
Journal of Heuristics
https://doi.org/10.1007/s10732-019-09431-y

A hybrid genetic algorithm for the traveling salesman
problemwith drone

Quang Minh Ha1 · Yves Deville1 ·Quang Dung Pham2 ·Minh Hoàng Hà3

Received: 21 December 2018 / Revised: 12 August 2019 / Accepted: 10 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
This paper addresses the traveling salesman problem with drone (TSP-D), in which a
truck and drone are used to deliver parcels to customers. The objective of this prob-
lem is to either minimize the total operational cost (min-cost TSP-D) or minimize the
completion time for the truck and drone (min-time TSP-D). This problem has gained
a lot of attention in the last few years reflecting the recent trends in a new delivery
method among logistics companies. To solve the TSP-D, we propose a hybrid genetic
search with dynamic population management and adaptive diversity control based
on a split algorithm, problem-tailored crossover and local search operators, a new
restore method to advance the convergence and an adaptive penalization mechanism
to dynamically balance the search between feasible/infeasible solutions. The compu-
tational results show that the proposed algorithm outperforms two existing methods
in terms of solution quality and improves many best known solutions found in the lit-
erature. Moreover, various analyses on the impacts of crossover choice and heuristic
components have been conducted to investigate their sensitivity to the performance of
our method.

Keywords Traveling salesman problem with drone · Metaheuristic · Genetic
algorithm · Hybrid approach

B Minh Hoàng Hà
minhhoang.ha@vnu.edu.vn

Quang Minh Ha
quang.ha@uclouvain.be

Yves Deville
yves.deville@uclouvain.be

Quang Dung Pham
dungpq@soict.hust.edu.vn

1 ICTEAM, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

2 SOICT, Hanoi University of Technology, Hanoi, Vietnam

3 ORLab, VNU University of Engineering and Technology, Hanoi, Vietnam

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-019-09431-y&domain=pdf
http://orcid.org/0000-0002-9923-6309


Q. M. Ha et al.

1 Introduction

The past few years have witnessed a rapid growth of interest in research on utilizing
droneswith trucks for deliveringparcels to customers. This newmethoddeploys drones
with trucks to not only reduce delivery time and operational cost but also improve
service quality. A problem related to this new delivery method is called the routing
problem with drones, which is a generalization of the well-known traveling salesman
problem (in the case of one truck and one drone) and vehicle routing problem (in the
case of a fleet of trucks and drones); they are denoted TSP-D and VRP-D, respectively,
and their objective is to minimize either the total operational cost (min-cost) or the
completion time for a truck and drone (min-time).

In the literature, the very first work on this class of problems is the work of Murray
and Chu (2015), in which the authors proposed two subproblems. The first is a TSP-D
problem, called the flying sidekick traveling salesman problem (FSTSP) in which a
truck and drone cooperate with each other to deliver parcels. The authors introduced
a mixed integer programming formulation and a simple and fast heuristic with the
objective of minimizing the completion time for two vehicles. In the second problem,
the parallel drone scheduling TSP (PDSTSP), a single truck and a fleet of drones
are in charge of delivering parcels. The truck is responsible for parcels far from the
distribution centre (DC), and the drones are responsible for serving customers in its
flight range around the DC. Again, the objective is to minimize the latest time that a
vehicle returns to the depot. The problem description and hypothesis used in FSTSP
has been adapted in numerous subsequent studies such as in Ha et al. (2018), Ponza
(2016) and Freitas and Penna (2018) as well as in this paper.

Agatz et al. (2018) also introduced a TSP-D problem with assumptions differing
from those of the FSTSP. The most notable is that the drone may be launched and
returned to the same location (whereas this is forbidden in FSTSP). Additionally,
the two vehicles (truck and drone) share the same road network, hence the same
distance matrix (they are in different networks in FSTSP). The authors proposed a
mathematical model for this problem and developed several route-first, cluster-second
heuristics based on local search and dynamic programming to solve it with instances
with up to 10 customers. The above work has been extended further by Bouman et al.
(2018), who presented exact solution approaches, proving that the problemwith larger
instances can be solved.

In a recent work, Freitas and Penna (2018) proposed a hybrid heuristic named
HGVNS to solve two TSP-D variants by Murray and Chu (2015) and Agatz et al.
(2018) with the min-time objective. In detail, HGVNS first obtains the initial solu-
tion by using a mixed-integer program (MIP) solver to solve the TSP optimally and
then applies a heuristic in which some trucks’ customers are removed and reinserted
as drone customers. Next, the initial solution is used as the input for a general vari-
able neighbourhood search in which eight neighbourhoods are shuffled and chosen
randomly. The authors conducted the experiments on three instance sets from Ponza
(2016) and Agatz et al. (2018) and TSPLIB. The computational results show that the
proposed approach can decrease delivery time by up to 67.79%.

A generalization of the TSP-D called the vehicle routing problem with drones
(VRPD or VRP-D) was first studied by Wang et al. (2017) where a fleet of trucks

123



A hybrid genetic algorithm for the traveling salesman…

and drones is responsible for delivering parcels. Several theoretical aspects have been
studied in terms of bounds and worst cases. An extension of that work was studied
in Poikonen et al. (2017), inwhich the author consideredmore practical aspects such as
drone endurance and cost. In addition, connections between VRPD and other classes
of VRPs have been made in the form of bounds and asymptotic results. Other works
related to drone applications are also presented in a survey conducted by Otto et al.
(2018).

In this paper, we introduce a new hybrid genetic algorithm (HGA) with adaptive
diversity control to effectively solve the TSP-D under both min-cost and min-time
objectives. HGA is a combination of the genetic algorithm and local search technique
together with a populationmanagement, diversity control and penalizationmechanism
to balance the search between feasible and infeasible search spaces. This method was
initially proposed by Vidal et al. (2012) and has been used to solve many variants of
VRP efficiently, as in Vidal et al. (2012, 2013, 2014) and Bulhões et al. (2018). We
also present problem-tailored components to significantly improve the performance of
the algorithm. Different computational experiments show the improvements in terms
of solution quality under both objectives and different instance sets and the importance
of the new proposed elements.

The main contributions of this paper are as follows.

– We propose an efficient hybrid genetic algorithm that includes a new crossover, a
set of 16 local search operators, and a penalization and restore mechanism to solve
the TSP-D under both min-cost and min-time objectives.

– We conduct extensive computational experiments to evaluate the performance of
HGA under instance sets fromMurray and Chu (2015), Ha et al. (2018) and Freitas
and Penna (2018). The proposed method outperforms two existing approaches
(GRASP and Murray et al.’s best) in terms of solution quality and can improve
upon a number of best known solutions among three instance sets.

– We analyze the efficiency and importance of the new components to the perfor-
mance of the overall algorithm.

The remaining parts of the paper are organized as follows. Section 2 introduces
the TSP-D and related assumptions considered in the problem. Section 3 discusses
the proposed hybrid genetic algorithm (HGA). Section 4 presents the computational
results, and Sect. 5 concludes the paper.

2 Problem description

In this section, we briefly discuss the description of the TSP-D, which was first pro-
posed inMurray and Chu (2015) and then developed further in Ha et al. (2018) to solve
the min-cost objective. In this problem, given a graph G = (V , A), V = {0 . . . n + 1}
is a set of depot and customer locations and A is a set of arcs that link two pair of nodes
in V . We need to deliver parcels to a set N = {1, . . . n} customers using a truck and a
drone (an unmanned aerial vehicle used for delivery). In this graph, 0 is the depot, and
n + 1 is its duplication. We denote di j and τi j (d ′

i j and τ ′
i j ) as the distance and time

traveled from node i to node j by truck (drone), respectively. The effective arrival

123



Q. M. Ha et al.

times of the truck and drone are denoted by ti and t ′i . We have t0 = t ′0 = 0. Different
from actual arrival time, the effective arrival time of a vehicle (drone or truck) takes
into account both the actual arrival time and the time required to retrieve and (possi-
bly) prepare the drone for the next launch. This definition was initially described in
the work of Murray and Chu (2015). The drone is managed by the truck driver and
is carried in the truck while not in service. To make a delivery, the drone is launched
from either the truck at a customer location or the starting depot and later returns to the
truck at a different customer location or the return depot. The delivery plan of these
two vehicles (truck and drone) is subjected to the following requirements.

– Both vehicles (truck and drone) must start from and return to the depot.
– Each customer can only be serviced once by either a truck or drone. If a customer
is served by a truck (a drone), we call it a truck delivery (drone delivery).

– A drone delivery is represented as a 3-tuple 〈i, j, k〉, where i, j, k are customer
locations that are described as follows:

– i is the node where the truck launches the drone, which we call the launch
node. We also denote sL as the time required for the truck driver to prepare the
drone for launch.

– j is the node the drone will fly to and make the delivery. We call it the drone
node. Most importantly, node j must be eligible for the drone to visit, as not
all parcels can be delivered by the drone due to capacity limitation (i.e., the
parcel is too heavy). We denote the set of nodes that can be served by drone
as VD ⊆ N .

– k is the rendezvous node, where the drone—after making a delivery—rejoins
the truck to have its battery replaced and to bemade ready for the next launches.
The time required for the truck driver to replace drone’s battery and load new
parcel for possible next launch is called recovery (or retrieval) time and is
denoted as sR . In addition, two vehicles are required to wait for each other at
the rendezvous point, and while waiting for the truck, the drone is assumed to
be in constant flight.

– In a drone delivery, both truck and drone are required to satisfy the endurance
constraint, which is, in detail:

– Truck travel time constraint the truck travel time from the launch node to the
rendezvous node plus its recovery time cannot exceed the drone endurance
(the maximum operational time of a drone without recharging),

τi→k + Γtruck ≤ ε

where τi→k is the truck travel time from i to k, and Γtruck is the time taken for
the truck to recover the drone and possibly prepare it for the next launch. More
specifically, if the truck just recovers the drone without relaunching it at the
same location, then Γtruck = sR . Otherwise, if the truck relaunches the drone
at the same location, then Γtruck = sR + sL . This constraint is not imposed
when the launch node is the depot (node 0).

123



A hybrid genetic algorithm for the traveling salesman…

– Drone travel time constraint the drone travel time plus its recovery time
cannot exceed the drone endurance:

τ ′
i j + τ ′

jk + Γdrone ≤ ε

where Γdrone = sR is the time taken to recover the drone.

– We denote P , the set of all possible drone deliveries, as follows:

P = {〈i, j, k〉 : i, k ∈ V , j ∈ VD, i 	= j 	= k, τ ′
i j + τ ′

jk ≤ ε}, (1)

where ε is the drone endurance.
– Each vehicle has its own transportation cost per unit of distance, denoted C1 and
C2 for the truck and drone, respectively.

– When two vehicles have to wait for each other at the rendezvous point, waiting
costs are added to the transportation cost to form the total operational cost of the
system. These waiting costs of the truck and drone, respectively, are calculated as

wT = α × ΨT , and (2)

wD = β × ΨD, (3)

where ΨT and ΨD are the waiting times, and α and β are the per-unit-time waiting
fees of the truck and drone, respectively.

The objective of the TSP-D is either to minimize the total operational cost of the
system or to minimize the completion time of two vehicles. We denote the problem
with the first objective as “min-cost TSP-D” and with the latter as “min-time TSP-D”.

3 A hybrid genetic algorithm for TSP-D (HGA)

In this section, we describe a hybrid genetic algorithm with adaptive diversity control
method for solving TSP-D. The framework, as proposed in Vidal et al. (2012), is a
hybrid metaheuristic that combines the exploration capability of genetic algorithms
with efficient local search and diversity control. We adapt this general framework
with modifications to match the characteristics of the TSP-D. They include new local
search operators, crossovers, a penalized mechanism and a restoration method to con-
vert from a TSP-D solution to a giant-tour chromosome. We describe the approach
in Algorithm 1. In detail, starting from an initial population (Line 1), for each iter-
ation, two parents are selected to generate an offspring individual using a crossover
operator (Line 4). This offspring then goes through a split procedure [proposed in Ha
et al. (2018)] to obtain the drone delivery and truck delivery chromosome (Line 5).
Subsequently, the offspring is “educated” by a local search method—which contains
multiple operators—to improve its quality. The educated offspring then employs a
restore method to update its giant tour chromosome (Line 7). The offspring is then
checked for feasibility and is added to the appropriate subpopulation (feasible or
infeasible). It also has a probability of being repaired of Prep = 50% and is added

123



Q. M. Ha et al.

to a feasible subpopulation if the repair succeeds (Lines 8–14). In the next step, if
a subpopulation reaches its maximum size, a survivor selection method is called to
eliminate a number of individuals in that subpopulation, keeping only the best ones
(Lines 15–17). The method then adjusts the penalty parameters (Line 18) and calls
the diversification procedure if the search is not improved after a certain number of
iterations (Line 19). Finally, we return the best feasible solution found (Line 22).

Algorithm 1 HGA for TSP-D
1: Initialize population
2: while number of iterations without improvement < I terN I do
3: Select parents P1 and P2
4: Generate offspring individual C from P1 and P2
5: Apply split on C
6: Educate C using local search
7: Call restore method to update the giant-tour chromosome in C
8: if C is infeasible then
9: insert C into infeasible subpopulation
10: repair C with probability Prep
11: end if
12: if C is feasible then
13: insert C into feasible subpopulation
14: end if
15: if maximum subpopulation size reached then
16: Select survivors
17: end if
18: Adjust the penalty parameters for violating the drone endurance constraint
19: if best solution is not improved for I terDIV iterations then Diversify population
20: end if
21: end while
22: Return the best feasible solution

The rest of this section is arranged as follows. We first define the search space in
Sect. 3.1. Section 3.2 describes the solution representation. Section 3.3 presents the
evaluation of individuals. Parent selection and crossover are described in Sect. 3.4.
Section 3.5 discusses the local search procedure, and various operators are presented.
The restore method is introduced in Sect. 3.6. Finally, Sect. 3.7 regards the population
management with the population initialization, adjustment of penalty coefficients,
survivor selection and diversity control.

3.1 Search space

It has been well studied that by exploiting infeasible solutions, we can significantly
improve the performance of a heuristic (Glover and Hao 2011). In this section, we
define the search space S, which includes the feasible and infeasible solutions s ∈
S. Infeasible solutions comprise drone deliveries that violate the drone endurance
constraint. More specifically, a drone delivery in a TSP-D solution is not valid in the
following two scenarios.

123



A hybrid genetic algorithm for the traveling salesman…

– The truck travel time constraint is violated (except for the case where the launch
node is the depot, as described in the problem description above):

τi→k + Γtruck > ε,

where τi→k is the truck travel time from i to k.
– The drone travel time constraint is violated:

τ ′
i j + τ ′

jk + Γdrone > ε.

In these two cases, the drone cannot feasibly be flown because its battery will be
depleted before the retrieval operation undertaken by the truck driver is completed.

Let sol(s) represent a TSP-D solution in the search space. We have sol(s) =
(T D, DD), where T D = 〈e0, . . . ek〉, ei ∈ V is the truck tour, and DD ⊆ P is the
set of drone deliveries in solution s.

We now define the fitness evaluation function for min-time and min-cost TSP-D
separately.

3.1.1 Min-cost TSP-D

For min-cost TSP-D, the operational cost of solution s, denoted cost(T D, DD), is
calculated as

cost(T D, DD) = cost(T D) + cost(DD) + costW (DD), (4)

where

– cost(T D) =
k−1∑

i=0
C1di,i+1 is the cost of the truck tour;

– cost(DD) = ∑

〈i, j,k〉∈DD
C2(d ′

i j + d ′
jk) is the cost of drone deliveries; and

– costW (DD) = ∑

〈i, j,k〉∈DD
costTW (〈i, j, k〉)+ cost DW (〈i, j, k〉 is the wait cost of the

truck and drone. We have costTW = α × max(0, τi→k − τ ′
i jk), where τi→k is the

truck travel time from i to k (in the truck tour), and τ ′
i jk is the drone travel time

from i to j to k. In addition, cost DW = β × max(0, τ ′
i jk − τi→k).

Let ω represent the penalty for violating the drone endurance constraint. We define
the penalized cost of a solution s as the sum of the operational cost and the weighted
sum of the truck’s or drone’s excess travel time during drone deliveries. This penalized
cost is computed as

φ(s) = cost(T D, DD) + ω
∑

〈i, j,k〉∈DD

max(0, τi→k + Γtruck − ε) × ΥT × C1

+ max(0, τ ′
i j + τ ′

jk + Γdrone − ε) × ΥD × C2,
(5)

123



Q. M. Ha et al.

whereω is the penalty for violating the constraint, andΥT andΥD are the speeds of the
truck and drone, respectively. This penalized cost is then used as the fitness function
to compute the fitness of the individuals.

3.1.2 Min-time TSP-D

Inmin-time TSP-D, the completion time of a solution s, denoted t ime(s), is calculated
as

time(s) = max(tn+1, t
′
n+1). (6)

Similar to min-cost TSP-D, we also have the penalized cost of a solution s in the min-
time objective as the sum of the completion time of two vehicles and the penalties for
violating the constraint. It is computed as follows:

φ(s) = time(s) + ω
∑

〈i, j,k〉∈DD

max(0,max(τi→k + Γtruck,

τ ′
i j + τ ′

jk + Γdrone) − ε).

(7)

Again, this is used to compute the fitness of individuals.

3.2 Solution representation

A solution in HGA is represented as a giant TSP tour (giant tour) with the two depots
removed. We also denote this as a (giant-tour) chromosome. When a TSP-D solution
is needed for a local search method, it can be obtained using the split procedure, which
runs in polynomial time (Ha et al. 2018). Conversely, we can retrieve a giant tour from
a TSP-D solution by using a restore method, which will be discussed in the coming
section. To conclude, by having a transformation between a giant tour and TSP-D
solution using the split and restore method, we can use the fast and efficient operators
in both the crossover and local search step. A demonstration of this transformation is
described in Fig. 1.

3.3 Individual evaluation

This section discusses the individual assessment method which has been proposed
in Vidal et al. (2012). To evaluate any individual P1 in the population, we consider
two factors: its penalized cost φ(P1) (described in Sect. 3.1) and its contribution to the
diversity of the population, denoted Δ(P1) and calculated as the average “distance”
from P1 to its closest neighbours in the population. By taking into account these two
factors, we can obtain a balance between intensification and diversification. Other-
wise, the heuristic might either converge too soon and too quickly (focusing only on
improving the penalized cost) or will always explore completely different giant tours,
leading to a random search. In detail, the diversity contribution described above is
presented in Eq. 8:

123



A hybrid genetic algorithm for the traveling salesman…

Fig. 1 Transformations between giant-tour chromosome and TSP-D solution

Δ(P1) = 1

nclose

∑

P2∈Nclose

δ(P1, P2), (8)

where nclose is the number of considered closest neighbours, and Nclose is the set of
closest neighbours of P1 (i.e., the set of elements sorted using Eq. 9). The distance
between two individuals P1 and P2, denoted δ(P1, P2), is a normalized Hamming
distance based on the differences between the nodes in the same positions of the
giant-tour chromosome. This distance is shown in Eq. 9, where 1(condition) is a
valuation function that returns 1 if the condition is true and 0 otherwise.

δ(P1, P2) = 1

n

∑

i=1,...,n

[1(Pgt
1 (i) 	= Pgt

2 (i))], (9)

where 1(Pgt
1 (i) 	= Pgt

2 (i)) returns 1 if the node in position i of the giant-tour chro-
mosome in P1 is different than the node in position i of the giant-tour chromosome of
P2, and 0 otherwise.

The evaluation of an individual P , or as we call it, the biased fitness, denoted
BF(P), is then computed as in Eq. 10, where f i t(P) is the rank of P in the subpopu-
lation of size nbIndiv with respect to its penalized cost φ(P), and dc(P) is the rank
of P in the subpopulation in terms of diversity contribution. The parameter nbEli te
ensures that a certain number of elite individuals will survive to the next generation
during the survival selection process [proven in Vidal et al. (2012)].

BF(P) = f i t(P) +
(

1 − nbEli te

nbIndiv

)

dc(P) (10)

123



Q. M. Ha et al.

3.4 Parent selection and crossover

Each iteration in HGA includes a generation of a new child chromosome. This is
done by first merging two subpopulations into one population and randomly selecting
two parents, P1 and P2, in that population using the tournament selection method. In
detail, to choose a parent, we pick two individuals from the complete population above
and select the one with the best biased fitness. Two parents have then gone through a
crossover step.

For crossover operators, one can use the classical TSP crossovers—OX (order
crossover), PMX (partially mapped crossover), OBX (order-based crossover), and
PBX (position-based crossover) (Potvin 1996). In this paper, we propose a problem-
dependent crossover called DX that can solve the TSP-D more effectively. The most
important feature of DX is that it exploits the characteristics of a TSP-D solution—the
drone deliveries and truck deliveries—and try to transmit that information from the
parents to the offspring. A detailed description of this crossover is presented in Fig. 2,
and the crossover is described in Algorithm 2.

Algorithm 2 Crossover DX for TSP-D
1: Input: Parents P1, P2 and the corresponding TSP-D solution of P1 which is (T D1, DD1)

2: Let T SP1 = P1 with 2 depots added, T SP2 = P2 with 2 depots added
3: Let C = An empty chromosome with 2 depots added
4: Let r = A random number in range of [0, 1];
5: if r ≤ 0.5 then
6: Choose 2 cut points a, b, a < b in T D1 and copy the nodes between these cut points to C while

respecting its position in T SP1
7: else
8: Choose 2 cut points a, b, a < b in DD1 and copy the nodes between these cut points to C while

respecting its position in T SP1
9: end if
10: Fill the other positions ofC , starting at position 1, by taking the remaining nodes of T SP1 while keeping

their relative orders in T SP2.
11: Return C with 2 depots removed.

In detail, Algorithm 2 first takes the two parents P1, P2 as one of its inputs.
Moreover, in line 1, it also takes into account the corresponding TSP-D solution
(T D1, DD1) of P1, which was obtained during the “education” process (Line 6 of
Algorithm 1). Subsequently, it defines two TSP tours, T SP1, T SP2, in Line 2 by tak-
ing two parents and adding two depots to them. An empty offspring with two depots
is also initialized in Line 3. In Line 4, a random number is generated to decide from
which component—T D1 or DD1—the algorithm will inherit. In either case, it will
choose a random segment of the chosen component by generating two random cut
points, a, b, with a < b, and copy the nodes between those cut points to C while
keeping their original positions in T SP1 (Lines 5–9). Finally, the remaining nodes of
C are filled one by one, starting from position 1, by taking the remaining nodes of
T SP1 and copying to C while keeping their relative orders in T SP2 (Line 10). The
offspring is returned by removing two depots of C (Line 11).

123



A hybrid genetic algorithm for the traveling salesman…

Fig. 2 DX crossover for TSP-D

3.5 Education using local search

The main role of the education step is to improve the quality of solutions by means
of the local search procedure. We design a hill-climbing and first-improvement local
search for both min-cost and min-time objectives. Similar to Vidal et al. (2012), we
also apply the technique proposed in Toth and Vigo (2003) to restrict the search to
the h × n closest vertices, where h = 0.1 is the granular threshold. This technique
significantly reduces the computation time consumed by the education process. We
define neighborhoods for the TSP-D based on a set of 16 move operators in which
3 operators—N1, N13 and N14—are inherited from the work of Ha et al. (2018). In
each operator, the evaluation separately evaluates the move costs for the min-cost and
min-time objectives. For min-cost, it is the total truck and drone costs of the affected
arcs, while the total truck and drone travel times of the affected arcs are calculated
in the min-time problem. Moreover, the truck and drone cumulative time and cost as
well as the cost and time of all drone tuples in setP are pre-computed at the beginning
of the HGA to effectively accelerate the algorithm.

123



Q. M. Ha et al.

Fig. 3 Illustrations ofN1 toN6

We now describe in detail the neighbourhoods to be explored. The illustrations of
these move operators are also presented in Figs. 3, 4 and 5.

– N1 (Truck-only relocation 1–1): Choose random truck-only node u (the node
where the drone is carried by truck), and relocate it after a node v in the truck tour.

– N2,N3 (Truck-only relocation 2–1): Choose two random consecutive truck-only
nodes u1, u2, and relocate them after a node v in the truck tour as u1, u2 or u2, u1.

– N4 (Truck swap 1–1): Choose a random node u in the truck tour, and swap with
another node v in the truck tour.

– N5 (Truck swap 2–1): Choose two random consecutive nodes u1, u2 in the truck
tour such that u2 does not have a drone launch or retrieval activity, and swap
with another node v in the truck tour. Again, we update the corresponding drone
deliveries.

– N6 (Truck swap 2–2): Select two random consecutive nodes u1, u2 in the truck
tour, and swap with two other nodes v1, v2 in the truck tour. Drone deliveries
associated with those nodes are updated.

– N7,N8 (Truck 2-opt): Select two random pairs of consecutive nodes (u, x) and
(v, y) in the truck tour, and relocate them as (u, v), (x, y) or (u, y), (x, v).

– N9 (Interdrone delivery drone-truck swap 1–1): Select a random drone node d,
and swap it with another node u in the truck tour such that u is neither d’s launch
node, rendezvous node, or the node between its launch and rendezvous.

– N10 (Intradrone delivery drone launch swap 1–1): Select a random drone 3-tuple
〈i, j, k〉 in the drone delivery list, and swap i and j .

123



A hybrid genetic algorithm for the traveling salesman…

Fig. 4 Illustrations ofN7 toN12

– N11 (Intradrone delivery drone rdv swap 1–1): This is similar to the above move
operator, except that we swap j and k.

– N12 (Intradrone delivery launch rdv swap 1–1): Again, it is similar to the above
move operator, but instead, we swap i and k.

– N13 (Drone insertion): Select a random node j such that j is either a truck-only
node or the node in between a drone delivery, choose two other nodes i and k in
the truck tour—i is before k—and create a new drone delivery 〈i, j, k〉. This move
is only valid when no drone delivery interference exists between i and k or when
we can say that there is no drone launch or retrieval between i and k.

– N14 (Drone remove): We select a random drone node j , remove the associated
drone delivery, and reinsert j between two consecutive nodes i and k in the truck
tour.

– N15 (Drone swap 1–1): Select two random drone deliveries 〈i1, j1, k1〉 and
〈i2, j2, k2〉, and swap j1 and j2. We will therefore have two new drone deliveries:
〈i1, j2, k1〉 and 〈i2, j1, k2〉.

– N16 (Drone relocation 1–1): Select a random drone delivery 〈i, j, k〉, and choose a
new launch i ′ and rendezvous node k′ for j to have a new drone delivery 〈i ′, j, k′〉.

3.6 Restore method

To more efficiently guide the search for good solutions, a restoration method is devel-
oped in which we use the educated TSP-D solution (the one that has been improved

123



Q. M. Ha et al.

Fig. 5 Illustrations ofN13 to N16

using local search) to update the existing giant tour individual. In detail, the new giant
tour is constructed by reinserting drone nodes in the drone deliveries of the educated
TSP-D solution to a random position between their launch node and rendezvous node
on the truck delivery tour of that solution. After the insertion operation is finished,
two depots are removed to obtain a valid giant tour individual. As a result, we have a
new giant tour individual that is formed by an “educated” truck tour with drone nodes
being reinserted. An illustration of this process is shown in Fig. 6.

It is possible that our randomized restoring can generate a random solution based
on the provided solution but the new solution is at least as good as the old one due to
the optimality of our split procedure. This ensures the convergence of our algorithm.
In the restore method, with each drone delivery 〈i, j, k〉, we have tried three ways to
choose the position for reinserting drone node j : (1) the position right after node i ;
(2) the position right before node k; and (3) a random position between i and k. The
experimental results show that the third option performs the best. Our guess is that
random restore method could help to increase the diversification of the algorithm, thus
avoid the algorithm converging too fast.

3.7 Populationmanagement

As an adaptation of the framework in Vidal et al. (2012), the population management
mechanism in HGA remains untouched. In detail, two subpopulations are created
and managed separately. They are the feasible and infeasible subpopulations. Each
contains between μ to μ + λ individuals.

In the initialization step, ninit Pop of individuals are created by generating a set of
TSP tours using a k-cheapest insertion heuristicwith k = 3 (Ha et al. 2018). The choice
of a heuristic-based population comes from the analysis of Murray and Chu (2015)

123



A hybrid genetic algorithm for the traveling salesman…

Fig. 6 Reinsertion in restore method. Truck travels the solid lines and drone travels the dashed lines

and the tested result in Ha et al. (2018), which suggests the use of high-quality TSP
tours instead of completely random ones. We obtain the giant tour chromosomes after
these generation steps. These tours then pass through the split method to obtain the
corresponding TSP-D solutions of each individual. In the next step, individuals’ TSP-
D solutions are processed using the education process to improve their qualities, and
when an infeasibility occurs, they are probablistically repaired. After that, the restore
method is called to update individuals’ giant tour chromosomes. The individuals are
then added to the appropriate subpopulations based on their feasibilities.

Any subpopulation that exceeds the size ofμ+λ is passed through a select survivors
method in which λ individuals are discarded. The discarded ones are ones defined as
“clones” or the worst individuals with respect to their biased fitnesses. Solutions are
defined as clones if and only if they have the same giant tour (possibly in reversed
order).

Furthermore, the penalty coefficientω is dynamically adjusted during the search for
each 100 iterations. This mechanism is necessary to guide the algorithm in two search
spaces.More specifically, the penalty coefficient is increasedwhen the search produces
too many infeasible solutions (meaning that it falls too deeply into the infeasible
search space) and is decreased in the opposite case. In detail, let E REF be the targeted
proportion of the feasible solution, and we then adjust the parameter ω as follows: if
the naturally feasible proportion is below E REF − ζ% (is higher than E REF + ζ%),
then the penalty coefficient is increased by ηI (decreased by ηD). Thismeans that when
the feasible proportion is in the range E REF± ζ%, the coefficient remains unchanged
to avoid the search jumping too quickly between regions in the search space.

When the search is not improved after I terDIV iterations, thediversificationmethod
is called, inwhichwe retain the best nbest individualswith respect to their biased fitness

123



Q. M. Ha et al.

and generate ninit Pop new individuals as in the initialization phase. This technique is
important because it creates new genetic materials for the search when the population
has lost its diversification characteristic.

4 Computational results

This section presents the computational results of the HGA, which has been imple-
mented inC++ and compiledwith the “-O3” flag. The experiments are run on a desktop
computer with an Intel Core i7-6700, 3.4GHz processor.

Because the parameters proposed in Vidal et al. (2012) have been proven to work
well on many variants of VRP, we retained most of them. In detail, the default param-
eters of HGA are μ = 15, λ = 25, ninit Pop = 4μ, ζ = 5%, ηI = 1.2, ηD =
0.85, nbest = μ/3, nbEli te = 6, E REF = 0.3, nclose = 0.2, ω = 1.0, I terN I =
2500, and I terDIV = 0.3 × I terN I .

For the TSP-D parameters, we used the parameters proposed in Murray and Chu
(2015): the truck speed and drone speed were set to 40km/h, and the drone endurance
ε was 20min. The time required to launch and retrieve the drone (sL and sR) were
both set to 1min.

As described in Sect. 3.1, there are two types of infeasibilities in a TSP-D: truck
travel timeanddrone travel timeconstraint violations. From those constraint violations,
we define three levels of relaxations.

– RelaxAll We accept both types of infeasibilities.
– RelaxTruckWe only accept the truck travel time constraint violation in infeasible
solutions.

– RelaxDroneWeonly accept the drone travel time constraint violation in infeasible
solutions.

The impacts of these different types of relaxations are investigated in Sect. 4.3. By
default, RelaxAll is used. The default selection for the crossover is DX, which is the
best performing crossover as tested in Sect. 4.2.

The following sections are organized as follows. We first evaluate the performance
of HGA with different instance sets and compare with the existing methods. Next, an
analysis of the impacts of different crossovers is presented. Finally, we evaluate the
sensitivity of each component in HGA.

4.1 Performance on different instance sets

In this section, we test HGA on three sets of instances: (1) 72 min-time instances of
10 customers from Murray and Chu (2015); (2) 60 instances of 50 and 100 customers
fromHa et al. (2018) under bothmin-time andmin-cost objective functions; and (3) 24
instances with various size introduced in the recent work of Freitas and Penna (2018).
For the HGA, we collected its best found solutions and computed the objective func-
tion’s value of solutions on average over 10 runs. Current best methods—GRASP
in Ha et al. (2018), HGVNS in Freitas and Penna (2018) and different approaches
proposed in Murray and Chu (2015)—were selected to compare with HGA. As men-

123



A hybrid genetic algorithm for the traveling salesman…

tioned before, the standard version of HGA with DX and RelaxAll was used in this
experiment. The results for Instance Sets (1), (2) and (3) are presented in Tables 1, 2,
3 and 4.

4.1.1 Results for instances fromMurray and Chu (2015)

In Table 1, we compare HGA with the best results found by Murray and Chu (2015)
and GRASP Ha et al. (2018) among 36 instances of Set 1 with two settings of drone
endurance (20 and 40min). The ε column shows the drone endurance in minutes.
Column HGA represents the best found solutions while column HGA reports the
average values among 10 runs of our new algorithm. The values in bold text imply the
best result found among the three approaches. Overall, HGA was able to improve the
existing best found solutions in 9 tests and obtained results as good as the best ones in
60 tests. Column HGA shows the stability of HGA in this context when the solutions
over 10 runs generally reach the best ones in all instances but two. The results also
demonstrate a dominance of our HGA over GRASP in terms of solutions’ quality.
However, HGA is in general slower than GRASP.

4.1.2 Results for instances from Ha et al. (2018)

Tables 2 and 3 report the comparisons of objective value and average run time (in min-
utes) between HGA and GRASP in Ha et al. (2018) on Instance Set 2. We collected
the average value (Column “HGA”) and best solution of HGA found among repeated
runs (Column “HGA”) and its average run time in minutes (Column “THGA”). The
corresponding values of GRASP are reported in Column “GRASP”, “GRASP”,
and “TGRASP”. Column “Change (%)” calculates the percentage change between best
found objective values of HGA and GRASP. A negative value indicates an improve-
ment of our new method in comparison to GRASP. With respect to this comparison,
HGAshows improvements in terms of solutions‘ quality in bothmin-cost andmin-time
objectives.

In detail, for min-cost TSP-D (Table 2), the average objective values of solutions
of HGA are even better than those of the best found solutions of GRASP on most
instances (see Columns “HGA”and “GRASP”). The proposed algorithm can signif-
icantly improve existing best known solutions by 6.40% and 15.10% on average (up to
nearly 15%and20%) for 50- and 100-customer instances, respectively.We can observe
that the algorithm performs better in large instances (i.e., 100-customer instances).
However, it is worth mentioning that GRASP performs better on two instances D5
and D6. Regarding run time, HGA is 1.5 to 2 times slower than GRASP due to its
more complex design. This result is acceptable since it still can deliver significantly
better results in less than 1min for 50-customer instances and less than 5min for
100-customer instances.

For min-time TSP-D (Table 3), HGA can also improve the existing best known
solutions found by GRASP on all instances but not as significantly as in min-cost
TSP-D. In detail, the improvements are 2.39% and 4.05% on average (and up to nearly
6% and 8%) for 50- and 100-customer instances, respectively. Again, HGA performs

123



Q. M. Ha et al.

Table 1 Comparison of instance set 1 under min-time objective

Instance ε Murray et al. GRASP HGA HGA Instance ε Murray et al GRASP HGA HGA

437v1 20 56.468 57.446 56.468 56.468 440v7 20 49.996 49.776 49.422 49.422

437v1 40 50.573 50.573 50.573 50.573 440v7 40 49.204 49.204 49.204 49.204

437v2 20 53.207 53.207 53.207 53.207 440v8 20 62.796 62.700 62.576 62.576

437v2 40 47.311 47.311 47.311 47.311 440v8 40 62.270 62.004 62.004 62.004

437v3 20 53.687 54.664 53.687 53.687 440v9 20 42.799 42.566 42.533 42.533

437v3 40 53.687 53.687 53.687 53.687 440v9 40 42.799 42.566 42.533 42.533

437v4 20 67.464 67.464 67.464 67.464 440v10 20 43.076 43.076 43.076 43.076

437v4 40 66.487 66.487 66.487 66.487 440v10 40 43.076 43.076 43.076 43.076

437v5 20 50.551 50.551 50.551 50.551 440v11 20 49.204 49.204 49.204 49.204

437v5 40 45.835 44.835 44.835 44.835 440v11 40 49.204 49.204 49.204 49.204

437v6 20 45.176 47.601 47.311 47.311 440v12 20 62.004 62.004 62.004 62.004

437v6 40 45.863 43.602 43.602 43.602 440v12 40 62.004 62.004 62.004 62.004

437v7 20 49.581 49.581 49.581 49.581 443v1 20 69.586 69.586 69.586 69.586

437v7 40 46.621 46.621 46.621 46.621 443v1 40 55.493 55.493 55.493 55.493

437v8 20 62.381 62.381 62.381 62.381 443v2 20 72.146 72.146 72.146 72.146

437v8 40 59.776 59.416 59.416 59.416 443v2 40 58.053 58.053 58.053 58.053

437v9 20 45.985 42.945 42.416 42.416 443v3 20 77.344 77.344 77.344 77.344

437v9 40 42.416 42.416 42.416 42.416 443v3 40 69.175 68.431 68.431 68.431

437v10 20 42.416 41.729 41.729 41.729 443v4 20 90.144 90.144 90.144 90.144

437v10 40 41.729 41.729 41.729 41.729 443v4 40 82.700 83.700 82.700 82.700

437v11 20 42.896 42.896 42.896 42.896 443v5 20 55.493 58.210 54.973 55.077

437v11 40 42.896 42.896 42.896 42.896 443v5 40 53.447 51.929 51.929 51.929

437v12 20 56.696 56.425 56.273 56.273 443v6 20 58.053 58.053 55.209 55.209

437v12 40 55.696 55.696 55.696 55.696 443v6 40 52.329 52.329 52.329 52.329

440v1 20 49.430 50.164 49.430 49.430 443v7 20 64.409 65.523 65.523 65.523

440v1 40 46.886 46.886 46.886 46.886 443v7 40 60.743 60.743 60.743 60.743

440v2 20 50.708 51.828 50.708 50.708 443v8 20 77.209 78.323 78.323 78.323

440v2 40 46.423 46.423 46.423 46.423 443v8 40 73.967 72.967 72.967 72.967

440v3 20 56.102 58.502 56.102 56.102 443v9 20 49.049 45.931 45.931 45.931

440v3 40 53.933 53.933 53.933 53.933 443v9 40 47.250 45.931 45.931 45.931

440v4 20 69.902 73.091 69.902 69.902 443v10 20 47.935 46.935 46.935 46.935

440v4 40 68.397 68.397 68.397 68.397 443v10 40 47.935 46.935 46.935 46.935

440v5 20 43.533 44.624 43.533 43.533 443v11 20 57.382 56.395 56.395 56.395

440v5 40 43.533 43.533 43.533 43.533 443v11 40 56.395 56.395 56.395 56.395

440v6 20 44.076 44.122 43.949 43.949 443v12 20 69.195 69.195 69.195 69.195

440v6 40 44.076 43.944 43.810 43.853 443v12 40 69.195 69.195 69.195 69.195

123



A hybrid genetic algorithm for the traveling salesman…

Ta
bl
e
2

C
om

pa
ri
so
n
w
ith

G
R
A
SP

un
de
r
m
in
-c
os
to

bj
ec
tiv

e—
in
st
an
ce

se
t2

In
st
an
ce

G
R
A
S
P

G
R
A
S
P

T G
R
A
S
P

(m
in
)

H
G
A

H
G
A

C
ha
ng

e
(%

)
T
H
G
A

(m
in
)

In
st
an
ce

G
R
A
S
P

G
R
A
S
P

T G
R
A
S
P

(m
in
)

H
G
A

H
G
A

C
ha
ng

e
(%

)
T
H
G
A

(m
in
)

B
1

13
72

.8
2

14
13

.2
4

0.
27

12
25

.7
8

12
39

.8
5

−
10

.7
1

0.
5

E
1

22
06

.5
3

22
55

.9
9

2.
28

17
75

.1
18

02
.4
7

−
19

.5
5

3.
47

B
2

14
91

.3
15

13
.9
8

0.
26

13
81

.8
9

14
02

.9
8

−
7.
34

0.
38

E
2

22
10

.6
1

22
73

.0
9

2.
28

17
95

.0
3

18
30

.9
5

−
18

.8
0

3.
66

B
3

15
03

.7
8

15
21

.6
7

0.
28

13
57

.1
7

13
70

.8
2

−
9.
75

0.
45

E
3

22
48

.1
6

23
12

.7
6

2.
48

18
18

.1
6

18
61

.5
9

−
19

.1
3

3.
5

B
4

13
96

.1
7

14
26

.2
0.
27

12
82

.1
6

12
92

. 8
7

−
8.
17

0.
49

E
4

21
79

.0
6

22
23

.9
7

2.
97

17
76

.5
8

18
22

.3
6

−
18

.4
7

3.
68

B
5

14
57

.9
1

15
00

.9
0.
31

13
51

.3
7

13
57

.6
1

−
7.
31

0.
4

E
5

22
86

.1
6

23
60

.3
2.
87

18
66

.2
2

18
99

.2
5

−
18

.3
7

3.
55

B
6

13
16

.0
8

13
53

.7
6

0.
27

11
59

.7
9

11
74

.3
0

−
11

.8
8

0.
44

E
6

22
44

.6
2

23
13

.8
6

3.
26

17
95

.1
7

18
31

.2
3

−
20

.0
2

4.
12

B
7

13
70

.0
5

13
99

.7
1

0.
24

13
08

.2
5

13
22

.7
0

−
4.
51

0.
42

E
7

22
49

.0
9

23
13

.6
7

3.
18

18
92

.4
1

19
23

.1
8

−
15

.8
6

3.
46

B
8

14
84

.9
3

15
17

.2
3

0.
25

12
55

.6
1

12
75

.6
1

−
15

.4
4

0.
62

E
8

22
20

.8
8

22
72

.5
5

3.
15

18
13

.7
3

18
31

.4
6

−
18

.3
3

4.
3

B
9

14
42

.0
9

14
68

.8
6

0.
28

13
55

.3
2

13
63

.5
3

−
6.
02

0.
52

E
9

22
79

.9
1

23
26

.2
9

2.
87

18
82

.7
1

19
01

.7
6

−
17

.4
2

5.
01

B
10

13
92

.5
4

14
29

.5
7

0.
25

12
52

.9
12

57
.4
8

−
10

.0
3

0.
47

E
10

23
24

.7
4

23
84

.5
2

3.
41

18
70

.5
5

19
32

.7
5

−
19

.5
4

4.
07

C
1

28
70

.4
1

29
35

.8
7

0.
21

26
79

.1
27

03
.1
4

−
6.
66

0.
29

F1
45

69
.8
3

46
48

.2
1.
85

37
66

.6
3

38
54

.5
6

−
17

.5
8

3.
24

C
2

28
04

.4
7

28
68

.6
7

0.
26

27
50

.7
4

27
55

.0
4

−
1.
92

0.
36

F2
41

86
.7
6

43
18

.7
8

2.
38

34
69

.5
4

35
75

.9
0

−
17

.1
3

3.
95

C
3

30
87

.5
5

31
85

.0
9

0.
16

29
32

.7
8

29
52

.4
8

−
5.
01

0.
32

F3
44

14
.3
8

45
63

.6
4

2.
45

37
51

.0
7

38
91

.2
7

−
15

.0
3

3.
02

C
4

28
44

.1
29

16
.8
6

0.
20

26
55

.2
5

26
76

.8
2

−
6.
64

0.
67

F4
44

99
.0
9

46
00

.2
7

2.
14

38
18

.6
2

38
62

.5
7

−
15

.1
2

3.
27

C
5

33
23

.9
2

33
67

.3
4

0.
19

31
33

.6
9

31
56

.8
8

−
5.
72

0.
36

F5
43

81
.3
7

45
97

.3
2

2.
66

37
56

.7
8

38
07

.8
6

−
14

.2
6

3.
28

C
6

34
33

.9
9

34
72

.3
9

0.
19

32
38

.9
2

32
68

.4
9

−
5.
68

0.
4

F6
40

32
.9

41
71

.8
2.
63

34
65

.5
6

35
60

.6
6

−
14

.0
7

2.
54

C
7

30
01

.1
3

30
47

.7
1

0.
21

26
81

.0
1

27
38

.7
1

−
10

.6
7

0.
91

F7
40

76
.3
1

42
13

.5
2

2.
84

36
01

.7
8

36
60

.9
0

−
11

.6
4

4.
83

123



Q. M. Ha et al.

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce

G
R
A
S
P

G
R
A
S
P

T G
R
A
S
P

(m
in
)

H
G
A

H
G
A

C
ha
ng

e
(%

)
T
H
G
A

(m
in
)

In
st
an
ce

G
R
A
S
P

G
R
A
S
P

T G
R
A
S
P

(m
in
)

H
G
A

H
G
A

C
ha
ng

e
(%

)
T
H
G
A

(m
in
)

C
8

34
81

.1
7

35
57

.9
9

0.
22

32
50

.1
9

32
59

.2
2

−
6.
64

0.
91

F8
44

91
.2

45
97

.9
2.
77

38
03

.1
4

39
30

.3
7

−
15

.3
2

3.
91

C
9

32
67

.2
3

33
06

.3
8

0.
19

30
32

.7
3

30
56

.0
8

−
7.
18

0.
58

F9
43

88
.9
1

44
63

.3
9

2.
55

38
73

.5
1

39
04

.1
8

−
11

.7
4

4.
07

C
10

32
91

.2
33

56
.2
9

0.
23

30
82

.0
7

31
17

.0
5

−
6.
35

0.
61

F1
0

41
73

.6
4

45
67

.8
4

2.
57

38
37

.4
7

38
95

.0
6

−
8.
05

3.
1

D
1

41
59

.3
9

43
89

.2
4

0.
21

39
27

.9
7

39
28

. 1
2

−
5.
56

0.
43

G
1

59
47

.9
7

61
48

.5
1.
94

50
84

.5
6

53
12

.3
6

−
14

.5
2

3.
08

D
2

42
75

.4
6

43
34

.4
0.
19

40
97

41
13

.4
7

−
4.
17

0.
58

G
2

58
82

.9
7

59
87

.6
4

2.
63

51
98

.8
9

52
34

.6
7

−
11

.6
3

3.
16

D
3

40
85

.7
1

41
91

.0
8

0.
18

38
46

.8
4

38
61

.6
1

−
5.
85

0.
39

G
3

60
74

.5
7

61
38

.9
4

2.
82

50
63

.8
7

51
16

.3
8

−
16

.6
4

4.
08

D
4

46
12

.4
6

47
14

.6
2

0.
21

43
34

.3
2

43
34

.3
2

−
6.
03

0.
31

G
4

64
58

.9
6

66
32

.1
4

2.
39

55
42

.1
9

57
03

.2
3

−
14

.1
9

4.
1

D
5

47
17

.6
7

47
93

.3
9

0.
20

45
69

.1
6

45
84

.2
2

−
3.
15

0.
65

G
5

61
98

.9
5

63
29

.2
5

2.
59

54
96

.7
7

55
66

.0
9

−
11

.3
3

2.
94

D
6

44
05

.0
2

44
85

.8
7

0.
20

43
84

.0
0

43
85

.8
5

−
0.
48

0.
77

G
6

60
49

.3
4

63
43

.2
6

2.
95

53
77

.5
1

54
63

.6
2

−
11

.1
1

2.
67

D
7

47
49

.5
7

47
96

.2
3

0.
25

46
34

.5
3

46
57

.7
7

−
2.
42

0.
73

G
7

58
89

.0
8

60
23

.1
1

2.
85

53
18

.1
7

53
96

.1
2

−
9 .
69

4.
98

D
8

41
43

.0
3

42
87

.8
7

0.
20

39
11

.9
4

39
63

.0
2

−
5.
58

0.
64

G
8

55
99

.5
5

58
71

.9
6

2.
62

51
12

.5
8

52
46

.5
0

−
8.
70

5.
03

D
9

46
53

.7
3

46
88

.1
6

0.
22

44
69

.7
8

44
90

.6
7

−
3.
95

0.
66

G
9

60
50

.8
62

54
.5

3.
08

49
96

.4
2

51
87

.4
5

−
17

.4
3

4.
3

D
10

42
60

.6
43

01
.8
3

0.
20

42
08

.9
3

42
32

.3
8

−
1.
21

0.
95

G
10

62
49

.6
9

65
34

.1
3

2.
70

54
73

.9
1

55
98

.2
5

−
12

.4
1

3.
77

M
ea
n

0.
22

−
6 .
40

0.
51

2.
65

−
15

.1
0

3.
68

123



A hybrid genetic algorithm for the traveling salesman…

Ta
bl
e
3

C
om

pa
ri
so
n
w
ith

G
R
A
SP

un
de
r
m
in
-t
im

e
ob
je
ct
iv
e—

in
st
an
ce

se
t2

In
st
an
ce

G
R
A
S
P

G
R
A
S
P

T G
R
A
S
P

(m
in
)

H
G
A

H
G
A

C
ha
ng

e
(%

)
T
H
G
A

(m
in
)

In
st
an
ce

G
R
A
S
P

G
R
A
S
P

T G
R
A
S
P

(m
in
)

H
G
A

H
G
A

C
ha
ng

e
(%

)
T
H
G
A

(m
in
)

B
1

12
0.
68

12
1.
69

0.
45

11
5.
65

11
6.
43

−4
.1
7

0.
76

E
1

18
8.
58

19
2.
08

5.
45

18
7.
67

18
8.
32

−0
.4
8

3.
6

B
2

11
8.
53

11
9.
46

0.
48

11
8.
39

11
8.
39

−0
.1
2

0.
33

E
2

19
0.
55

19
2.
88

5.
71

18
7.
21

18
8.
01

−1
.7
5

5.
6

B
3

11
9.
7

12
0.
25

0.
52

11
6.
21

11
6.
39

−2
.9
2

0.
57

E
3

18
9.
05

19
2.
83

5.
65

18
8.
09

18
8.
89

−0
.5
1

4.
58

B
4

12
3.
02

12
4.
7

0.
36

11
8.
71

11
9.
26

−3
.5
0

0.
47

E
4

18
8.
61

19
1.
27

4.
54

18
6.
23

18
6.
99

−1
.2
6

4.
69

B
5

11
9 .
46

12
0.
77

0.
48

11
5.
78

11
5.
91

−3
.0
8

0.
58

E
5

19
0.
47

19
3.
61

4.
34

18
7.
71

18
8.
26

−1
.4
5

4.
06

B
6

11
9.
54

12
1.
46

0.
39

11
4.
31

11
5.
46

−4
.3
8

0.
88

E
6

19
0.
32

19
3.
86

4.
10

18
9.
16

18
9.
44

−0
.6
1

4.
84

B
7

11
8.
54

12
1.
02

0.
33

11
5.
52

11
5.
63

−2
.5
5

0.
62

E
7

19
1.
51

19
4.
41

4.
33

19
0.
39

19
0.
89

−0
.5
8

3.
84

B
8

11
9.
36

11
9.
99

0.
35

11
7.
9

11
8.
04

−1
.2
2

0.
78

E
8

19
0.
47

19
3.
74

3.
86

18
9.
02

18
9.
54

−0
.7
6

4.
22

B
9

11
8.
26

11
9.
86

0.
42

11
7.
64

11
7.
72

−0
.5
2

0.
39

E
9

19
1.
12

19
3.
7

4.
31

18
9.
76

18
9.
94

−0
.7
1

4

B
10

11
9.
8

12
1.
27

0.
37

11
7.
38

11
7.
70

−2
.0
2

0.
6

E
10

18
9.
71

19
3.
28

4.
17

18
9.
45

18
9.
91

−0
.1
4

3.
4

C
1

22
0.
63

22
2.
6

0.
27

21
5.
07

21
5.
37

−2
.5
2

0.
6

F1
34

1.
68

34
4.
98

2.
65

32
2.
94

32
6.
10

−5
.4
8

5.
73

C
2

21
0.
39

21
1.
14

0.
41

20
9.
23

21
0.
11

−0
.5
5

0.
53

F2
32

5.
7

33
0.
63

2.
87

30
8.
74

31
0.
89

−5
.2
1

5.
24

C
3

21
4.
61

21
5 .
31

0.
28

21
2.
02

21
2.
22

−1
.2
1

0.
38

F3
33

6.
35

34
0.
92

3.
88

30
9.
67

31
3.
55

−7
.9
3

5.
61

C
4

22
5.
15

22
5.
47

0.
25

21
2.
08

21
3.
27

−5
.8
1

0.
6

F4
32

6.
79

33
4.
69

1.
98

31
1.
37

31
4.
96

−4
.7
2

6.
06

C
5

22
6.
36

23
3.
97

0.
32

22
3.
06

22
4.
57

−1
.4
6

0.
48

F5
33

5.
88

34
4.
61

2.
04

31
4.
82

31
7.
83

−6
.2
7

6.
57

C
6

24
0.
37

24
2.
22

0.
27

23
4.
01

23
5.
56

−2
.6
5

0.
31

F6
30

9.
71

31
9.
22

2.
23

29
4.
38

29
7.
47

−4
.9
5

4.
7

C
7

22
7.
73

22
9.
56

0.
20

22
2.
27

22
3.
40

−2
.4
0

0.
51

F7
31

7.
86

33
0.
83

1.
67

31
1.
41

31
6.
15

−2
.0
3

4.
92

123



Q. M. Ha et al.

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

G
R
A
S
P

G
R
A
S
P

T G
R
A
S
P

(m
in
)

H
G
A

H
G
A

C
ha
ng

e
(%

)
T
H
G
A

(m
in
)

In
st
an
ce

G
R
A
S
P

G
R
A
S
P

T G
R
A
S
P

(m
in
)

H
G
A

H
G
A

C
ha
ng

e
(%

)
T
H
G
A

(m
in
)

C
8

24
2.
19

24
5.
12

0.
37

23
4.
26

23
7.
53

−3
.2
7

0.
46

F8
34

5.
44

35
0.
75

1.
96

32
3.
74

32
6.
40

−6
.2
8

5.
21

C
9

23
7.
98

24
1.
07

0.
26

22
6.
01

22
7.
43

−5
.0
3

0.
68

F9
33

9.
53

34
2.
41

1.
83

31
5.
56

31
8.
47

−7
.0
6

4.
66

C
10

23
0.
03

23
5.
47

0.
33

22
6.
17

22
6.
17

−1
.6
8

0.
48

F1
0

33
2.
05

34
0.
35

1.
87

31
2.
7

31
5.
13

−5
.8
3

3.
94

D
1

31
5.
8

31
8.
9

0.
31

30
6.
39

30
7.
09

−2
.9
8

0.
61

G
1

43
7.
48

45
0.
23

1.
87

41
7.
92

42
5.
19

−4
.4
7

4.
45

D
2

31
7 .
15

32
2.
85

0.
29

31
3.
93

31
5.
64

−1
.0
2

0.
57

G
2

41
5.
32

42
4.
88

2.
67

38
9.
64

39
0.
14

−6
.1
8

2.
4

D
3

30
0.
4

30
3.
26

0.
29

29
5.
86

29
7.
54

−1
.5
1

0.
6

G
3

44
6.
6

45
4.
98

2.
45

41
1.
47

41
5.
14

−7
.8
7

4.
9

D
4

33
3.
47

33
6.
7

0.
31

32
3.
72

32
4.
60

−2
.9
2

0.
56

G
4

44
9.
68

46
5.
83

1.
83

43
3.
09

43
5.
56

−3
.6
9

4.
67

D
5

32
4.
68

32
6.
46

0.
25

32
1.
46

32
1.
83

−0
.9
9

0.
4

G
5

43
4.
6

44
6.
73

1.
67

42
1.
05

42
2.
49

−3
.1
2

4.
48

D
6

31
5.
16

31
7.
73

0.
28

31
3.
21

31
3.
65

−0
.6
2

0.
49

G
6

45
0.
28

46
2

1.
73

41
5.
46

42
0.
84

−7
.7
3

5.
51

D
7

32
9.
31

33
0.
24

0.
33

31
6.
65

31
7.
83

−3
.8
4

0.
32

G
7

42
0

43
9.
62

1.
42

40
9.
31

41
2.
14

−2
.5
5

5.
21

D
8

30
6.
28

31
2.
12

0.
31

29
3.
76

29
6.
51

−4
.0
9

0.
58

G
8

44
2.
67

45
3.
19

1.
71

40
6.
51

40
7.
89

−8
.1
7

5.
08

D
9

32
6.
09

33
1.
31

0.
27

31
7.
85

31
8.
31

−2
.5
3

0.
41

G
9

45
6.
78

46
9.
49

1.
32

42
8.
16

43
5.
75

−6
.2
7

5.
91

D
10

30
6.
1

30
9.
54

0.
29

30
5.
51

30
5 .
54

−0
.1
9

0.
41

G
10

46
0.
89

47
0.
44

2.
15

42
6.
82

43
0.
94

−7
.3
9

5.
4

M
ea
n

0.
33

−2
.3
9

0.
52

2.
66

−4
.0
5

4.
51

123



A hybrid genetic algorithm for the traveling salesman…
Ta
bl
e
4

C
om

pa
ri
so
n
w
ith

H
G
V
N
S
in

Fr
ei
ta
s
an
d
Pe
nn
a
(2
01

8)
un

de
r
m
in
-t
im

e
ob

je
ct
iv
e

In
st
an
ce

T
S
P

∗
H
G
A

G
a
p
H
G
A
(%

)
H
G
A

G
a
p
H
G
A
(%

)
T
H
G
A
(s
)

H
G
V
N
S

G
a
p
H
G
V
N
S
(%

)
H
G
V
N
S

G
a
p
H
G
V
N
S
(%

)
T
H
G
V
N
S
(s
)

be
rl
in
52

23
9.
75

19
8.
00

−
17

.4
1

19
9.
80

−
16

.6
6

14
.1
5

21
0.
03

−
12

.3
9

22
0.
23

−
8.
14

6.
50

bi
er
12

7
36

65
.6
0

34
99

.1
1

−
4.
54

35
06

.4
2

−
4.
34

64
.0
6

34
56

.8
0

−
5.
70

35
87

.8
8

−
2.
12

53
.6
9

ch
13

0
18

7.
83

18
2.
86

−
2.
64

18
2.
86

−
2.
64

76
.1
2

17
8.
16

−
5.
15

18
0.
40

−
3.
95

44
.1
3

d1
98

46
3.
45

46
0.
16

−
0.
71

46
1.
16

−
0.
50

11
4.
00

46
1.
83

−
0.
35

46
1.
83

−
0.
35

67
.6
9

ei
l5
1

13
.4
5

13
.4
5

0.
00

13
.4
5

0.
00

10
.5
1

13
.4
5

0.
00

13
.6
8

1.
71

11
.5
7

ei
l7
6

16
.9
0

16
.9
0

0.
00

16
.9
0

0.
00

26
.7
1

16
.3
5

−
3.
25

16
.6
8

−
1.
30

27
.1
4

kr
oA

10
0

66
1.
30

53
9.
91

−
18

.3
6

54
1.
36

−
18

.1
4

97
.8
7

58
7.
80

−
11

.1
1

60
9.
71

−
7.
80

30
.9
5

kr
oA

15
0

82
2.
60

68
8.
35

−
16

.3
2

69
3.
61

2
−
15

.6
8

14
5.
16

76
4.
42

−
7.
07

78
0.
93

−
5.
07

40
.9
5

kr
oA

20
0

92
2.
05

80
6.
87

−
12

.4
9

82
0.
86

−
10

.9
7

16
9.
53

87
0.
65

−
5.
57

87
3.
99

−
5.
21

46
.5
3

kr
oB

15
0

82
3.
65

65
6.
36

−
20

.3
1

67
6.
11

−
17

.9
1

14
6.
29

76
3.
15

−
7.
35

77
3.
72

−
6.
06

50
.2
0

kr
oB

20
0

91
7.
95

79
9.
64

−
12

.8
9

80
1.
36

−
12

.7
0

15
2.
21

83
5.
43

−
8.
99

83
8.
40

−
8.
67

31
.9
4

kr
oC

10
0

66
2.
30

54
4.
68

−
17

.7
6

54
7.
38

−
17

.3
5

79
.2
2

65
8.
38

−
0.
59

66
0.
93

−
0.
21

36
.6
3

kr
oD

10
0

66
1.
00

54
4.
88

−
17

.5
7

54
7.
22

−
17

.2
1

65
.4
3

60
6.
45

−
8.
25

65
2.
34

−
1.
31

40
.1
5

kr
oE

10
0

69
0.
35

57
6.
97

−
16

.4
2

58
1.
86

−
15

.7
1

69
.4
1

65
1.
31

−
5.
65

65
9.
48

−
4.
47

48
.5
7

lin
10

5
42

0.
60

37
7.
95

−
10

.1
4

38
1.
69

−
9.
25

90
.8
9

37
8.
25

−
10

.0
7

38
0.
43

−
9.
55

40
.2
7

pr
10

7
12

22
.5
0

10
32

.6
4

−
15

.5
3

10
38

.1
1

−
15

.0
8

79
.0
5

12
04

.4
2

−
1.
48

12
24

.3
5

0.
15

32
.5
4

pr
12

4
16

87
.2
5

16
15

.8
8

−
4 .
23

16
18

.1
0

−
4.
10

46
.6
7

16
53

.8
0

−
1.
98

19
96

.6
2

18
.3
4

25
.4
5

pr
13

6
27

62
.0
0

23
97

.2
5

−
13

.2
1

24
74

.3
0

−
10

.4
2

14
1.
84

26
42

.0
0

−
4.
34

27
89

.0
0

0.
98

44
.5
0

pr
14

4
16

88
.7
5

16
75

.7
5

−
0.
77

16
75

.7
5

−
0.
77

17
5.
92

16
66

.2
5

−
1.
33

16
75

.7
5

−
0.
77

43
.3
3

pr
15

2
21

23
.9
5

19
69

.8
0

−
7.
26

19
73

.6
7

−
7.
08

11
9 .
13

21
14

.0
4

−
0.
47

21
28

.5
3

0.
22

61
.2
9

ra
t9
9

37
.4
5

37
.4
5

0.
00

37
.4
5

0.
00

54
.7
1

37
.1
5

−
0.
80

37
.3
3

−
0.
32

35
.3
7

ra
t1
95

71
.5
0

71
.5
0

0.
00

71
.5
0

0.
00

16
8.
83

71
.4
0

−
0.
14

71
.9
3

0.
60

44
.8
9

rd
10

0
24

6.
70

21
7.
00

−
12

.0
4

21
9.
42

−
11

.0
6

85
.1
4

24
0.
46

−
2.
53

24
3.
84

−
1.
16

33
.8
7

st
70

21
.0
0

21
.0
0

0.
00

21
.0
0

0.
00

21
.9
1

20
.5
0

−
2.
38

21
.0
0

0.
00

3.
85

A
ve
ra
ge

−
9.
19

−
8.
65

92
.2
8

−
4.
46

−
3.
69

37
.5
8

123



Q. M. Ha et al.

approximately 1.5 times slower than GRASP but can still deliver better solutions in
less than 1min and 5min for 50- and 100-customer instances, respectively.

4.1.3 Results for instances from Freitas and Penna (2018)

We report the comparison between HGA and HGVNS proposed by Freitas and Penna
(2018) on Instance Set 3 under Min-time objective in Table 4. In this table, Column
“T SP∗” is the optimal TSP value obtained by Concorde (Applegate et al. 2006),
Columns “HGA” and “HGA”, respectively, are the best and average results among 10
repeated runs. Columns “GapHGA” and “GapHGA” represent the best and average
gaps between HGA and optimal TSP while Column “THGA” reports the average
running time of HGA. Similarly, Columns “HGVNS”, “HGV NS”, “GapHGV NS”,
“GapHGV NS” and THGV NS represent the best and average value and gap as well as
the running time of HGVNS.

In overall, among 24 instances, HGA can improve existing best known solution
found by HGVNS in 16 instances, performs worse than HGVNS in 7 instances and
a draw in one instance (eil51). In average, HGA performs approximately 5% better
than HGVNS and up to 17.17% in kroC100. Regarding the computational cost, HGA
is about 2 times slower than HGVNS but the running time between two algorithms
is not fairly compared since they are run on two different machine configurations
(HGVNS runs on a faster machine Intel Core i7 Processor 3.6GHz). In detail, HGA
mostly performs better thanHGVNS on instances where solutions containmany drone
deliveries (such as the kro instances) while HGVNS, on the other hand, can find better
solutions among instances where solutions contain very few drone deliveries. This can
be explained by the fact that HGVNS explores the search space from the optimal TSP
solutions, which are very closed to the final TSP-D solutions.

4.2 Performance under different crossovers

We evaluate the performance of HGA when using our proposed crossover versus
four classical crossovers (Potvin 1996) (OX, PMX, OBX, and PBX) in Table 5 under
two objectives with Instance Set 2 mentioned in the above section. Again, HGA was
repeatedly run 10 times for each choice of crossover, andwe have conducted 6000 tests
in total. For each crossover, we report the average percentage gap with the best found
solution (regardless of crossover), the run time in minutes (Column “T ”), the standard
deviation (Column “sd”) and the geometric mean value (row “Mean”). Furthermore,
a comparison of the convergence of these crossovers in both objectives is presented in
Figs. 7 and 8, where the Y-axis shows the averaged percentage gap with the best found
solutions, and the X-axis contains the maximum number of iterations over which an
improvement could be made.

Overall, DX delivers the best value among other crossovers in terms of percentage
gap. For min-cost, DX is approximately 18%, 5.7%, 283%, and 16.5% better than OX,
PMX, OBX, and PBX, respectively. For min-time, that superiority is approximately
26.5%, 10.2%, 283%, and 46.9%. As can be seen, OBX performs worst among the
crossovers, possibly due to its design, for which only a random number of separated

123



A hybrid genetic algorithm for the traveling salesman…

Table 5 Crossover performance comparison—min-cost and min-time objective

DX OX PMX OBX PBX

Gap T (min) sd Gap T (min) sd Gap T (min) sd Gap T (min) sd Gap T (min) sd

Min-cost 1.39 1.37 0.86 1.64 1.44 0.87 1.47 1.31 0.92 5.33 0.87 1.28 1.62 1.53 0.95

Min-time 0.49 1.55 0.33 0.62 1.50 0.41 0.54 1.48 0.30 1.88 0.96 0.51 0.72 1.73 0.40

Fig. 7 Crossovers’ performance—min-time objective

nodes is copied from the parent. This causes the OBX to have a smaller chance of
transmitting “good” materials from its parent such as good drone deliveries or good,
complete truck deliveries. The performances of OX and PMX, on the other hand, were
much closer to those of DX, especially for PMX in the min-cost problem, being only
5.7% inferior. This result is because OX and PMX are both designed to copy a random
subsequence of the parent to the children, thus having a high chance of transmitting
“good” materials such as complete drone or truck deliveries from parent to offspring.

With respect to run time, OBX performs nearly 1.5–2 times faster than other
crossovers. However, due to its poor performance, this fast run time is not valuable.
Other crossovers deliver similar run times—less than 2min on average—which is an
acceptable value.

When considering standard deviation, DX, OX, PMX and PBX perform stably, the
values of which are mostly less than 0.5% and no more than 1%, while OBX shows
its instability in delivering values that are more than 0.5% and up to nearly 1.3%.

Finally, from Figs. 7 and 8, we can see a similar pattern in the convergences of all
the crossovers. They all converge quickly in the first 5000 iterations.

123



Q. M. Ha et al.

Fig. 8 Crossovers’ performance—min-cost objective

4.3 Sensitivity analyses

This section provides analyses, as shown in Table 6, of the impact of the key compo-
nents of HGA as based on the measurement of percentage gap on average of solutions
over 10 runs to the best known solutions (BKS). The investigated components are
the restore method, repair mechanism, relaxation choice, infeasibility of solutions,
and diversity contribution. We adapted the standard setting (crossover DX is used
with parameters mentioned at the beginning of Sect. 4) and modified each of the key
components to test their impact. In detail, we have the following.

– No INF Instead of relaxing the endurance constraint on truck and drone travel
times, we insist that it hold. Therefore, no infeasible solution is allowed.

– No DIV We do not count the diversity contribution (setting it to 0) during the
calculation of biased fitness.

– No REPAIR We do not use a repair method in HGA.
– No RESTORE We do not use a restore method in HGA.
– RelaxTruck We only allow for infeasible solutions in which the endurance con-
straint is violated by truck travel times but not the drone’s time.

– RelaxDrone We only allow for infeasible solutions in which the endurance con-
straint is violated by the drone’s travel times but not the truck’s time.

The experiment results show that HGA is indeed sensitive to its parameters (infeasi-
bility, diversity contribution, repair, and restore method) in such a way that any change
to those values negatively impact the algorithm’s performance. However, those nega-
tive changes do not share the same impact. In detail, eliminating the role of the restore
method (No RESTORE) strongly reduces the performance of HGA, which proves
the necessity of this problem-specific component to the general framework in order to
efficiently solve the TSP-D problem.

123



A hybrid genetic algorithm for the traveling salesman…

Table 6 Sensivity analysis of key components

No INF No DIV No REPAIR No RESTORE RelaxTruck RelaxDrone Standard

Min-cost 2.39 2.19 1.34 5.42 2.19 1.30 1.29

Min-time 0.84 0.94 0.58 1.39 0.64 0.79 0.53

The infeasible solutions management, diversity contribution and repair mechanism
(No INF, No DIV and No REPAIR) also contribute to the performance of HGA,
notably the No INF and No DIV, where the increment compared to the standard gap
exceeds 50%. This result proves the effectiveness of using both feasible and infeasible
solutions as well as the importance of a diversity control mechanism to avoid the
search becoming stuck too quickly in the local minima.

Regarding the relaxation selection (RelaxTruck, RelaxDrone), we can observe
the negative impact of these choices on the performance of HGA for both objectives.
However, this impact is not the same for each of the objective types. In detail, while
the min-cost objective performs well when the drone travel time constraint is relaxed
(RelaxDrone), the min-cost objective delivers a gap close to the standard gap when
the truck travel time constraint is relaxed (RelaxTruck). This phenomenon could be
explained as follows.

In the min-cost problem, the longer the distance (or time) the truck travels between
launch and rendezvous nodes during a drone delivery is, the greater the impact on
the travel cost it would receive, as the transportation cost of the truck is many times
larger than that of the drone. Hence, with the RelaxTruck option for which the truck
travel time constraint is relaxed and the drone travel time constraint is imposed, the
truck would be less likely to receive this relaxation advantage because of its high
transportation cost per unit distance. On the other hand, when the drone travel time
constraint is not enforced (RelaxDrone), the algorithm could have infeasible solutions
in which the drone will take the longer arcs (because of its small transportation cost).
These solutions then have more opportunities to be repaired to become a high quality
solution.

In the min-time problem, as analysed in Ha et al. (2018), the frequency at which
the drone is used is much less than that in the min-cost problem. Therefore, min-time
solution quality depends more on truck tour quality. Hence, when the truck travel time
constraint is relaxed (RelaxTruck), we could have infeasible solutions in which the
drone arrives at the rendezvous node before the truck. This is the ideal situation for
the truck as it could immediately proceed to the next customer location or prepare a
parcel for the next launch without waiting for the drone to arrive (Murray and Chu
2015). This could shorten the truck’s wait time and possibly lead to a good truck tour.
Thus, along with the repair method, these kinds of infeasible solutions would have
more chances to be repaired to become a high quality solution. On the other hand, the
opposite fact occurs when the drone travel time constraint is relaxed (RelaxDrone),
meaning that the truck is more likely to wait for the drone at the rendezvous node,
therefore having less chance of obtaining good solutions.

123



Q. M. Ha et al.

5 Conclusion

In this paper, we presented a new hybrid genetic algorithm—HGA—to effectively
solve the TSP-D under both min-cost andmin-time objectives. Our algorithm includes
new problem-tailored components such as local searches, crossover, restore method
and penalized mechanism to effectively guide the search for good solutions. Compu-
tational experiments show that HGA outperforms two existing methods in terms of
solution quality. Our method can also improve a number of the best known solutions
found in the literature. An extensive analysis was carried out to demonstrate the impor-
tance of the new components to the overall performance of HGA. In future work, we
intend to develop an efficient exact method to better investigate the performance of
the algorithm. Also, we would like to test HGA on other variants of the TSP-D such
as the version with multiple trucks and multiple drones under both objectives.

Acknowledgements This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under Grant No. 102.99-2016.21. The authors would like to thank the anony-
mous reviewers for the valuable comments that helped to considerably improve the quality of this work.
We also express our thanks to Júlia Cária de Freitas and Professor Puca Huachi Vaz Penna for sending us
the instance files so that we could conduct the comparison with the HGVNS algorithm.

References

Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling salesman problem with
drone. Trans. Sci. 52(4), 965–981 (2018)

Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)
Bouman, P., Agatz, N., Schmidt, M.: Dynamic programming approaches for the traveling salesman problem

with drone. Networks 72(4), 528–542 (2018)
Bulhões, T., Hà, M.H., Martinelli, R., Vidal, T.: The vehicle routing problem with service level constraints.

Eur. J. Oper. Res. 265(2), 544–558 (2018)
de Freitas, J.C., Penna, P.H.V.: A variable neighborhood search for flying sidekick traveling salesman

problem. Int.Trans. Oper. Res.(2018)
Glover, F., Hao, J.K.: The case for strategic oscillation. Ann. Oper. Res. 183(1), 163–173 (2011)
Ha, Q.M., Deville, Y., Pham, Q.D., Hà, M.H.: On the min-cost traveling salesman problem with drone.

Trans. Res. Part C Emerg. Technol. 86, 597–621 (2018)
Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: optimization of drone-assisted

parcel delivery. Trans. Res. Part C Emer. Technol. 54, 86–109 (2015)
Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E.: Optimization approaches for civil applications of

unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks 72(4), 411–458 (2018)
Poikonen, S., Wang, X., Golden, B.: The vehicle routing problem with drones: extended models and con-

nections. Networks 70(1), 34–43 (2017)
Ponza,A.: Optimization of drone-assisted parcel delivery.Master’s thesis, University of Padova, Italy (2016)
Potvin, J.Y.: Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 63(3), 337–370 (1996)
Toth, P., Vigo,D.: The granular tabu search and its application to the vehicle-routing problem. Inf. J. Comput.

15(4), 333–346 (2003)
Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic algorithm for multidepot

and periodic vehicle routing problems. Oper. Res. 60(3), 611–624 (2012)
Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity man-

agement for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 40(1),
475–489 (2013)

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework for multi-attribute vehicle
routing problems. Eur. J. Oper. Res. 234(3), 658–673 (2014)

123



A hybrid genetic algorithm for the traveling salesman…

Wang, X., Poikonen, S., Golden, B.: The vehicle routing problem with drones: several worst-case results.
Optim. Lett. 11(4), 679–697 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A hybrid genetic algorithm for the traveling salesman problem with drone
	Abstract
	1 Introduction
	2 Problem description
	3 A hybrid genetic algorithm for TSP-D (HGA)
	3.1 Search space
	3.1.1 Min-cost TSP-D
	3.1.2 Min-time TSP-D

	3.2 Solution representation
	3.3 Individual evaluation
	3.4 Parent selection and crossover
	3.5 Education using local search
	3.6 Restore method
	3.7 Population management

	4 Computational results
	4.1 Performance on different instance sets
	4.1.1 Results for instances from murray2015flying
	4.1.2 Results for instances from ha2018min
	4.1.3 Results for instances from freitas2018variable

	4.2 Performance under different crossovers
	4.3 Sensitivity analyses

	5 Conclusion
	Acknowledgements
	References




