly select a number. R = rand(0,1).

R<=0.5 R>0.5
STEP 1: INHERITS RANGE OF NODES IN TRUCK STEP 1: INHERITS RANGE OF NODES IN DRONE
DELIVERY FROM P1 DELIVERY FROM P1
Chosen range: [6; 11] Chosen range: [7;10]
LI [Tel [l [s] Jof [aaf{[L T [7] [af [8] Jaof [[|
STEP 2: COMPLETE C WITH NODES FROM P2 STEP 2: COMPLETE C WITH NODES FROM P2

[o]1]2]6]a]3]10]s]7]98]11]|[o]6]l7]2]1]s][8]9]10]al3]11]

STEP 3: REMOVE DEPOTS STEP 3: REMOVE DEPOTS
[1]2]6]af3]10[s5]7][9]8] [6]7]2]1]s[8[9]10]4a]3]

Fig.2 DX crossover for TSP-D

3.5 Education using local search

The main role of the education step is to improve the quality of solutions by means
of the local search procedure. We design a hill-climbing and first-improvement local
search for both min-cost and min-time objectives. Similar to Vidal et al. (2012), we
also apply the technique proposed in Toth and Vigo (2003) to restrict the search to
the 1 x n closest vertices, where h = 0.1 is the granular threshold. This technique
significantly reduces the computation time consumed by the education process. We
define neighborhoods for the TSP-D based on a set of 16 move operators in which
3 operators—A\/1, N3 and Nj4—are inherited from the work of Ha et al. (2018). In
each operator, the evaluation separately evaluates the move costs for the min-cost and
min-time objectives. For min-cost, it is the total truck and drone costs of the affected
arcs, while the total truck and drone travel times of the affected arcs are calculated
in the min-time problem. Moreover, the truck and drone cumulative time and cost as
well as the cost and time of all drone tuples in set P are pre-computed at the beginning
of the HGA to effectively accelerate the algorithm.

@ Springer

Q.M. Haetal.

~ i n
A \4)) ()
’ e R R ’\,r/;

Truck-only relocate 1-1

lﬂb@ﬂf\M = - o—0-0-0-1)

D (O e
,v‘ 3) 4 i
N\, \ (/ \}/ K\{)

Truck-only relocate 2-1

H-O-@-F — [—O—0-0-0-0-

= & an N
N Truck-swap 1-1

@@ — mvjwm

n) D '
) +) O,)
g’ Truck-swap 2-1 \(

-0 — (e —O——@—T]

FoN ol

Truck-swap 22

-0 001 m

Fig. 3 Tllustrations of] to Ng

We now describe in detail the neighbourhoods to be explored. The illustrations of
these move operators are also presented in Figs. 3, 4 and 5.

— N (Truck-only relocation 1-1): Choose random truck-only node u (the node
where the drone is carried by truck), and relocate it after a node v in the truck tour.

— N2, N3 (Truck-only relocation 2—1): Choose two random consecutive truck-only
nodes u1, u», and relocate them after a node v in the truck tour as u1, up or us, uj.

— N (Truck swap 1-1): Choose a random node u in the truck tour, and swap with
another node v in the truck tour.

— N5 (Truck swap 2—1): Choose two random consecutive nodes u1, u> in the truck
tour such that u, does not have a drone launch or retrieval activity, and swap
with another node v in the truck tour. Again, we update the corresponding drone
deliveries.

— N (Truck swap 2-2): Select two random consecutive nodes u1, uy in the truck
tour, and swap with two other nodes v, vy in the truck tour. Drone deliveries
associated with those nodes are updated.

— N7, Mg (Truck 2-opt): Select two random pairs of consecutive nodes (u, x) and
(v, y) in the truck tour, and relocate them as (u, v), (x, y) or (u, y), (x, v).

— Ny (Interdrone delivery drone-truck swap 1-1): Select a random drone node d,
and swap it with another node u in the truck tour such that « is neither d’s launch
node, rendezvous node, or the node between its launch and rendezvous.

— Mo (Intradrone delivery drone launch swap 1-1): Select a random drone 3-tuple
(i, j, k) in the drone delivery list, and swap i and ;.

@ Springer

A hybrid genetic algorithm for the traveling salesman...

A A

Truck 2-opt

o W W
w’\ DS Q '[\) .

Interdrone delivery
drone-truck swap 1-1

@] = [D@D

A _ 9 A2) @
%ﬂﬂ hHﬁW D~

dn, me \a \ch swaD! 1
A o AD-

Intradrone delivery

Uuedswan11 R 4\ ™
™ () .)
@ —O—0) [-O—O0—0—@—0—{]

ProNENo 'ONINC

Intradrone delivery
launch-rdv swap 11

o= H@WMIQIHM%MI

Fig. 4 Illustrations of A7 to Ao

— N1 (Intradrone delivery drone rdv swap 1-1): This is similar to the above move
operator, except that we swap j and k.

— N1z (Intradrone delivery launch rdv swap 1-1): Again, it is similar to the above
move operator, but instead, we swap i and k.

— N3 (Drone insertion): Select a random node j such that j is either a truck-only
node or the node in between a drone delivery, choose two other nodes i and k in
the truck tour—i is before k—and create a new drone delivery (i, j, k). This move
is only valid when no drone delivery interference exists between i and k or when
we can say that there is no drone launch or retrieval between i and k.

— N4 (Drone remove): We select a random drone node j, remove the associated
drone delivery, and reinsert j between two consecutive nodes i and k in the truck
tour.

— Nis (Drone swap 1-1): Select two random drone deliveries (i1, ji, k1) and
(i2, j2, k2), and swap j; and j. We will therefore have two new drone deliveries:
(i1, j2, k1) and (i2, j1, k2).

— N6 (Drone relocation 1-1): Select a random drone delivery (i, j, k), and choose a
new launch i’ and rendezvous node k' for j to have a new drone delivery (i’, j, k').

3.6 Restore method

To more efficiently guide the search for good solutions, a restoration method is devel-
oped in which we use the educated TSP-D solution (the one that has been improved

@ Springer

Q.M. Haetal.

o n A »
A \“ A D) @

Drone insertion

.4“#@4 ﬁm}l o .—'%’“ O—O

Drone remove

O] == o000
° o © o

Drone swap 1-1

F“ﬁfp —O—O—{] — H\Hﬁ ogosonn
SO A ®

[-O0—0—@—@—0—{] ' I—O—ﬁ—*@—(“ﬂ

Fig.5 Tllustrations of N3 to Mg

using local search) to update the existing giant tour individual. In detail, the new giant
tour is constructed by reinserting drone nodes in the drone deliveries of the educated
TSP-D solution to a random position between their launch node and rendezvous node
on the truck delivery tour of that solution. After the insertion operation is finished,
two depots are removed to obtain a valid giant tour individual. As a result, we have a
new giant tour individual that is formed by an “educated” truck tour with drone nodes
being reinserted. An illustration of this process is shown in Fig. 6.

It is possible that our randomized restoring can generate a random solution based
on the provided solution but the new solution is at least as good as the old one due to
the optimality of our split procedure. This ensures the convergence of our algorithm.
In the restore method, with each drone delivery (i, j, k), we have tried three ways to
choose the position for reinserting drone node j: (1) the position right after node i;
(2) the position right before node k; and (3) a random position between i and k. The
experimental results show that the third option performs the best. Our guess is that
random restore method could help to increase the diversification of the algorithm, thus
avoid the algorithm converging too fast.

3.7 Population management

As an adaptation of the framework in Vidal et al. (2012), the population management
mechanism in HGA remains untouched. In detail, two subpopulations are created
and managed separately. They are the feasible and infeasible subpopulations. Each
contains between w to o + A individuals.

In the initialization step, n;pi pop of individuals are created by generating a set of
TSP tours using a k-cheapest insertion heuristic withk = 3 (Haetal. 2018). The choice
of a heuristic-based population comes from the analysis of Murray and Chu (2015)

@ Springer

A hybrid genetic algorithm for the traveling salesman...

7R AN @ A\\
v 4) (§:38) <« 2)
NG N\ P\ = 3
N \',r 0 NS

e o L

Restore

[FO-@—(—(O—0—(—(—(—@—{)—{]

Depot Depot

Remove
Depots

O OnOn0a0n 000000000

Fig.6 Reinsertion in restore method. Truck travels the solid lines and drone travels the dashed lines

and the tested result in Ha et al. (2018), which suggests the use of high-quality TSP
tours instead of completely random ones. We obtain the giant tour chromosomes after
these generation steps. These tours then pass through the split method to obtain the
corresponding TSP-D solutions of each individual. In the next step, individuals’ TSP-
D solutions are processed using the education process to improve their qualities, and
when an infeasibility occurs, they are probablistically repaired. After that, the restore
method is called to update individuals’ giant tour chromosomes. The individuals are
then added to the appropriate subpopulations based on their feasibilities.

Any subpopulation that exceeds the size of i1+ is passed through a select survivors
method in which A individuals are discarded. The discarded ones are ones defined as
“clones” or the worst individuals with respect to their biased fitnesses. Solutions are
defined as clones if and only if they have the same giant tour (possibly in reversed
order).

Furthermore, the penalty coefficient w is dynamically adjusted during the search for
each 100 iterations. This mechanism is necessary to guide the algorithm in two search
spaces. More specifically, the penalty coefficient is increased when the search produces
too many infeasible solutions (meaning that it falls too deeply into the infeasible
search space) and is decreased in the opposite case. In detail, let EREF be the targeted
proportion of the feasible solution, and we then adjust the parameter w as follows: if
the naturally feasible proportion is below EXEF — ¢ % (is higher than EREF + ¢ %),
then the penalty coefficient is increased by n; (decreased by 1p). This means that when
the feasible proportion is in the range EXFF 4 ¢ %, the coefficient remains unchanged
to avoid the search jumping too quickly between regions in the search space.

When the search is not improved after I terpy iterations, the diversification method
is called, in which we retain the best 75,5; individuals with respect to their biased fitness

@ Springer

Q.M. Haetal.

and generate n;,i; pop New individuals as in the initialization phase. This technique is
important because it creates new genetic materials for the search when the population
has lost its diversification characteristic.

4 Computational results

This section presents the computational results of the HGA, which has been imple-
mented in C++ and compiled with the “-O3” flag. The experiments are run on a desktop
computer with an Intel Core i7-6700, 3.4 GHz processor.

Because the parameters proposed in Vidal et al. (2012) have been proven to work
well on many variants of VRP, we retained most of them. In detail, the default param-
eters of HGA are u = 15,1 = 25, njpirpop = 4. ¢ = 5%, n; = 1.2,np =
0.85, npes: = /3, nbElite = 6,EREF = 0.3, nejose = 02,0 = 1.0, Itery; =
2500, and Iterp;y = 0.3 x Iteryy.

For the TSP-D parameters, we used the parameters proposed in Murray and Chu
(2015): the truck speed and drone speed were set to 40 km/h, and the drone endurance
€ was 20min. The time required to launch and retrieve the drone (s; and sg) were
both set to 1 min.

As described in Sect. 3.1, there are two types of infeasibilities in a TSP-D: truck
travel time and drone travel time constraint violations. From those constraint violations,
we define three levels of relaxations.

— RelaxAll We accept both types of infeasibilities.

— RelaxTruck We only accept the truck travel time constraint violation in infeasible
solutions.

— RelaxDrone We only accept the drone travel time constraint violation in infeasible
solutions.

The impacts of these different types of relaxations are investigated in Sect. 4.3. By
default, RelaxAll is used. The default selection for the crossover is DX, which is the
best performing crossover as tested in Sect. 4.2.

The following sections are organized as follows. We first evaluate the performance
of HGA with different instance sets and compare with the existing methods. Next, an
analysis of the impacts of different crossovers is presented. Finally, we evaluate the
sensitivity of each component in HGA.

4.1 Performance on different instance sets

In this section, we test HGA on three sets of instances: (1) 72 min-time instances of
10 customers from Murray and Chu (2015); (2) 60 instances of 50 and 100 customers
from Ha et al. (2018) under both min-time and min-cost objective functions; and (3) 24
instances with various size introduced in the recent work of Freitas and Penna (2018).
For the HGA, we collected its best found solutions and computed the objective func-
tion’s value of solutions on average over 10 runs. Current best methods—GRASP
in Ha et al. (2018), HGVNS in Freitas and Penna (2018) and different approaches
proposed in Murray and Chu (2015)—were selected to compare with HGA. As men-

@ Springer

A hybrid genetic algorithm for the traveling salesman...

tioned before, the standard version of HGA with DX and RelaxAll was used in this
experiment. The results for Instance Sets (1), (2) and (3) are presented in Tables 1, 2,
3 and 4.

4.1.1 Results for instances from Murray and Chu (2015)

In Table 1, we compare HGA with the best results found by Murray and Chu (2015)
and GRASP Ha et al. (2018) among 36 instances of Set 1 with two settings of drone
endurance (20 and 40min). The € column shows the drone endurance in minutes.
Column H G A represents the best found solutions while column HGA reports the
average values among 10 runs of our new algorithm. The values in bold text imply the
best result found among the three approaches. Overall, HGA was able to improve the
existing best found solutions in 9 tests and obtained results as good as the best ones in
60 tests. Column H G A shows the stability of HGA in this context when the solutions
over 10 runs generally reach the best ones in all instances but two. The results also
demonstrate a dominance of our HGA over GRASP in terms of solutions’ quality.
However, HGA is in general slower than GRASP.

4.1.2 Results for instances from Ha et al. (2018)

Tables 2 and 3 report the comparisons of objective value and average run time (in min-
utes) between HGA and GRASP in Ha et al. (2018) on Instance Set 2. We collected
the average value (Column “H G A”) and best solution of HGA found among repeated
runs (Column “H G A”) and its average run time in minutes (Column “Tyg4”). The
corresponding values of GRASP are reported in Column “GRASP”, “GRASP”,
and “Tgrasp”. Column “Change (%) calculates the percentage change between best
found objective values of HGA and GRASP. A negative value indicates an improve-
ment of our new method in comparison to GRASP. With respect to this comparison,
HGA shows improvements in terms of solutions‘ quality in both min-cost and min-time
objectives.

In detail, for min-cost TSP-D (Table 2), the average objective values of solutions
of HGA are even better than those of the best found solutions of GRASP on most
instances (see Columns “HG A”and “G RAS P”’). The proposed algorithm can signif-
icantly improve existing best known solutions by 6.40% and 15.10% on average (up to
nearly 15% and 20%) for 50- and 100-customer instances, respectively. We can observe
that the algorithm performs better in large instances (i.e., 100-customer instances).
However, it is worth mentioning that GRASP performs better on two instances D5
and D6. Regarding run time, HGA is 1.5 to 2 times slower than GRASP due to its
more complex design. This result is acceptable since it still can deliver significantly
better results in less than 1 min for 50-customer instances and less than 5min for
100-customer instances.

For min-time TSP-D (Table 3), HGA can also improve the existing best known
solutions found by GRASP on all instances but not as significantly as in min-cost
TSP-D. In detail, the improvements are 2.39% and 4.05% on average (and up to nearly
6% and 8%) for 50- and 100-customer instances, respectively. Again, HGA performs

@ Springer

Q.M. Haetal.

Table 1 Comparison of instance set 1 under min-time objective

Instance ¢ Murray etal. GRASP HGA HGA Instance ¢ Murray etal GRASP HGA HGA
437vl 20 56.468 57.446 56.468 56.468 440v7 20 49.996 49.776 49.422 49.422
437vl 40 50.573 50.573 50.573 50.573 440v7 40 49.204 49.204 49.204 49.204
437v2 20 53.207 53.207 53.207 53.207 440v8 20 62.796 62.700 62.576 62.576
437v2 40 47.311 47311 47.311 47.311 440v8 40 62.270 62.004 62.004 62.004
437v3 20 53.687 54.664 53.687 53.687 440v9 20 42.799 42.566 42.533 42.533
437v3 40 53.687 53.687 53.687 53.687 440v9 40 42.799 42.566 42.533 42.533
437v4 20 67.464 67.464 67.464 67.464 440v10 20 43.076 43.076 43.076 43.076
437v4 40 66.487 66.487 66.487 66.487 440v10 40 43.076 43.076 43.076 43.076
437v5 20 50.551 50.551 50.551 50.551 440v11 20 49.204 49.204 49.204 49.204
437v5 40 45.835 44.835 44.835 44.835 440v11 40 49.204 49.204 49.204 49.204
437v6 20 45.176 47.601 47.311 47.311 440v12 20 62.004 62.004 62.004 62.004
437v6 40 45.863 43.602 43.602 43.602 440v12 40 62.004 62.004 62.004 62.004
437v7 20 49.581 49.581 49.581 49.581 443vl 20 69.586 69.586 69.586 69.586
437v7 40 46.621 46.621 46.621 46.621 443vl 40 55.493 55493 55.493 55.493
437v8 20 62.381 62.381 62.381 62.381 443v2 20 72.146 72.146 72.146 72.146
437v8 40 59.776 59416 59.416 59.416 443v2 40 58.053 58.053 58.053 58.053
437v9 20 45.985 42,945 42.416 42.416 443v3 20 77.344 77.344 77.344 77.344
437v9 40 42416 42416 42416 42.416 443v3 40 69.175 68.431 68.431 68.431
437v10 20 42416 41.729 41.729 41.729 443v4 20 90.144 90.144 90.144 90.144
437v10 40 41.729 41.729 41.729 41.729 443v4 40 82.700 83.700 82.700 82.700
437v11 20 42.896 42.896 42.896 42.896 443v5 20 55.493 58.210 54.973 55.077
437v11 40 42.896 42.896 42.896 42.896 443v5 40 53.447 51.929 51.929 51.929
437v12 20 56.696 56.425 56.273 56.273 443v6 20 58.053 58.053 55.209 55.209
437v12 40 55.696 55.696 55.696 55.696 443v6 40 52.329 52.329 52.329 52.329
440v1 20 49.430 50.164 49.430 49.430 443v7 20 64.409 65.523 65.523 65.523
440vl 40 46.886 46.886 46.886 46.886 443v7 40 60.743 60.743 60.743 60.743
440v2 20 50.708 51.828 50.708 50.708 443v8 20 77.209 78.323 78.323 78.323
440v2 40 46.423 46.423 46.423 46.423 443v8 40 73.967 72.967 72.967 72.967
440v3 20 56.102 58.502 56.102 56.102 443v9 20 49.049 45931 45.931 45.931
440v3 40 53.933 53.933 53.933 53.933 443v9 40 47.250 45931 45.931 45.931
440v4 20 69.902 73.091 69.902 69.902 443v10 20 47.935 46.935 46.935 46.935
440v4 40 68.397 68.397 68.397 68.397 443v10 40 47.935 46.935 46.935 46.935
440v5 20 43.533 44.624 43.533 43.533 443v11l 20 57.382 56.395 56.395 56.395
440v5 40 43.533 43.533 43.533 43.533 443v11l 40 56.395 56.395 56.395 56.395
440v6 20 44.076 44.122 43.949 43.949 443v12 20 69.195 69.195 69.195 69.195
440v6 40 44.076 43.944 43.810 43.853 443v12 40 69.195 69.195 69.195 69.195

@ Springer

A hybrid genetic algorithm for the traveling salesman...

€8 P9TI— 061099¢ 8L 109¢ ¥8T TSEITY 1€9L0Y (d 160 L9Y0L— IL8ELT 107189C 120 ILLYOE €17T00€ LD
PST LOPL— 99°09SE 9S'S9PE €9C SILIY 67TE0F 94 $0 89S— 6V'89TE T6'8ETE 610 6ETLYE 66 EEHE 9
8T°¢ 9THI— 98°L08E 8L'9SLE 99T TELOSY LEISEY Sd 90 TLS— 88°9SIE 69€EEIE 610 VYELIEE TOETEE e}
LTE TUSI— LST98E T9'818E YI'T LTO09Y 60°661Y vl L9°0 99— T89L9T ST'SSIT 0T0 98916C 1'#¥8C 0
0€ €0°SI— LTT68E LOTSLE ST ¥9°€9Sh 8EYITh €l TE0 T0S— 8PTS6T 8LTE6T 9I'0 60°S8IE SS'L8OE €0
S6'¢ €I'LL— 06'SLSE +S'69vE 8€T 8L'BIEK 9L'98IY Tl 9€0 TEL— HO'SSLT LOSLT 9T0 L9'898T Li'#08T [40)
YTE 8SLI— 9SHS8E £9°99LE S8 T8Y9F €8°69SH 4 620 999— ¥I'€0LT T'6L9C 170 L8'SE6T 14°0L8C D
L0V PS6L— SLTE6I SSTOLYI V'€ TSPSET LYTET 01d LF0 €0°0I— 8YLSTI 67TSTI STO LS6TPL PSTOEL ord
106 THLI— 9L'1061 1L7T881 L8T 6T9TET 16°6LTT 6d TS0 TO9— €SE9El TESSEL 8T0 98'89F1 60°THFI 6d
€ €C8I— OV I€8l €L€EI8I SI'e §STLTT 88°0TTT 84 790 PFSI— 19°6LTl 19°6STl STO €TLIST €6'¥8Y1 8d
9'c 98'SI— 8I'€C6l 1+T681 8I'€ LYEIET 60°6¥CT LA W0 ISP— O0LTTEl STR0E] YTO IL'66ET SOOLEL L4
Ty T00T— €TIE8T LI'S6LI 9TE 98°€CIET TOPHTT 9d v¥'0 88TI— OCPLIT 6L6SIT LTO 9L'ESET 80°9I€l 9d
SS'€ LE'ST— ST6681 TT9981 L8T €09€T 9198CC 4 0 IEL— T19LSEl LETSEl €0 6°00SI 16°LSPI cd
89°¢ Lb'8I— 9£7TT8I 8SOLLI L6T L6'€TTT 90°6LIT v 6v'0 LI'S— L8T6CI 91'T8TI LTO TOTHI LI'96ET vd
'€ EI'6I— 651981 9I'8I8T 8Y°C 9LTIET 91'8¥CT €4 SP0 SL'6— TROLET LILSEI 870 L9TTST 8L'€0ST €d
99'¢ 08'8I— S6'0£81 €0°S6LI 87T 60°€LTT 19°01TT T 8¢0 PEL— 86'TOFT 68'ISET 970 86°CIST €I6vI d
L¥'E SS6L— LYTO8T I'SLLI 8TT 66°SSTT £590TT 14 S0 ILO0L— S$86eTl 8LSTTI LTO YTEIPT TYTLEL 1

(urw) (%) (uru) (urur) (%) (uru)

VOHp o3ueyd VOH VOH dSVIDL 4Svyn dSvyo oouesu] VOHL oSueyd yoH vOH dSVIDL 4SvyD dSVIDH ddueisul

7 198 90UB)SUI—OAN09[qO 1S00-UTW Jopun JSY YO yim uosuredwo) g ajqeL

pringer

Qs

Q.M. Haetal.

89°¢ OI'SI— S9'C IS0 09— TT0 uedN
LS THTL— ST86SS 16°ELYS 0LT €I'vES9 696779 01D S60 ITI— 8ELTELy €6'80TH 0C0 €8106r 909¢y 0Id
€Y E€VLL— SPLSIS TH966% 80°¢ SPST9 80509 6D 990 S6€— L906VF 8L69V TTO0 91'889F €L'ESOY 6d
€0°S OL'8— 0S9vTS 8STIIS 79T 96'1L8S SS66SS 8D 190 8SS— T0E96E H6 116 0T0 L8L8TY €OEVIY 8
86'F 69°6— TI'96£S LI'SIES G8C 116209 80°688S LD E€L0 THT— LLLS9Y €SPE9Y STO €T96LY LS6YLY La
L9C TUTIL— T9E€9KS IS'LLES S6T 9TEPEY HE6Y09 9D LL'O 8P0— S8S8EY 00¥8ER 0T0 L8S8YF TO'SOHY 9a
$6'C €€TI— 60°99SS LL'96¥S 65T ST6TE9 S6'8619 SO S9°0 SI'€— TTY8SH 91695 0T0 6£€6LY LYLILY sa
't 6I'VI— €TE0LS 61°THSS 6£T PI'TEY9 96'8SH9 PO I€0 €09— TEVEEY TEPEEY 120 TOvILY 9 TI9 el
80'% Y991 — 8EOTIS L8'€90S 8T P6'8E19 LSHLO9 €0 6£0 S8S— 197198¢ #89¥8¢ 81'0 80 I61F 1L°S80F el
9I'c €9'TI— LOPETS 68°861S €9°C ¥9°L86S L6'T88S O 850 LI'v— LYEllY L60Y 610 ¥vEEy 9v'SLTy a
80°¢ TSHL— 9£TIES 9S+80S Y6l S8FI9 L6LY6S D €0 9SS— TI'8T6E L6'LT6E 170 +T68sr 6€6S1Y 1a
'€ SO'8— 90°S68¢ Lb'LEYE LST P8LISY P9ELIY 0ld 190 SE9— SOLIIE LOTS0E €C0 6T9S€E TI6TE 010
LOY PLIL— 8TH06E 1S°€L8E SST 6£E9Y 16'88¢h 61 850 8I'L— 809S0E €LTEOE 610 8£90€€ €T°L9TE 60
16'€ TEST— LEOL6E +IE08E LLT 6'L6SY Tl6hh 81 160 ¥99— TT6STE 61°0STE TT0 66°'LSSE LII8YE 8D

(uru) (%) (urur) (urur) (%) (urur)

VOHyp o3uey) VOH VOH dSV¥OL JsvyH dSvyo oouwsul VOH] oSuey) VOH VOH dSVIDL JdSVyD dSVIDH dduesu]

panunuod g 3jqel

pringer

as

A hybrid genetic algorithm for the traveling salesman...

W6y €0T— SI9IE IYIIE L9T €8°06€ 98°LIE L4 1$°0 0bT— OF'€CC LTTLC 0T0 9S°6TC €L'LTT LD
LY S6v— L¥'L6T 8EW6C €CCT TT6IE IL60€ 94 1€°0 S§9T— 9S°SET 10HET LTO TTTVC LEOVT 9
LS9 LT9— €8LIE T8VIE Y0T 19tPE 88'SEE S 870 9 I— LSHCT 90°€CT €0 L6'€ET 9€'9TT (%)
909 TWr— 96FIE LETIE 86’1 69FEE 6L'9TE v 90 I8§— LTEIT 80°TIT STO0 L¥'STT SI'STT 0]
196 €6L— SSEIE L960E 88'¢c TOOVE SE9¢e el 8¢0 ITI— CTelt T0Tle 8T0 I€6IT 197IT €D
¥TS ITS— 6801¢ $L'80¢€ L8T €9°0¢E L'STE €50 §S0— 11°0IT €T°60C w0 $vI'TIT 6£01C (%)
€LS 8PS— 01'9TE +6'TTE S9T 86FPE 89'I¥E 4 90 TST— LESIT LOSIT LTO 9TCC €9°0TT 10
ve PI0— 16681 SH68I LTy 8TE6L TL68T ord 90 T0T— OLLIT SELIT LEO LTITI 8611 ord
¥ IL0— v6681 9L°68I €y Le6l TrI6l 64 6£0 TS0— TLLIT $9°LIT w0 98611 9T8II 6d
WY 9L0— ¥S681 TO'68I 98'¢ PLE6T LY 061 84 8L0 WI— $08IT 6°LII SE0 66611 9£61I 84
8¢ 8§0— 68061 6£061 ey el IS161 A 90 SST— €9°SIT TSSII €€0 TOITl pS8IT L4
&Y 190— 681 91681 oIy 98°¢€6l TE061 94 880 8EP— 9P SIT IEPIl 6£0 9FITL ¥S6IT 9d
90 SKI— 9TS8I L8] ey 19°¢6l LE061 SH 850 80°€— 16SIT 8LSII 870 LLOTI 9¥6I1 cd
69 9TT— 66981 €T98I Sy LTTI6L 19'881 v LY0 0S€— 9T6IT 1L8II 9¢0 LvTl ToeTt rd
8¢y IS0— 68881 60881 S96 €8T6I S0'681 €4 LSO T6T— 6€9IT 1T911 TS0 SToTl L611 ed
96 SLT— 10881 1TL8I IL'S 88°T61 SS061 €0 TE0— 6€8IT 6¢8I1 870 9¥'6Il €S8I1 d
9¢ 8F0— TESYT LOLSI SP'S 8061 8S'88I ™ 9L0 LIP— E€F9IT S9SII Y0 69'1CT 89°0TI g
(urur) (%) (urur) (urur) (%) (urur)
VOHp oSweqd) vOH VOH dSVIOL 4SvyD dSvyo oouesuy VOHp o3ueqd yvOH VOH dISVIDL JSVyDH dSVYDH eoueisul

7 198 90UBISUI—AANIS[qO oW-UI Jopun JSV IO Yiim uostedwo)) ¢ ajqel

pringer

As

Q.M. Haetal.

ISy SOb— 99T 50 6£T— €€0 uedN
vS 6€L— 60ty T89TY SI'T vrOLY 6809 01D 10 60— +SS0E 15°60¢ 600 ¥S60¢ 1'90€ ora
16S LT9— SLSEy 9I'8Th T 6Y'69r 8L'9SY 6D 0 €T~ 1€8I¢ SYLIE LTO I€TIEE 609T¢E 6d
80°S LI'S— 68L0v IS90F LT 6IESy LOThY 8D 850 60F— 1S96T 9L°€6T €0 TITIE 8T90¢ 8
TS §ST— ¥ITly 1€60V W 196y oz LD €0 P8E— €8°LIE $99I¢ €60 $TOEE TE6CE La
IS €LL— ¥80TF 9FSIV eLT v 8TOSY 9D 6¥°0 90— S9€IE ITEIE 8C0 €LLIE 9I'SIE 9a
8y TI'€— oFTey SOTT LT EL9VY 9'veY) 0 660— €8°1C€ 9p'ITE STO 9'9TE 89bTE sa
LY 69€— 9SSEr 60'EER €8T €8°69Y 89°6hY ¥D 950 T6T— 09%TE TLETE 1€°0 L9gE Lyege A
6v L8L— PISIY LYIIY SPT 86'%SY 9°'9%t €D 90 IST— ¥S°L6T 98°S6T 620 9T'€0€ #'00€ el
¥T 8T9— $I'06€ +968¢ L9C 88'¥Ty CESIY [43) LSO WI— $9SIE €6°€IE 60 $8Tce SILIE a
Sty Lbv— 6ISty oLV LT €TOSy 8YLEY D 19°0 86T— 60°L0E 6£90¢ €0 6'81¢ 8°GI¢ 1a
P6'e €8S— €I'SIE LTig LT SE0vE SOTEE 0rd 870 89T~ L1'9TC L1'9TC €C0 LP'SET €0°0€T 010
9% 90°L— L¥'8IE 9SGIE €81 I¥TrE €S°6E€ 6d 89°0 €0S— €V'LTT 109TC 9C0 LO'T¥C 86'LET 60
TS 8T9— 0v9Te vLECE 96T SLOSE thShE 81 9¥°0 LTE— €S'LET 9THET LEO TI'SYT 61THe 8D

(uru) (%) (urur) (urur) (%) (urur)

VOHy o3ueyd yOH VOH dSVYDL JSvy¥H dSv¥OH ddueisuy VOHp o3ueyd YOH VOH dSVIDL JSvy¥DH dSVYDH doueisu]

panunuod ¢ 3jqe]

pringer

as

A hybrid genetic algorithm for the traveling salesman...

8S'LE 69°€— 9y — 8C'C6 S9'8— 6T'6— a5eroAy
e8¢ 000 0012 8€T— 0S°0C 1612 000 0012 000 00'1¢ 00'1¢C 0L3¥s
L8€E 9I'T— +8°€HT €T— 90T #1°68 9011 — TH'6IT POTI— 00°LICT OL'9¥T 001pI
68 vt 090 €6°'1L PI0O— OF'IL €8°891 000 0S'1L 000 0S'1L 0S'IL Se1el
LESE €0~ €CLE 080— SI'LE 1L¥S 000 SPLE 000 SYLE SYLE 66wl
6219 (4] €5°821C Ly0— +OvIIT €61l 80°L— L9EL6I 9TL— 086961 S6°€TIT zs1d
cee LLO— SL'SL9T €CT— ST9991 T6'SLI LLO— SL'SLIT LLO— SL'SL9T SL'8891 pp1ad
0S¥t 860 00°68LC ey — 00°TH9T P8 IYI WOl — 0EvLYT ITEL— STL6ET 007TILT 9¢1ad
S AY4 vE8T 799661 86'T— 08°€S91 L99Y 0¥ — 01’8191 €Ch— 88°GI9T STL8II ye1ad
¥$'TE S0 seveel 81— THHOTl SO°6L 80°ST— TI'8€0T €S°ST— ¥9°CE0T 0STTTl Lorxd
LT OV SS6— £v08¢ LOOT— ST'8LE 68°06 ST6— 69'18¢ PIOL— S6'LLE 09°0TH sotur
LS'8Y LYy — 87659 96— 1€7T1S9 %69 IL'ST— 98'18S 9T — L6OLS SE069 00THOM
SIoy €1~ $€7T$9 ST8— $H909 €769 1TLL— TTLYS LSLI— 88FbS 007199 001dony
£9°9¢ 70— £€6°099 65°0— 8£'859 TT6L SCLL— 8ELYS 9L'LL— 89FbS 0£T99 001D0Xy
P6'I¢€ L9'8— 0v'8¢8 66'8— £v'Se8 1T°CSt 0LTI— 9¢'108 68TL— v9°66L S6'LI6 00TdON
0T°0S 909— TLELL SEL— ST'€9L 62°9v1 16'L1— T19.9 I€0T— 9€959 §9°€c8 0SIgon
£5°9% ITS— 66'€L8 LS'S— S9°0L8 £5°691 L60T— 98°0C8 6F'TL— L8908 SO'TL6 00TVON
S6°0F LOS— €6'08L LOL— THYIL 9T'sHI 89°ST — T19°€69 TEI9L— SE€'889 09°TC8 0STVon
$6°0¢ 08°'L— TL'609 ITTIT— 08°L8S L8'L6 PI8T — 9€'THS 9¢'8T— 16655 0£T199 00TVor
YI'LT 0€T— 8991 STE— SE9T 1L9C 000 0691 000 0691 0691 9LITd
LSTI L1 89°¢I 000 SHET 16701 000 SHET 000 SHET SPET 16
69°L9 SE0— €8°19% SE0— €819 00 %11 0S'0— 9I'I9% IL0— 9109 SHeor 861P
ey S6€— 0v081 SI'S— 9I'8LI TI9L ¥9CT— 98781 Y9C— 987781 €8°L8I 0g1Yo
69°€S TIT— 88L8SE OL'S— 08°9SpE 9049 PEY— TH90S¢E YSP— 10'66VE 09°699¢ LTII0Iq
059 vI'8— €T0CC 6£TI— €001 SIvl 9991 — 08661 IFLL— 00861 SL'6E£C TSUIIdq
(5) SNADH () SNADHdpy SNADH (%) SNADHdpn ONADH (5) VOHL (%) VOHdvy yvoH (%) YOHdvn VOH «dS. 9ouelsuj

9A103[qo owm-uTw J9pun (7)) BUUJ pue SeIRIL] Ul SNADH U uostredwo) ¢ 3jqe]

pringer

as

Q.M. Haetal.

approximately 1.5 times slower than GRASP but can still deliver better solutions in
less than 1 min and 5 min for 50- and 100-customer instances, respectively.

4.1.3 Results for instances from Freitas and Penna (2018)

We report the comparison between HGA and HGVNS proposed by Freitas and Penna
(2018) on Instance Set 3 under Min-time objective in Table 4. In this table, Column
“TSP*” is the optimal TSP value obtained by Concorde (Applegate et al. 2006),
Columns “HGA” and “H G A”, respectively, are the best and average results among 10
repeated runs. Columns “Gappga” and “Gappga” represent the best and average
gaps between HGA and optimal TSP while Column “Tyg4”™ reports the average
running time of HGA. Similarly, Columns “HGVNS”, “HGV NS”, “Gappcvns’,
“Gappcvns” and Tygyns represent the best and average value and gap as well as
the running time of HGVNS.

In overall, among 24 instances, HGA can improve existing best known solution
found by HGVNS in 16 instances, performs worse than HGVNS in 7 instances and
a draw in one instance (eil51). In average, HGA performs approximately 5% better
than HGVNS and up to 17.17% in kroC100. Regarding the computational cost, HGA
is about 2 times slower than HGVNS but the running time between two algorithms
is not fairly compared since they are run on two different machine configurations
(HGVNS runs on a faster machine Intel Core i7 Processor 3.6 GHz). In detail, HGA
mostly performs better than HGVNS on instances where solutions contain many drone
deliveries (such as the kro instances) while HGVNS, on the other hand, can find better
solutions among instances where solutions contain very few drone deliveries. This can
be explained by the fact that HGVNS explores the search space from the optimal TSP
solutions, which are very closed to the final TSP-D solutions.

4.2 Performance under different crossovers

We evaluate the performance of HGA when using our proposed crossover versus
four classical crossovers (Potvin 1996) (OX, PMX, OBX, and PBX) in Table 5 under
two objectives with Instance Set 2 mentioned in the above section. Again, HGA was
repeatedly run 10 times for each choice of crossover, and we have conducted 6000 tests
in total. For each crossover, we report the average percentage gap with the best found
solution (regardless of crossover), the run time in minutes (Column “7"”), the standard
deviation (Column “sd”) and the geometric mean value (row “Mean”). Furthermore,
a comparison of the convergence of these crossovers in both objectives is presented in
Figs. 7 and 8, where the Y-axis shows the averaged percentage gap with the best found
solutions, and the X-axis contains the maximum number of iterations over which an
improvement could be made.

Overall, DX delivers the best value among other crossovers in terms of percentage
gap. For min-cost, DX is approximately 18%, 5.7%, 283%, and 16.5% better than OX,
PMX, OBX, and PBX, respectively. For min-time, that superiority is approximately
26.5%, 10.2%, 283%, and 46.9%. As can be seen, OBX performs worst among the
crossovers, possibly due to its design, for which only a random number of separated

@ Springer

A hybrid genetic algorithm for the traveling salesman...

Table 5 Crossover performance comparison—min-cost and min-time objective

DX 00X PMX OBX PBX

Gap T (min) sd Gap T (min) sd Gap 7 (min) sd Gap T (min) sd Gap 7 (min) sd

Min-cost 1.39 1.37 0.86 1.64 1.44 0.87 1.47 1.31 0.92 5.33 0.87 1.28 1.62 1.53 0.95
Min-time 0.49 1.55 0.330.621.50 041054148 030188096 0.510.72 1.73 0.40

| —— DX
X ——OX
\ —— PMX
341\ —— OBX
—+ PBX
N
— ! oo
X A
a 24
© \
O}
% ':‘:1;_.‘}7_;}»
1 o 44—
o000 o0 0 o0 o0 0 0o
% T ¥ I
0 10000 20000

Iterations

Fig.7 Crossovers’ performance—min-time objective

nodes is copied from the parent. This causes the OBX to have a smaller chance of
transmitting “good” materials from its parent such as good drone deliveries or good,
complete truck deliveries. The performances of OX and PMX, on the other hand, were
much closer to those of DX, especially for PMX in the min-cost problem, being only
5.7% inferior. This result is because OX and PMX are both designed to copy a random
subsequence of the parent to the children, thus having a high chance of transmitting
“good” materials such as complete drone or truck deliveries from parent to offspring.

With respect to run time, OBX performs nearly 1.5-2 times faster than other
crossovers. However, due to its poor performance, this fast run time is not valuable.
Other crossovers deliver similar run times—Iess than 2 min on average—which is an
acceptable value.

When considering standard deviation, DX, OX, PMX and PBX perform stably, the
values of which are mostly less than 0.5% and no more than 1%, while OBX shows
its instability in delivering values that are more than 0.5% and up to nearly 1.3%.

Finally, from Figs. 7 and 8, we can see a similar pattern in the convergences of all
the crossovers. They all converge quickly in the first 5000 iterations.

@ Springer

Q.M. Haetal.

——DX

| —— 0X
i —— PMX
s 41\ —<— 0BX

% —— PBX

Gap(%)

T 1 T T T 1
0 10000 20000 30000
lterations

Fig.8 Crossovers’ performance—min-cost objective

4.3 Sensitivity analyses

This section provides analyses, as shown in Table 6, of the impact of the key compo-
nents of HGA as based on the measurement of percentage gap on average of solutions
over 10 runs to the best known solutions (BKS). The investigated components are
the restore method, repair mechanism, relaxation choice, infeasibility of solutions,
and diversity contribution. We adapted the standard setting (crossover DX is used
with parameters mentioned at the beginning of Sect. 4) and modified each of the key
components to test their impact. In detail, we have the following.

— No INF Instead of relaxing the endurance constraint on truck and drone travel
times, we insist that it hold. Therefore, no infeasible solution is allowed.

— No DIV We do not count the diversity contribution (setting it to 0) during the
calculation of biased fitness.

— No REPAIR We do not use a repair method in HGA.

— No RESTORE We do not use a restore method in HGA.

— RelaxTruck We only allow for infeasible solutions in which the endurance con-
straint is violated by truck travel times but not the drone’s time.

— RelaxDrone We only allow for infeasible solutions in which the endurance con-
straint is violated by the drone’s travel times but not the truck’s time.

The experiment results show that HGA is indeed sensitive to its parameters (infeasi-
bility, diversity contribution, repair, and restore method) in such a way that any change
to those values negatively impact the algorithm’s performance. However, those nega-
tive changes do not share the same impact. In detail, eliminating the role of the restore
method (No RESTORE) strongly reduces the performance of HGA, which proves
the necessity of this problem-specific component to the general framework in order to
efficiently solve the TSP-D problem.

@ Springer

A hybrid genetic algorithm for the traveling salesman...

Table 6 Sensivity analysis of key components

NoINF NoDIV NoREPAIR NoRESTORE RelaxTruck RelaxDrone Standard

Min-cost 2.39 2.19 1.34 542 2.19 1.30 1.29
Min-time 0.84 0.94 0.58 1.39 0.64 0.79 0.53

The infeasible solutions management, diversity contribution and repair mechanism
(No INF, No DIV and No REPAIR) also contribute to the performance of HGA,
notably the No INF and No DIV, where the increment compared to the standard gap
exceeds 50%. This result proves the effectiveness of using both feasible and infeasible
solutions as well as the importance of a diversity control mechanism to avoid the
search becoming stuck too quickly in the local minima.

Regarding the relaxation selection (RelaxTruck, RelaxDrone), we can observe
the negative impact of these choices on the performance of HGA for both objectives.
However, this impact is not the same for each of the objective types. In detail, while
the min-cost objective performs well when the drone travel time constraint is relaxed
(RelaxDrone), the min-cost objective delivers a gap close to the standard gap when
the truck travel time constraint is relaxed (RelaxTruck). This phenomenon could be
explained as follows.

In the min-cost problem, the longer the distance (or time) the truck travels between
launch and rendezvous nodes during a drone delivery is, the greater the impact on
the travel cost it would receive, as the transportation cost of the truck is many times
larger than that of the drone. Hence, with the RelaxTruck option for which the truck
travel time constraint is relaxed and the drone travel time constraint is imposed, the
truck would be less likely to receive this relaxation advantage because of its high
transportation cost per unit distance. On the other hand, when the drone travel time
constraint is not enforced (RelaxDrone), the algorithm could have infeasible solutions
in which the drone will take the longer arcs (because of its small transportation cost).
These solutions then have more opportunities to be repaired to become a high quality
solution.

In the min-time problem, as analysed in Ha et al. (2018), the frequency at which
the drone is used is much less than that in the min-cost problem. Therefore, min-time
solution quality depends more on truck tour quality. Hence, when the truck travel time
constraint is relaxed (RelaxTruck), we could have infeasible solutions in which the
drone arrives at the rendezvous node before the truck. This is the ideal situation for
the truck as it could immediately proceed to the next customer location or prepare a
parcel for the next launch without waiting for the drone to arrive (Murray and Chu
2015). This could shorten the truck’s wait time and possibly lead to a good truck tour.
Thus, along with the repair method, these kinds of infeasible solutions would have
more chances to be repaired to become a high quality solution. On the other hand, the
opposite fact occurs when the drone travel time constraint is relaxed (RelaxDrone),
meaning that the truck is more likely to wait for the drone at the rendezvous node,
therefore having less chance of obtaining good solutions.

@ Springer

Q.M. Haetal.

5 Conclusion

In this paper, we presented a new hybrid genetic algorithm—HGA—to effectively
solve the TSP-D under both min-cost and min-time objectives. Our algorithm includes
new problem-tailored components such as local searches, crossover, restore method
and penalized mechanism to effectively guide the search for good solutions. Compu-
tational experiments show that HGA outperforms two existing methods in terms of
solution quality. Our method can also improve a number of the best known solutions
found in the literature. An extensive analysis was carried out to demonstrate the impor-
tance of the new components to the overall performance of HGA. In future work, we
intend to develop an efficient exact method to better investigate the performance of
the algorithm. Also, we would like to test HGA on other variants of the TSP-D such
as the version with multiple trucks and multiple drones under both objectives.

Acknowledgements This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under Grant No. 102.99-2016.21. The authors would like to thank the anony-
mous reviewers for the valuable comments that helped to considerably improve the quality of this work.
We also express our thanks to Jilia Céria de Freitas and Professor Puca Huachi Vaz Penna for sending us
the instance files so that we could conduct the comparison with the HGVNS algorithm.

References

Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling salesman problem with
drone. Trans. Sci. 52(4), 965-981 (2018)

Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)

Bouman, P., Agatz, N., Schmidt, M.: Dynamic programming approaches for the traveling salesman problem
with drone. Networks 72(4), 528-542 (2018)

Bulhdes, T., Ha, M.H., Martinelli, R., Vidal, T.: The vehicle routing problem with service level constraints.
Eur. J. Oper. Res. 265(2), 544-558 (2018)

de Freitas, J.C., Penna, PH.V.: A variable neighborhood search for flying sidekick traveling salesman
problem. Int.Trans. Oper. Res.(2018)

Glover, F., Hao, J.K.: The case for strategic oscillation. Ann. Oper. Res. 183(1), 163-173 (2011)

Ha, Q.M., Deville, Y., Pham, Q.D., Ha, M.H.: On the min-cost traveling salesman problem with drone.
Trans. Res. Part C Emerg. Technol. 86, 597-621 (2018)

Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: optimization of drone-assisted
parcel delivery. Trans. Res. Part C Emer. Technol. 54, 86-109 (2015)

Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E.: Optimization approaches for civil applications of
unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks 72(4), 411-458 (2018)

Poikonen, S., Wang, X., Golden, B.: The vehicle routing problem with drones: extended models and con-
nections. Networks 70(1), 34-43 (2017)

Ponza, A.: Optimization of drone-assisted parcel delivery. Master’s thesis, University of Padova, Italy (2016)

Potvin, J.Y.: Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 63(3), 337-370 (1996)

Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle-routing problem. Inf. J. Comput.
15(4), 333-346 (2003)

Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic algorithm for multidepot
and periodic vehicle routing problems. Oper. Res. 60(3), 611-624 (2012)

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity man-
agement for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 40(1),
475-489 (2013)

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework for multi-attribute vehicle
routing problems. Eur. J. Oper. Res. 234(3), 658-673 (2014)

@ Springer

A hybrid genetic algorithm for the traveling salesman...

Wang, X., Poikonen, S., Golden, B.: The vehicle routing problem with drones: several worst-case results.
Optim. Lett. 11(4), 679-697 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	A hybrid genetic algorithm for the traveling salesman problem with drone
	Abstract
	1 Introduction
	2 Problem description
	3 A hybrid genetic algorithm for TSP-D (HGA)
	3.1 Search space
	3.1.1 Min-cost TSP-D
	3.1.2 Min-time TSP-D

	3.2 Solution representation
	3.3 Individual evaluation
	3.4 Parent selection and crossover
	3.5 Education using local search
	3.6 Restore method
	3.7 Population management

	4 Computational results
	4.1 Performance on different instance sets
	4.1.1 Results for instances from murray2015flying
	4.1.2 Results for instances from ha2018min
	4.1.3 Results for instances from freitas2018variable

	4.2 Performance under different crossovers
	4.3 Sensitivity analyses

	5 Conclusion
	Acknowledgements
	References

