
Improvements of Directed Automated Random Testing

in Test Data Generation for C++ Projects

Duc-Anh Nguyen*, Tran Nguyen Huong†, Hieu Vo Dinh‡

and Pham Ngoc Hung§

VNU University of Engineering and Technology

Hanoi, Vietnam
*nguyenducanh@vnu.edu.vn

†17028005@vnu.edu.vn
‡hieuvd@vnu.edu.vn
§hungpn@vnu.edu.vn

Received 21 July 2018

Revised 26 August 2018
Accepted 8 February 2019

This paper improves the breadth-¯rst search strategy in directed automated random testing

(DART) to generate a fewer number of test data while gaining higher branch coverage, namely

Static DART or SDART for short. In addition, the paper extends the test data compilation
mechanism in DART, which currently only supports the projects written in C, to generate test

data for C++ projects. The main idea of SDART is when it is less likely to increase code

coverage with the current path selection strategies, the static test data generation will be

applied with the expectation that more branches are covered earlier. Furthermore, in order to
extend the test data compilation of DART for C++ context, the paper suggests a general test

driver technique for C++ which supports various types of parameters including basic types,

arrays, pointers, and derived types. Currently, an experimental tool has been implemented
based on the proposal in order to demonstrate its e±cacy in practice. The results have shown

that SDART achieves higher branch coverage with a fewer number of test data in comparison

with that of DART in practice.

Keywords: Directed automated random testing; concolic testing; test data compilation; test

data generation; control °ow graph; C++; SMT-Solver.

1. Introduction

Unit testing has been considered an important phase to ensure the high quality of

software, especially for the system software written in C++ due to the painstaking

requirements of quality. Two well-known approaches for unit testing are black-box

testing and white-box testing [22]. Black-box testing only focuses on the correctness

of input and output without considerations about its source code. In contrast,

§Corresponding author.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 29, No. 9 (2019) 1279–1312

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194019500402

1279

http://dx.doi.org/10.1142/S0218194019500402

white-box testing tries to inspect the quality of source code by analyzing it. This

approach allows detecting potential errors in software that cannot be found by black-

box testing. However, the cost for evaluating the quality of software is quite ex-

pensive, especially in large-scale software. The need for automated unit testing is

becoming more and more urgent and unavoidable to reduce the budget of the testing

phase. Up to the present, there are two major directions of automated test data

generation known as static testing and dynamic symbolic execution (DSE) [3]. The

idea of the former is to generate test data automatically by applying source code

analysis techniques. Although this direction seems to be e®ective, it faces several

issues in practice. The main reason is that the source code analysis requires a large

amount of e®ort to deal with various syntaxes such as API usage, lambda, etc. The

latter can be divided into two major methods including execution generated testing

(EGT) and concolic testing. EGT aims to detect possible potential bugs in C++

projects by executing it symbolically in up to thousands of separate forks [5, 6, 14]. In

contrast, concolic testing, which is ¯rst implemented in directed automated random

testing (DART) [10], aims to produce a series of test data maximizing a speci¯c code

coverage criterion with the least number of test data.

In DART, given a function under test, initial test data are generated randomly

based on the type of passing variables. These initial test data are then passed into

an instrumented program to execute it on the runtime environment. During this

test data execution, DART collects path constraints, denoted by PC, at each de-

cision until the testing program raises an error or terminates. In the ¯rst case, a bug

is reported and DART starts generating another test data randomly again. Oth-

erwise, DART negates the current path constraints PC in the way that the solution

of the negated path constraints tends to visit the unvisited branches when exe-

cuting it on the testing function. Although DART demonstrates its e®ectiveness in

practice, this method still remains an issue related to the number of test data.

In addition, DART currently provides a fast test data compilation mechanism

to reduce the computational cost of test data generation, but only supports

C projects.

Regarding the number of test data in concolic testing, it should be minimized to

facilitate the testing management process with the smaller number of iterations. In

order to achieve this objective, DART tries to lower the number of iterations as

many as possible. Generally, the process of the next test data generation in DART

includes four main steps: (i) generating path constraints from the current test path,

(ii) negating these path constraints PC to get :PC, (iii) generating the next test data

by solving :PC, and (iv) executing the next test data to get the next test path. The

solution to reduce the number of iterations depends mainly on step ii, where a

constraint in PC is negated to generate the next test data so as to go through

unvisited branches. However, in fact, the negated path constraints :PC could

not ensure completely that its solution will pass through unvisited branches due

to several reasons. One main reason is that there might exist many candidate

constraints to negate based on the selected path selection strategy [9–11, 13]

1280 D.-A. Nguyen et al.

(e.g. breadth-¯rst search (BFS), depth-¯rst search (DFS), etc.) and how to choose

the best one is still a challenging problem. In the worst case, it might take a large

number of iterations to achieve high code coverage due to the selected strategies.

Another reason is related to the capacity of symbolic execution. Speci¯cally, given a

test path, a set of path constraints will be generated by applying symbolic execution

[2, 3]. Each path constraint in this set is corresponding to a condition on the given

test path. These path constraints are then negated and solved to obtain the next test

data [8, 11, 17–19]. However, in the case where the implementation of SE does not

support enough cases (e.g. pointers, two-dimensional arrays), the next test data will

not go through the new visited branches as expected. As a result, the computational

cost of test data generation might increase signi¯cantly.

Currently, the test data compilation suggested in DART only applies to basic

types, pointer, struct, and array in C projects. Therefore, when generating test data

for C++ projects, this compilation mechanism needs to be improved to reduce the

computational cost of test data generation. According to DART, when new test

data are discovered, then they are executed on runtime environment to collect

visited instructions by a general test driver. The main idea of the test data com-

pilation in DART is to store the generated test data in a unique external ¯le, and

then a test driver analyzes this ¯le to load the values of test data when executing.

One big advantage of this strategy is that the general test driver only needs to

compile once to create an executable ¯le. Because of one-time compilation, the total

computational cost of test data compilation, in particular, and test data generation

in general are reduced signi¯cantly, especially in the projects having a large number

of test data.

Therefore, this paper proposes two techniques to deal with the mentioned lim-

itations. First, in order to reduce the number of test data, the paper improves the

BFS strategy proposed in DART by combining this strategy with a static test data

generation strategy, namely Static DART, or SDART for short. Speci¯cally, when it

is less likely to increase code coverage with the current path selection strategy, the

static test data generation strategy will be selected instead. In this static analysis

strategy, SDART will generate a list of partial test paths which go through unvisited

branches, then try to generate test data traversing these partial test paths. In other

words, by combining the existing path selection strategies with the static test data

generation strategy, SDART expects that more newly visited branches will be

detected earlier than keeping the current strategies. Second, the paper extends the

idea of the test data compilation for C projects to deal with C++ projects by using a

C++ general test driver. In essence, the idea of the general C++ test driver is similar

to the test driver used in the test data compilation proposed in DART. However, the

C++ general test driver is presented in a more general representation by using

templates. By using templates, the C++ general test driver is more °exible and

expandable to support various data types.

The structure of the paper is organized as follows. Several outstanding

related works are discussed in detail in Sec. 2 to provide the overview of the test

Improvements of DART in Test Data Generation 1281

data generation. Section 3 presents the background of DART. After that, Sec. 4

provides the overview of the proposed method and the description of source code

preprocessing phase. Next, the details of the second phase called test data generation

are described in Sec. 5. Section 6 shows an implemented tool named ICFT4Cpp

based on the proposed method to demonstrate its e®ectiveness in practice. Finally,

the conclusion of the paper is given in Sec. 7.

2. Related Works

Many works have been proposed for enhancing test data generation phase by several

research groups. Focus on the most outstanding works only, there are seven e®ective

improvements of test data generation for C/C++ projects including test data

compilation [10, 13], compositional testing [21], symbolic execution [8, 11, 17–19],

constraints optimization [6, 8, 11, 14, 15], parallel SMT-Solvers [16], path selection

strategies [8–11, 13], and initial test data generation [23].

Godefroid et al. extended DART for the purpose of compositional testing by in-

troducing an algorithm, namely SMART (Systematic Modular Automated Random

Testing) [21]. SMART tests functions in isolation, then encoding test results as

function summaries expressed using input preconditions and output post-conditions.

After that, these summaries are used for testing higher-level functions. Currently,

our method does not focus on testing compositional functions.

The computational cost of test data generation can be reduced signi¯cantly in the

test data compilation step. Both DART [10] and CREST [13] applied the same

technique to accelerate the test data compilation step. CREST is known as an open-

source prototype test generation tool for C. The main idea is that all of the generated

test data are stored in an external ¯le, and a unique test driver reads this ¯le to

collect the values during execution. It means that the compilation process of general

test driver takes place once for all of the produced test data. However, CREST

proposal is only applied for basic types rather than for derived types which are

used widely on C++ projects. In addition, the method proposed in DART limits on

C projects. Therefore, our proposed method is developed based on the original idea

of CREST and DART to deal with not only basic types but also derived types

(i.e. class, struct) on C++ projects.

Because the constraints generated from a test path may be complicated and

lengthy, SMT-Solvers may take a long time to solve these constraints. To reduce the

cost of solving these constraints, these constraints will be optimized before passing

into SMT-Solvers. There are three main types of constraints optimization. The ¯rst

optimization named incremental solving technique is used in CUTE [11], EXE [14],

KLEE [6], and CAUT [8]. The main idea is that only the constraints related to

the last negated condition are solved rather than all of the original constraints.

The second optimization, which is called cache-based unsatis¯ability check, is

implemented in EXE [14] and KLEE [6]. In this optimization, all of the previous

constraints are cached for the next solving constraints. A subset of constraints

1282 D.-A. Nguyen et al.

having no solution means that the current constraints are unsatis¯able. Otherwise,

the current constraints may have a solution if there exists a subset of constraints

having a solution. Third, the constraint optimization in CUTE [11] and CAUT

[8, 12] tries to check whether the last condition is a negation of any previous

constraints. If it is, SMT-solvers do not solve these constraints because it is always

impossible. Another constraint optimization removes evident subconstraints from

the original constraints so as to reduce the complexity of these constraints [6, 11].

Recently, in [15], Cadar et al. proposed a new constraint optimization for array case.

Their paper introduced three transformations called index-based transformation,

value-based transformation, and interplay of transformations to decrease the com-

plexity of array constraints.

Another strategy to improve the computational cost of test data generation is to

combine several SMT-Solvers such as Z3 [4], SMT-Interpol, STP [6, 14], etc. In fact,

each of SMT-Solvers only deals e®ectively with some types of constraints. In [16],

Cadar et al. proposed some ideas of SMT-Solvers combination for ¯nding a solution

as fast as possible called parallel portfolio solver. Speci¯cally, their portfolio solver

can be deployed at di®erent levels of granularity. In the simplest option called

program level, multiple variants of symbolic execution are run at the same. Each

variant uses a distinct SMT-Solver to solve constraints. In the second option, the test

data generation process is performed in a unique machine, but at query level. Given a

query, the machine detects the most suitable SMT-Solver for the current query

because di®erent SMT-Solvers may perform better on di®erent queries. Another idea

is that instead of using di®erent SMT-Solvers, the machine performs with di®erent

versions of a unique SMT-Solver.

Several path strategies have been proposed to reduce the number of test data

while trying to maximize the code coverage in concolic testing. Initially, DART [10]

proposed DFS strategy negating the last condition to ¯nd the next test data. This

strategy actually increases code coverage; however, it may lead to the run-forever

problem, especially in the functions containing loops. Later, the run-forever problem

can be solved by adding the number of limit iterations for loops in PathCrawler [9]

and CUTE [11]. CREST [13] uses the Dijkstra algorithm to ¯nd the shortest path

from the visited statements/branches to the unvisited instructions. Rather than

using Dijkstra algorithm, CAUT [8, 12] tries to ¯nd the best path from visited

instructions to the uncovered block of instructions.

Nguyen et al. suggested that the initial test data should be generated by static

analysis due to the problem of random test data generation [23]. The idea is to

construct a control °ow graph, then generate initial test data based on this graph by

using the symbolic execution. Because the constraints between variables are detected

during static analysis, the probability of runtime error executions caused by the

initial test data tends to reduce in comparison with that of the random technique.

For example, by using static analysis, a pointer must be always allocated in memory.

Therefore, the value of this pointer in the initial test data should not be assigned

to NULL.

Improvements of DART in Test Data Generation 1283

3. Directed Automated Random Testing

DART can deal with the disadvantages of static testing requiring a large amount of

e®ort in symbolic execution. DART de¯nes that a sequence of input addresses,

denoted by M0, is the addresses of the parameters of a function fn. There are many

input vectors corresponding to a sequence M0 in which an input vector represents

the value of a parameter. In concolic testing, the initial input vector is generated at

random, e.g. pointers are randomly initialized with either the value NULL or a new

memory with the equal probability.

De¯nition 1 (Input vector). An input vector of a function fn is de¯ned as

follows:

I ¼ ðt0; t1; . . . ; tn�1Þ;
where

. n is the number of parameters (i.e. arguments, external variables) used in fn and

. ti¼ðnameVar; valueVarjvalueVar 2fNULL; !NULL;number; character; stringgÞ
ð0 <¼ i <¼ n� 1Þ is a parameter, where nameVar is the name of a parameter and

valueVar is the value of the parameter having the name nameVar.

Here, the type of ti is an element of an array or of a pointer, derived type, or basic

type. The value of ti is a NULL value, a not NULL value, a number, a character, or a

string.

In concolic testing, the next input vector will be generated based on the results of

the previous input vector executions. However, an input vector must be executed on

an instrumented function fn 0, where fn 0 is a modi¯cation version of the function fn

after adding some marked statements. Speci¯cally, before input vector execution,

each statement in the function fn will be added a marked statement to detect

whether this statement is executed or not under an input vector.

When an input vector I is executed on an instrumented function fn 0, a list of

visited branches are recorded after an input vector execution. These branches form a

program execution path. There are two cases happened when executing fn 0 under an
input vector I including abort and halt. Here, signal abort means that there arise

errors while signal halt indicates that the function fn succeeds.

De¯nition 2 (Program execution path). A program execution path of a

function fn, generated when executing an input vector I, is de¯ned as a sequence:

TP ¼ ðSjCÞþðabortjhaltÞ;
where S and C present a statement and a condition of the function fn, respectively.

During the execution of the instrumented function fn 0 under an vector input I,

DART uses a symbolic map to store the symbolic value of variables.

De¯nition 3 (Symbolic map). Given a program execution path of a function fn,

its symbolic map, denoted by S, is a mapping from variables to its corresponding

1284 D.-A. Nguyen et al.

symbolic values and de¯ned as follows:

S ¼ fðvar; symbolic valueÞþg;
where var presents a variable; symbolic value is the symbolic value of the variable

var. The symbolic value of var is a concrete value (e.g. a constant, a string) or an

expression. When var is updated, its symbolic value to a new value named

new symbolic value, S is updated by using operator [as follows:

S ¼ S [fðvar;new symbolic valueÞg:
When an input vector I is executed, DART also performs symbolic execution to

update the state of memory model M. In essence, memory model M takes responsi-

bility for storing the current address of variables. A variable is a parameter or a local

variable. After executing a statement or a condition changing the address of vari-

ables, the state of memory model M is updated.

De¯nition 4 (Memory model). Given a program execution path of a function

fn, its memory model M is a mapping from memory addresses to variables, and

de¯ned as follows:

M ¼ fðaddr; varÞþg;
where addr is the address of a variable; var is the name of the variable having the

address addr in memory model M . When var is updated to a new address named

new addr, M is updated by using operator [as follows:

M ¼ M [fðnew addr; varÞg:
In order to distinguish the di®erence between symbolic map S and memory model

M, let see via the following example. Assume that DART visits the statement

z ¼ xþ yþ 2, where both x, z are local variables; and y is a parameter. The value of

x and z is set to 1 and 0 previously, respectively. Before analyzing the assignment of

z, the state of memory model M and symbolic map S are as follows:

M ¼ fðaddrðyÞ; yÞ; ðaddrðxÞ;xÞ; ðaddrðzÞ; zÞ; ðaddrðpÞ; pÞg;
S ¼ fðx; 1Þ; ðy;Y Þ; ðz;0Þ; ðp½0�; 1Þ; ðp½1�; 2Þg;

where addrðxÞ, addrðyÞ, addrðzÞ, addrðpÞ are the address of the variable x, y, z, and p,

respectively; Y is the initial symbolic value of the parameter y; p is a one-level pointer

of size 2.

After analyzing this statement, the state of memory modelM and symbolic map S

are updated as follows:

M ¼ fðaddrðyÞ; yÞ; ðaddrðxÞ;xÞ; ðaddrðzÞ; zÞ; ðaddrðpÞ; pÞg;
S ¼ fðx; 1Þ; ðy;Y Þ; ðz;1þYþ 2Þ; ðp½0�; 1Þ; ðp½1�; 2Þg;

where 1þ Y þ 2 is the new symbolic value of z.

Improvements of DART in Test Data Generation 1285

Now, the next visited statement is a condition p! ¼ NULL. In order to evaluate

the boolean value of this statement, we need to check the address of p stored in

memory model M whether p is allocated or not. After checking, we found out that

pointer p is allocated before. Therefore, the next condition returns false.

Path constraints are collected during DSE under a vector Ii, then used to ¯nd the

next input vector Iiþ1 by negating the current path constraints. Generally, the

number of path constraints is equivalent to the number of conditions on the program

execution path.

De¯nition 5 (Path constraints). Given a program execution path of a function

fn, its corresponding path constraints are de¯ned as a logic expression, de¯ned as

follows:

PC ¼ pc0 ^ pc2 ^ � � � ^ pcn�1;

where n is the number of conditions on TP ; pci is a constraint (0 <¼ i <¼ n� 1); pc0
and pcn�1 are the path constraints corresponding to the ¯rst condition and the last

condition in TP , respectively.

After glancing at the fundamental de¯nitions used in DART, we move to the idea

of DART presented in Algorithm 1. Given a function named fn, DART aims to

generate a series of test data satisfying branch coverage, e.g. all branches in the

function fn are visited. However, the test data generation will perform on the

instrumented function of fn 0 other than the original function fn. The main reason is

that fn 0 has the same behavior as fn. The only di®erence is that fn 0 is added marked

statements to record the visited statements and visited branches when executing a

test data. The process of function instrumentation will be discussed in detail in

Sec. 4.2. The parameter DEPTH is used to specify the number of times the top-level

function is to be called iteratively in a single run. For each value of depth, the initial

test data is generated at random.

Algorithm 1. The General Idea of DART
Input: fn′: the instrumented function of a function fn, DEPTH: the depth of
test data generation
Output: a series of test data
1: P = get arguments and external variables in fn′

2: for int depth = 0; depth <DEPTH ; DEPTH++ do
3: I0 = random initialization(P)
4: while compute coverage(fn’) <100% do
5: Ii+1 = instrumented program(fn′, Ii)
6: if Ii+1 does not exist then
7: Ii+1 = random initialization(P)
8: end if
9: end while

10: end for

1286 D.-A. Nguyen et al.

Algorithm 2 illustrates how DART can generate the next input vector from the

current input vector. The input includes the instrumented function fn 0 and the

current input vector Ii. The objective of each iteration presented in this algorithm

is to ¯nd the next input vector Iiþ1, or a bug. Initially, memory model M is

initialized from the input vector Ii (line 1). Along with step, symbolic map S is also

initialized to store the symbolic value of parameters (line 2). The current state-

ment is detected by using the function statement at(counter, M), where counter is

the index of this statement in the instrumented function fn 0 (line 4). The value of
counter is changed when DART moves to a new statement. At this step, the

statement s is executed to get its state of execution (i.e. abort, or halt). In the

case there is no error, based on the type of statement s, there are two cases as

follows.

Algorithm 2. Instrumented program (in DART)
Input: fn′: the instrumented function of fn, Ii: the current input vector
Output: Ii+1: the next input vector
1: Initialize a memory model M from Ii
2: Set up the state of a symbolic map S

3: counter := 0
4: s = statement at(counter, M)
5: while s /∈ {abort,halt} do
6: if s is (m ← e) then
7: Update memory model M

8: Update value of variable m in S

9: counter++
10: else if s is a condition C then
11: b = evaluate concrete(C, M)
12: pc = evaluate symbolic(C, M, S)
13: if b is true then
14: PC.add(pc)
15: Update visited branches
16: counter + +
17: else
18: PC.add(¬pc)
19: Update visited branches
20: Set counter to the false branch position
21: end if
22: end if
23: s = statement at(counter, M)
24: end while
25: if s causes abort then
26: return a bug
27: else
28: ¬PC = Negate PC by applying a path selection strategy
29:

−−→
Ii+1 = Solve(¬PC)

30: end if

Improvements of DART in Test Data Generation 1287

In the ¯rst case, if the statement s is an assignment, the value of variablem will be

updated in memory model M. In addition, the symbolic value of variable m is

updated in symbolic map S; and the value of variable counter increases by one

(lines 6–9).

In the second case, if the statement s is corresponding to a condition C, DART

will evaluate the value of C by replacing the variables used in C with its corre-

sponding values (line 11). Simultaneously, a new constraint pc is created through the

process of evaluating symbolically this constraint (line 12). If evaluate concrete

returns true, it means that DART will visit the true branch under the vector Ii.

Therefore, pc is added to PC and the visited branches set is updated (lines 13–16).

Otherwise, PC will add the negation of the condition C, then the value of visited

branches set and of counter are updated at the same time.

Next, the next statement is obtained and this process proceeds repeatably until

the execution returns an error (abort) or a success signal (halt) (lines 20–23). If a

signal halt returns, DART tries to negate the current path constraints PC by ap-

plying BFS, DFS, or another strategy. After that, DART calls an SMT-Solver, e.g.

lp solve, to get a new input vector Iiþ1.

In this paper, the term test data is used rather than input vector for consistency.

Similarly, instead of using program execution path, we refer to an equivalent term,

namely test path.

4. The Proposed Overview and Source Code Preprocessing

The overview of the proposed method includes two major phases named source code

preprocessing phase and test data generation phase (shown in Fig. 1). Speci¯cally,

the input of the ¯rst phase includes a C++ project and the speci¯cation of the

operating system which the project run on. Initially, the source code preprocessing

phase takes these inputs to remove all preprocessor directives existing in the given

project. Next, the corresponding structure tree of the modi¯ed project is constructed.

Simultaneously, all functions in the testing project are inserted extra codes in order

to collect the visited statements and visited branches when these functions are called.

Fig. 1. The overview of the proposed method.

1288 D.-A. Nguyen et al.

These functions are instrumented in such a way that visited statements and visited

branches will be printed to an external test data ¯le when executing the testing

function. Later, the content of this external test data ¯le is analyzed to get the

corresponding test path.

Given a function fn and its con¯guration, the second phase takes responsibilities

for generating a series of test data. The con¯guration of the testing function fn

includes the bounds of variable types (i.e. number, character), the maximum itera-

tion of loops, and the maximum size of arrays. First, both the control °ow graph and

the general test driver of the testing function fn are created at the same time. In the

next step, a series of test data are produced, and then unit test ¯les are represented in

the form of Google Test and MS. Excel ¯les are created automatically to facilitate

testing management steps.

In the second phase, when a number of continuous test data do not increase

coverage by using the BFS strategy, the static test data generation will be performed

instead. In this situation, all possible partial test paths traversing through unvisited

branches will be generated automatically. After that, a series of test data are pro-

duced from these partial test paths with the expectation that newly uncovered

branches will be traversed as soon as possible.

Also in the second phase, SDART extends the test data compilation mechanism

proposed in DART to deal with C++ projects by using a C++ general test driver.

This test driver provides the ability to deal with various data types. An external data

¯le, which takes responsibility for storing test data, is unique during test data gen-

eration. Whenever new test data are created, the content of the external test data ¯le

is updated. The executable test driver will load the value of test data storing in the

external test data ¯le to initialize variables dynamically.

4.1. Structure tree generation

The ¯rst phase of source code preprocessing aims to construct an intermediate re-

presentation of the given C++ project. The structure tree is based on the well-known

composite pattern [7] as the following de¯nition.

De¯nition 6 (Node). A node of a structure tree S, denoted by nd, is de¯ned as

follows:

nd ¼ ðX;np;DÞ;

where

. X is the subcomponents of the node nd (e.g. ¯les in a folder),

. np presents the parent of the node nd (e.g. a folder containing a list of ¯les), and

. D represents the logic dependencies of the node nd with the other nodes in the

structure tree S. The type of the node nd is folder, ¯le (e.g. source code ¯le, header

¯le); or logic element such as derived type, method, attribute, etc.

Improvements of DART in Test Data Generation 1289

De¯nition 7 (Structure tree). Given a C++ project, its corresponding structure

tree, denoted by S, is de¯ned as follows:

S ¼ ðVk;EÞ;
where

. k is the number of nodes in the structure tree,

. Vk ¼ fnd0;nd1; . . . ;ndk�1g is a list of nodes, and

. E ¼ fðndi;ndjÞ�g � Vk � Vk presents a list of edges (0 <¼ i; j <¼ k� 1;ndi 2
Vk;ndj 2 Vk). An edge ðndi;ndjÞ means that node ndj is a subcomponent of

node ndi.

Consider a structure tree S ¼ ðVk;EÞ, among two nodes nd and nd 0, where

ðnd;nd 0Þ 62 E, there may exist several logic dependencies starting at nd and ¯nishing

at nd 0. Each logic dependency represents a type of relationship between two nodes nd

and nd 0. For example, Table 1 illustrates several typical types of logic dependency in

a structure tree. Speci¯cally, the ¯rst dependency describes a relationship between a

method and an attribute. In this logic dependency, the method is considered as a

getter of the mentioned attribute in a class. In the case if a class extends another

class, there is a logic dependency starting at derived class and ¯nishing at base clas.

Figure 2 gives an example of the structure tree corresponding to a portion of

Algorithm project. The function NaivePatternSearch mentioned above is declared

inside namespace Algorithm in header Search.h and de¯ned in Search.cpp. Therefore,

there is an arrow from the de¯nition of this method to its declaration. In brief, the

structure tree provides an overview of a C++ project. It is especially appropriate for

traversing the given project to seek information. For example, consider Sort.cpp,

whenever we need to get its headers, we only traverse the children of the node Sort.

cpp with logic dependencies labeled include.

4.2. Function instrumentation

In the preprocessing phase, not only structure tree generation but also function

instrumentation is performed. Speci¯cally, the instrumentation stage is an

Table 1. Several logic dependencies of class elements in structure tree.

Start dependency End dependency Description

Method (getter) Attribute The getter of an attribute, e.g. getter getAge() gets

the value of age

Method (setter) Attribute The setter of an attribute, e.g. setAge(int) sets the
value of age

The declaration of

a method in class

The de¯nition of method Method is de¯ned outside its class

Derived class Base class An inheritance between two classes, e.g. class
Student: public People

1290 D.-A. Nguyen et al.

automated transformation of functions so as to print out test path after executing

this function. In general, there are many techniques to add addition codes to these

functions. In the traditional technique, the functions are rewritten by applying

regular expressions. Nonetheless, because statements may be represented in various

syntaxes, it is challenging to de¯ne it through regular expressions exactly. This

technique therefore seems to be less e®ective in practice.

Instead of applying the same manner, the modern technique transforms these

functions into corresponding Abstract Syntax Trees (ASTs). Given a function under

test, its corresponding AST is an intermediate representation in which each node of

this AST denotes an element of source code (e.g. if-block, assignment, return/break/

continue statement, etc.). The element storing in a node can be divided into smaller

elements (e.g. an if-block can be decomposed into two smaller elements referred to its

body and its decision). In this case, the nodes corresponding to the smaller elements

are the children of the node containing the broken element. If an element is an

assignment, a decision of a control block, a declaration, or a control statement (e.g.

continue, break), this element cannot be broken. In this situation, these types of

element are the leaves of AST.

This technique has been used in the front-end phase of the modern compilers, e.g.

Clang,a GCC,b etc. In the proposed method, these functions are instrumented based

on its AST so that the proposed instrumentation is more accurate than the tradi-

tional technique. In typical C++ functions, there exist single declaration/assignment

ahttps://clang.llvm.org/.
bhttps://gcc.gnu.org/.

Fig. 2. A structure tree portion of the project Algorithm.

Improvements of DART in Test Data Generation 1291

statements, return/break/continue/throw, control blocks including while...do, do...

while, for, if...else, etc. The instrumented rules of these statements are listed in

Table 2. In this table, the notation hexpressionimeans the content of expression. The

role of the function mark(str) is to print out the string str to a speci¯c ¯le.

Based on these rules, an example of the instrumented function of Algorithm::

Utils::Fibonacci is illustrated in Listing 1. Speci¯cally, before the condition, n ¼¼ 0

is a corresponding marked statement markð\n ¼¼ 0"Þ to print out the content of

this condition whenever it is executed. Here, the condition n ¼¼ 0 and its marked

statement markð\n ¼¼ 0"Þ put the condition of the block if.

Table 2. List of instrumentation rules.

Type of block A Instrumented block

assignment, declaration, throw/break/continue/
return, g, f

mark(\hAi"); A

while(hconditioni)...dof...g while (mark(\hconditioni") && hconditioni)dof...g
dof...gwhile(hconditioni) dofg while (mark(\hconditioni") && hconditioni)
if (hcondition1i)f...gelse if

(hcondition2i)f...gelsef...g if (mark(\hcondition1i") && hcondition1i)f...gelseif
(mark(\hcondition2i") && hcondition2i)f...gelsef...g

for(init, condition, increment)f...g for(mark(\hiniti") && init, mark(\hconditioni") &&
condition, mark(\hincrementi") &&

increment)f...g
tryf...gcatch(hexception1i)f...g
catch(hexception2i)f...g

mark(\try");tryf...g
catch(hexception1i)fmark(\hexception1i");...g
catch(hexception2i) fmark(\hexception2i");...g

1292 D.-A. Nguyen et al.

5. An Improvement of DART

Static DART, or SDART for short, extends DART to reduce the number of test data

with the smaller number of iterations by improving the BFS strategy introduced in

DART [10]. SDART is presented in Algorithm 3, where the notation ð�Þ at the end of a

statement implies that this statement exists in the original algorithm proposed in DART.

Algorithm 3. SDART
Input: fn′ instrumented function of a function fn (*), DEPTH: depth of test
data generation (*), THRESHOLD: the threshold to switch to the static test
data generation
Output: a series of test data
1: P = get arguments and external variables in fn′ (*)
2: Cpp testdriver = Cpp-general-test-driver-generation(I)
3: for int depth = 0; depth <DEPTH ; DEPTH++ (*) do
4: I0 = random initialization(P) (*)
5: notIncreasingCoverageCount = 0;
6: while compute coverage(fn’) <100% (*) do
7: if the coverage of fn does not change then
8: notIncreasingCoverageCount++;
9: else

10: notIncreasingCoverageCount = 0;
11: end if
12: if notIncreasingCoverageCount == THRESHOLD then
13: break
14: else
15: Ii+1 = instrumented program(fn′, Ii) (*)
16: if Ii+1 does not exist (*) then
17: Ii+1 = random initialization(P) (*)
18: end if
19: end if
20: end while
21: possibleTestpaths = generate partial test paths containing unvisited branches
22: for testpath : possibleTestpaths do
23: PC = symbolic-execution(testpath)
24: if PC does not exist before then
25: SMT − LIB = Transform PC into SMT-Lib format
26: I = SMT-Solver(SMT − LIB)
27: testpath = Execute Cpp testdriver

28: compute coverage(fn’)
29: end if
30: end for
31: end for

Improvements of DART in Test Data Generation 1293

Generally, when there occur signals showing that they are less likely to increase

code coverage, the static test data generation will be chosen immediately. Speci¯cally,

the value THRESHOLD is initialized by users. When there exists THRESHOLD

continuous test data which do not increase code coverage (lines 7–13), SDART will

generate partial test paths traversing unvisited branches (line 21). After that, each test

path performs symbolic execution so as to construct corresponding path constraints

(line 23). These path constraints PC are checked whether they are generated before or

not (line 24). If it is not, PC is converted into input of SMT-Solvers, then solved by

using an SMT-Solver such as Z3 to obtain new test data I (lines 25–26). Next, the

newly generated test data I are passed to a general test driver to execute to get its

corresponding test path (line 27). After that, from the collect test path, the coverage of

fn is then updated (line 28).

5.1. Path constraint generation

This section describes the process of path constraint generation from a test path by

applying symbolic execution technique. This section includes two parts. First, the

paper presents the detail of symbolic execution on a test path. Next, the process of

simpli¯cation, denoted by rewriteðÞ and mentioned in the ¯rst step, will be described

in more detail in the second part.

Both Algorithms 4 and 5 use notation � to denote binary expression. A binary

expression, denoted by �ðe1; e2; opÞ, consists of one operator op, one left operand e1,

and one right operand e2. An assignment is a binary expression, where op 2 f¼g.
A condition is a binary expression where op 2 f>;>¼; <¼; <;¼¼; ! ¼g, or a unary

expression. MðvÞ is used to get the address of variable v, where M is memory model.

SðvÞ returns the symbolic value of variable v, where S is symbolic map. Notation �
means \is type of" or \is".

5.1.1. Symbolic execution

The process of symbolic execution is presented in Algorithm 4. Our symbolic exe-

cution uses a memory model and a symbolic map presented in DART, namelyM and S,

respectively. The role of memory model M is to store the addresses of the used

variables during symbolic execution. Symbolic map S takes responsibility for storing

the symbolic value of variables. The algorithm terminates when one of these two

cases happens: (1) the boolean value of a condition is false or (2) all of the state-

ments on the test path are analyzed. In the ¯rst case, whenever Algorithm 4 ¯nds out

that path condition PC has no solution, it stops immediately to reduce the cost of

symbolic execution.

Procedure type ofðvÞ returns the type of variable v. Procedure addrðvÞ is used to

obtain the address of variable v stored in memory model M. Procedure addrðvÞk will
get the beginning address of the block in addrðvÞ after k cells (k 2 Z). In order to

specify the number of elements in the block which a pointer p points to, the paper

uses the procedure sizeof(p).

1294 D.-A. Nguyen et al.

Algorithm 4. Symbolic Execution on C++
Input: path: a test path collected from executing the instrumented function fn′
Output: PC: the path constraints of the test path path

1: Symbolic map S = {(parameter, initial symbolic value)∗}
2: Memory model M = {(initial address of parameter, parameter)∗}
3: for all statement stm: path do
4: stm = Rewrite(stm, M , S)
5: if stm ≡ µ(e1, e2, op|op ∈ {> =, >, < =, <, ==, ! =})‖stm ≡ a boolean variable

then
6: if stm ≡ false then
7: PC = {}
8: return PC
9: else

10: PC.add(stm)
11: end if
12: else if stm ≡ declaration of variable v then
13: M = M ∪ {(addr(v), v)}
14: if type of(v) ∈ {number, character} then
15: S = S ∪ {(v, 0)}
16: else if type of(v) ∈ {pointer} then
17: S = S ∪ {(v, NULL)}
18: else if type of(v) ∈ {string} then
19: S = S ∪ {(v, “”)}
20: end if
21: v.setScope(scope)
22: else if stm ≡ µ(e1, e2, =) then
23: if e1 ≡ a pointer then
24: if e2 ≡ an allocation statement (size = n) then
25: M = M ∪ {(addr(e1), e1)}
26: S = S ∪ ⋃n−1

i=0 {(ei, 0)}
27: PC.add(n >= 0)
28: else if e2 ≡ NULL then
29: M = M ∪ {(NULL, e1)}
30: S = S ∪ {(e1, NULL)}
31: else if e2 ≡ a pointer p +/- k then
32: M = M ∪ {(M(p)k, e1)}
33: S = S ∪ ⋃sizeof(p)−k−1

i=0 {(e1(i), pi+k)}
34: end if
35: else if type of(e1) ∈ {number, character} then
36: S = S ∪ {(e1, e2)}
37: end if
38: else if stm ≡ scope then
39: if stm ≡ ‘{’ then
40: scope + +;
41: else if stm ≡ ‘}’ then
42: M.removeV ariablesAtScope(scope)
43: S.removeV ariablesAtScope(scope)
44: scope − −;
45: end if
46: end if
47: end for
48: return PC

Improvements of DART in Test Data Generation 1295

Given a test path collected from executing the instrumented function fn 0, a

memory model M is created by adding parameters and its initial addresses (line 1).

These parameters are added to a symbolic map S with its default symbolic values if it

is not initialized before (line 2). For example, the initial value of uninitialized pa-

rameter x is X, where X is the initial symbolic value of the parameter x.

Next, all statements of this test path will be analyzed in sequential order from the

¯rst statement (line 3). Each statement, denoted by stm in the test path, is rewritten

into a simpler statement which makes symbolic execution become easier (line 4). This

step is called simpli¯cation process, which is based on the inspiration of CIL [1]. In

this process, the content of stm is modi¯ed based on memory model M and symbolic

map S. The variables, which are used in stm, are replaced with its corresponding values

or its corresponding addresses. Algorithm 5 will delve into the simpli¯cation process.

After the statement stm is rewritten, based on the type of statement stm, an

appropriate analysis will be performed. There are four basic cases including assign-

ment, declaration, condition, and scope as follows:

— Case 1: Condition (lines 5–11): Note that the condition is normalized in step 4 in

which the used variables are replaced with its corresponding values or addresses.

If the condition is false, it means that PC has no solution. In this case, the

symbolic execution is terminated. Otherwise, the normalized condition will be

added to path constraints PC.

— Case 2: Declaration (lines 12–21). For simplicity, our assumption is that the

declaration does not has any assignment. In this case, the declared variable v will

be added to memory model M and symbolic map S. The default value of a

numerical variable, a pointer, and a string are 0, NULL, and \", respectively. The

default value of a pointer is NULL because the pointer is not initialized in the

declaration. The scope of the declared variable v is stored.

— Case 3: Assignment (lines 22–37). There are two main kinds of assignment

depending on the type of the assigned variable (i.e. pointer, primitive variable).

The value of the assigned variable e1 in memory model M and symbolic map S

will be updated. In the ¯rst case, the assigned variable e1 is a pointer, if there

exists an allocation of a pointer e1 with size n (line 24), the assigned variable e1 is

updated in M at the given address (line 25). In addition, the initial value of

pointer elements in e1 are initialized to 0 (line 26). The constraint about the size

of the pointer e1 must be added to PC (i.e. n >¼ 0) (line 27). In the second case,

the variable e1 is assigned to NULL (line 28). Memory model M will update the

new address of e1 (line 29). All of the pointer elements of e1 are removed from S

(line 30). In the last case, the pointer e1 is assigned to another pointer, namely e2
from a speci¯ed location of the block where e2 points to (lines 31–33). The

starting location on this block is denoted by k (k 2 Z).

— Case 4: Scope (lines 28–35). The algorithm uses a variable named scope to store

the scope of variables. Here, scope is used to store the level of locality of variables.

The level of locality of a variable is used to locate where a variable is created in

1296 D.-A. Nguyen et al.

the program. The level of locality of a parameter is always set to 0. For a local

variable, its level of locality is always equal to 1. The value of scope will be

decreased or increased when the statement stm is a closing scope or an opening

scope, respectively. When the statement stm is a closing scope of a control block

f...g, it means that all of the variables created in this block should be removed

because these variables will not be used in the remaining part of the test path. In

this case, memory modelM and symbolic map S will remove these local variables.

In order to detect which variables will be removed, Algorithm 4 will check the

level of locality of each variable and will remove the redundant variables having

the highest value of scope from M and S.

5.1.2. Rewrite a statement

Rewriting a statement, or simpli¯cation process, aims to transform a statement into

a simpler form by replacing the used variables in this statement with its symbolic

values or addresses. Algorithm 5 presents the rewritten procedure rewriteðÞ men-

tioned in Algorithm 4. The input of Algorithm 5 includes the statement needed to be

rewritten stm, memory model M, and symbolic map S. The output is the rewritten

statement, denoted by rewritten stm. The main idea of the simpli¯cation process is

to modify the AST of the statement stm rather than performing on the original stm

to avoid the problem when manipulating on the string. When the rewritten process is

done, the AST will be converted into a corresponding expression. This expression is

the shorten statement of stm.

Procedure replace variablesðe;M;SÞ replaces the variables used in the expression

e with its symbolic values stored in symbolic map S or its addresses stored in memory

modelM. The purpose of the procedure AST ðeÞ is to get the AST of the expression e.

Procedure to expressionðastÞ returns the expression of the AST tree ast. Procedure

evaluate booleanðe1; e2; opÞ returns the boolean value of a binary expression e1hopie2
if it is comparable (i.e. true, false), where op 2 f>¼; >;<¼; >;¼¼; ! ¼g. Based on

the type of the statement stm, the rewritten process is taken as follows:

— Case 1: Assignment (lines 1–10). The right-hand side of the statement stm,

denoted by e2, will be rewritten. Initially, the right-hand side is converted to its

corresponding AST by using the procedure AST ðÞ. Next, the replacement of

variables is performed on this AST (line 2). Finally, the newly modi¯ed AST of

the right-hand side will be converted into an expression (line 3). In the case which

the left-hand side of the statement stm, denoted by e1, is an array item, the

indexes of e1 are rewritten similarly to the right-hand side (lines 4–8). The ¯nal

rewritten statement rewritten stm is created by merging the two rewritten

expressions e 01 and e 0
2 (line 10).

— Case 2: Condition type 1 (lines 11–20). This is the comparison between the two

expressions not related toNULL. Similar to the assignment case, the ASTs of the

two sides of stm are constructed. After that, from the state of the variables stored

in memory model M and symbolic map S, these two ASTs will be modi¯ed by

Improvements of DART in Test Data Generation 1297

replacing the variables used in these trees with its corresponding values/addresses

(lines 12 and 13). This step is done by using the procedure replace variablesðÞ.
Next, each of these two modi¯ed ASTs is exported to an expression, denoted by e 01
and e 0

2 (lines 14 and 15). The rewritten condition, denoted by rewritten stm,

evaluates its boolean value (lines 16–19). If the written condition rewritten stm

cannot be evaluated whether true or false, it means that this condition will still has

variables inside and will added to the path constraints PC later.

— Case 3: Condition type 2 (lines 21–22). This is the comparison between the two

sides in which one side is NULL and the other is a pointer. The pointer e1 used in

this statement is replaced with NULL if this pointer is not allocated or not�
NULL if this pointer is allocated.

Algorithm 5. Simplification process of a statement: Rewrite()
Input: stm: a statement on a test path, M : memory model, S: symbolic map
Output: rewritten stm: the shorten statement of stm

1: if stm ≡ µ(e1, e2, =) then
2: AST2 = replace variables(AST (e2), M, S)
3: e′

2 = to expression(AST2)
4: if e1 ≡ an array item then
5: index1 = indexes of e1

6: var1 = name of array variable in e1

7: AST1 = replace variables(AST (index1), M, S)
8: e′

1 = merge(var1, to expression(AST1)
9: end if

10: rewritten stm = µ(e′
1, e

′
2, =)

11: else if stm ≡ µ(e1, e2|op ∈ {> =, >, < =, <,==, ! =}, e2! = NULL) then
12: AST1 = replace variables(AST (e1), M, S)
13: AST2 = replace variables(AST (e2), M, S)
14: e′

1 = to expression(AST1)
15: e′

2 = to expression(AST2)
16: if e′

1 ≡ constant&&e′
2 ≡ constant then

17: rewritten stm = evaluate boolean(e′
1, e

′
2, op)

18: else
19: rewritten stm = µ(e′

1, e
′
2, op)

20: end if
21: else if stm ≡ µ(e1, NULL, op|op ∈ {==, ! =}) then
22: rewritten stm = evaluate boolean(M(e1), NULL, op)
23: else if stm ≡ a boolean variable v then
24: rewritten stm = evaluate boolean(S(v), true, ==)
25: end if
26: return rewritten stm

1298 D.-A. Nguyen et al.

— Case 4: Condition type 3 (lines 23–24). The condition is made of a boolean

variable, denoted by v. The corresponding boolean value of v will be obtained

from symbolic map S. The boolean value of the condition is evaluated in the

procedure evaluate booleanðÞ.

For example, given a statement stm0 � a½1þ a½x�� > a½3�, or �ða½1þ a½x��; a½3�; >Þ
in which the state of memory model M and symbolic map S before parsing this

statement is as follows:

S ¼ fðx; 2Þ; ða½2�; 0Þ; ða½1�; 4Þ; ða½3�; 10Þg;
M ¼ fðaddrðaÞ; aÞ; ðaddrðxÞ;xÞg:

Here, e1 � a½1þ a½x��, e2 � a½3�. This statement has the problem implicit usage of

variables which is discussed later. In order to obtain the rewritten statement, ini-

tially, the ASTs of both the left-hand side e1 and the right-hand side e2 are built,

namely AST1 and AST2, respectively. The partial AST of the expression stm0 gen-

erated from CDT plugin is listed in Listing 2. Each node in this AST tree includes

two parts: the content of the AST node and its type (e.g. CPPASTArraySub-

scriptExpression, CPPASTBinaryExpression, etc.).

The second step in this procedure is to replace the used variables in the two

ASTs, which are stored in memory model M and symbolic map S, with its corre-

sponding symbolic values and its addresses, respectively. Here, we see that the

variable x should be used in the ¯rst replacement step rather than array item of

a. After the ¯rst replacement of x on the two ASTs, the corresponding condition will

become

stm1 � a½1þ a½2�� > a½3�:
In the two modi¯ed ASTs, both variables a½2� and a½3� can be replaced in the next

step. After the replacement of a½2� and a½3� on the two ASTs, the corresponding

condition is rewritten as follows:

stm2 � a½1þ 0� > 10 or a½1� > 10:

Improvements of DART in Test Data Generation 1299

Next, after the replacement of a½1� on the AST of the left-hand side, the corre-

sponding AST tree of the expression is as follows:

Here is the expression corresponding to the above AST:

stm3 � 4 > 10:

The condition stm3 is evaluated whether true or false by using the procedure

evaluate booleanð4; 10; >Þ. The boolean value of the rewritten statement is 0 (i.e.

false). This condition does not need to make simpli¯cation anymore.

5.1.3. Discussion

There are two main problems in symbolic execution including name resolution and

the implicit usage of variables. Our analyzer solves these two main problems partially

as follows:

— Name resolution: Our analyzer needs to detect the semantics of tokens in stm

and its related information including declaration, de¯nition, and references. For

example, given the statement int x = test(classA.getX()), this statement has four

primary tokens including int, x, test, and classA:getX. The symbolic execution

engine needs to detect which ones in four tokens are variables, attributes, func-

tions, etc. as well as its de¯nitions/references. Our analyzer solves this problem

by converting the testing function fn into the corresponding AST. This AST

containing information about name resolution can be collected. The AST gen-

eration from the testing function fn could be performed by using GCC, Clang, or

CDT plugin.c After that, the AST of the testing function fn will be traversed to

collect necessary information related to name resolution.

— Implicit usage of variables: The used variables in stm are used implicitly that

make the simpli¯cation process take more cost compared to the explicit usage.

For example, considering the statement int x ¼ a½a½y��, we assume that a½1� ¼ 2,

a½2� ¼ 0, and y ¼ 1. In order to specify the value of variable x, our analyzer

performs a simpli¯cation process as described in line 4 of Algorithm 4. In this

process, the right-hand side is repeatably rewritten under a number of iterations.

In an iteration, the name of variables is replaced with its values stored in sym-

bolic map S or its address stored in memory model M . In this example, three

iterations are good enough to make stm become simplest (i.e. no need for

simpli¯cation any more). After the ¯rst iteration, stm becomes int x ¼ a½a½1��;
chttps://www.eclipse.org/cdt/.

1300 D.-A. Nguyen et al.

after the second one, it is int x ¼ a½2�; and it becomes int x ¼ 0 after the third

iteration.

5.2. SMT-Lib generation

The main objective here is to apply capacity of various SMT-Solvers such as Z3,

SMT-Interpol, etc. to solve path constraints automatically. Path constraints are

usually represented in the form of logic expressions consisting of operands (i.e.

contain array/pointer access or not), arithmetic operators (i.e. \+", \-", *", \/",

\%"), logical operators, comparisons, and negation (\!"). However, most of the

modern SMT-Solvers have accepted the inputs satisfying SMT-Lib format. In other

words, the format of path constraints, which is called logic expression, is incom-

patible with the input format of SMT-Solvers. Therefore, this paper presents the

process of SMT-Lib generation from logic expressions in Fig. 3. First, each con-

straint, which is called a logic expression, in the given path constraints is transformed

into a corresponding post¯x expression. Next, the post¯x expression is analyzed to

obtain a corresponding expression tree. Finally, the expression tree is traversed to

generate a corresponding SMT-LIB expression.

An example of the transformation is depicted in Fig. 4. The input is a logic

expression !ðc > 0jjy < 1Þ. Employing the transformation, this expression is con-

verted into this post¯x expression x0 > y1 > jj!. After that, this post¯x expression is

analyzed to construct a tree. In this tree, the ¯rst node (i.e. \!") represents the

negation meaning. The leaves of this tree are operands. The parent of each leaf is

corresponding to an operator. Next, an SMT-Lib expression is created by traversing

Fig. 4. An example of SMT-Lib expression generation from path constraints.

Fig. 3. The process of converting a logic expression into an SMT-Lib expression.

Improvements of DART in Test Data Generation 1301

this tree. After that, this SMT-Lib expression is passed into an SMT-Solver to seek

an appropriate solution.

5.3. C++ general test driver generation

Figure 5 presents the overview of improvement test data execution. The input

includes an instrumented function and the location of an external ¯le which stores

previously generated test data. This function may be de¯ned in a class/namespace or

not. The process for creating a general test driver is described as follows. Initially, a

basic test driver is created automatically which contains several operations such as

reading content from ¯le, etc. In later steps, this basic test driver will be added extra

code for analyzing the structure of test data stored in an external ¯le for the purpose

of test data initialization.

For primitive variables, the corresponding source code for loading these variables

is created. In terms of derived types, the source code for each of these variables is

produced based on the con¯guration parameters presented in Listing 4. In this list,

the role of the parameter DEPTH LINKED LIST aims at specifying the maximum

depth of a linked list to avoid the in¯nite construction problem. Parameter MAX

RECURSIVE stipulates the maximum of recursive iteration. Parameters DEFAU

LT VALUE FOR NUMBER and DEFAULT VALUE FOR CHARACTER pres-

ent the default value of numbers and that of characters during initialization, re-

spectively. The output of the proposed technique is a general test driver which can

treat all of the values of primitive/derived types.

The unique external ¯le storing a test data is structured in the format of con-

tinuous lines in which each line represents a portion of test data. A portion of a test

Fig. 5. General test driver generation on C++.

1302 D.-A. Nguyen et al.

data stored in the external ¯le is de¯ned as a pair TD as follows:

TD ¼ ðkey; valÞ;
where

. key is a parameter of the testing function fn, an element of a parameter as array/

pointer, or a ¯le of a parameter as struct/class, and

. val is the corresponding value of key. The type of val is a number, a character, or a

string. If the type of a parameter is a pointer, its value may beNULL or not. In the

case if a parameter is a pointer, its size is presented in keyword sizeof.

Listing 5 depicts an example of Student structure initialization from an external

¯le dynamically. Speci¯cally, for each attribute in the de¯nition of class Student, the

corresponding source code for reading its value from ¯le is created. Look at the ¯rst

attribute age in Student, the template function findValueByName takes responsi-

bility for reading the value of age (line 2). Concerning the pointer s:name (char*), its

size is initialized through its name by the template function initializePointerByN

ame (line 3). In the external test data ¯le, the variable s:name is allocated 10 bytes

by default if its size is not set. The remaining code sample aims at constructing the

value of attributes id and address.

5.4. Control °ow graph generation

Control °ow graph plays an important role in evaluating code coverage with a series

of test data. In addition, this graph is also used to detect next partial test paths so as

to generate a new test data which could increase code coverage.

Given a function under test, a decision of the given function is the condition of the

control statement. A decision is made up of atomic logic expressions. An atomic logic

expression is a logic expression which cannot be divided into logic expressions. For

example, considering ifða > b&&ða > cjjb > cÞÞf:::g, the corresponding decision is

ða > b&&ða > cjjb > cÞÞ. The atomic logic expression set includes three logic

expressions a > b, a > c, and b > c.

There are three types of code coverage criterion used widely in test data gener-

ation including statement coverage, branch coverage, and MC/DC coverage. A series

of test data satisfying statement coverage criterion must visit all statements in the

Improvements of DART in Test Data Generation 1303

given function. In the case where a series of test data traverses all branches of the

decisions in the testing function (i.e. true branch, false branch), this test data set

satis¯es branch coverage criterion. The MC/DC coverage criterion is similar

to branch coverage criterion. Generating a series of test data satisfying MC/DC

coverage criterion requires that this test data set must visit all branches of atomic

logic expressions. It can be seen that if the series of test data satis¯es MC/DC

coverage criterion, this test data set will satisfy branch coverage criterion.

Algorithm 6 depicts the process of control °ow graph construction from

the function named fn. This algorithm takes three inputs including a block

(currentBlockAST), a control °ow graph (CFG), and a code coverage criterion

(cov). currentBlockAST is an AST of an element in the testing function fn. The

main idea of the algorithm is to divide blocks into smaller parts until its CFG satis¯es

code coverage criterion denoted by cov. In essence, the process of CFG generation is

performed recursively. The analysis step starts with the AST of the testing function fn,

and then tries to break this AST into smaller portions. After each of divisions, depending

on the type of portions and cov, this portion will be continued splitting or not.

An example of control °ow graph which satis¯es statement/branch coverage is

presented in Fig. 6. The beginning node and termination point are portrayed with a

white circle and a black circle, respectively. Generally, given a function, the control

°ow graph corresponding to MC/DC coverage criterion might be more complex than

that of statement/branch coverage criterion. The main reason is that the former

requires the analysis of conditions, while the latter does not need it.

Figure 6 illustrates the corresponding control °ow graph of function Utils::

Fibonaxi. A partial AST of function Utils::Fibonaxi is described in Listing 6. Each

AST element belongs to a speci¯c type such as CPPASTIfStatement (If blocks),

CPPASTBinaryExpression (binary expressions), CPPASTFunctionCallExpression

Algorithm 6. Control Flow Graph Generation
Input: currentBlockAST : a block, CFG: a control flow graph, cov: coverage
Output: CFG: control flow graph
1: Initialize partial AST = construct the AST of currentBlockAST

2: Set blocks = break partial AST into blocks
3: Graph link blocks = create links between elements of blocks

4: Replace currentBlockAST with link blocks in CFG

5: for block: blocks do
6: if (block is a control block ||(block is a condition && cov = MC/DC) then
7: ControlFlowGraphGeneration(block, CFG, cov)
8: end if
9: end for

10: return CFG

1304 D.-A. Nguyen et al.

(function calls), or CPPASTName (corresponding to the name of variable, function,

etc.).

5.5. Code coverage computation

During test data execution, the content of a statement will be appended at the end of

an external ¯le when it is executed on an instrumented function fn 0 of a function fn.

Code coverage is then computed to detect whether the test data are useless or not.

Algorithm 7 presents code coverage computation in detail. Starting with the CFG

of the testing function fn satisfying branch coverage criterion and a test path,

Algorithm 7 will traverse along this CFG to update the visited state of statements/

branches. Initially, the set recursivePoints, used to store recursive sites in the given

test path, is initialized to empty (line 1). After that, currentNode is set to the

beginning node of the CFG (line 2). The process will analyze all statements in

testpath basically as follows.

Consider the ¯rst case where currentNode is EndNode, the ending node of CFG,

there occurred two cases. Speci¯cally, the termination of the current call (namely C1)

Fig. 6. A control °ow graph of function Utils::Fibonaxi.

Improvements of DART in Test Data Generation 1305

might be the start of another call (namely C2) because of recursive call; or the

program terminates completely. When the ¯rst case happens, currentNode will point

to the next executed statement where C1 happens (lines 4–7).

In the second case statement that stm contains a recursive call, currentNode is

pointed to the beginning of CFG. currentNode is set to the beginning of CFG (lines

8–10). The main reason is that, when a recursive call is performed, the testing

function fn will be executed in another stack.

In other cases that stm is a condition or a simple statement (e.g. assignment,

declaration, return), the state of nodes corresponding to visited statements/bran-

ches are updated (lines 11–21).

For example, considering the test path \f=>n == 0=>n == 1=> return

(Fibonacci(n� 1) + Fibonacci(n�2)); (*)=> f=> n == 0=>n == 1=> return

1;=>f=> n == 0=>return 0;" generated from executing function Fibonacci in

Listing 1. This function contains two recursive calls Fibonacciðn� 1Þ and

Fibonacciðn� 2Þ. The bold statements are corresponding to the executed statements

Algorithm 7. Code Coverage Computation
Input: tp : a test path of a function fn, CFG: the CFG of a function fn

Output: CFG: the updated CFG
1: Stack<CfgNode>recursivePoints = {}
2: CfgNode currentNode = CFG.beginNode

3: for Statement stm: tp do
4: if currentNode is EndNode then
5: if recursivePoints.size >= 1 then
6: currentNode = recursivePoints.pop().nextNode

7: end if
8: else if currentNode is a recursive call then
9: recursivePoints.push(currentNode)

10: currentNode = CFG.beginNode

11: else if currentNode is a condition then
12: if nextStm is currentNode.trueNode then
13: setVisitedBranch(currentNode, currentNode.trueNode)
14: currentNode = currentNode.trueNode

15: else
16: setVisitedBranch(currentNode, currentNode.falseNode)
17: currentNode = currentNode.falseNode

18: end if
19: else
20: setVisitedStatement(currentNode)
21: currentNode = currentNode.nextNode

22: end if
23: end for

1306 D.-A. Nguyen et al.

of the ¯rst call while the italic ones belong to the results of the second call. At the

statement denoted by (*), because there are two recursive calls, two recursive points

are created in recursivePoints that recursivePoints = f(*).nextNode, (*).nextNodeg.
On this example, (*).nextNode is equivalent to the end node of CFG. When the ¯rst

recursive call is performed, the testing function is executed in another stack.

Therefore, currentNode will be pointed to the starting node of CFG. After executing

bold statements, the current call terminates, then currentNode continues moving to

the beginning point of the second call Fibonacciðn� 2Þ.

6. Experiments

6.1. The implemented tool

Our proposed SDART has been implemented in a tool named ICFT4Cppd using

Java to demonstrate its e®ectiveness. Our objective is to demonstrate the e±cacy of

SDART in comparison with DART with the same core implementation (e.g. sym-

bolic execution engine). There are several di®erences between the implementation of

DART and SDART. However, these di®erences do not a®ect the accuracy of the

experiment. Speci¯cally, rather than applying DSE, we try to record executed

statements/branches during test data execution and then stored it in an external ¯le.

When the testing function raises an exception or successes, the test path in this ¯le is

loaded to perform symbolic execution.

Another di®erence is that ICFT4Cpp does not evaluate code coverage during test

data execution. Instead, only when a test path is recorded successfully, code coverage

is computed immediately. This code coverage computation di®ers from that of

DART, which evaluates during test data execution. In DART, the process of eval-

uating the boolean value of condition depends completely upon the function eva-

luate concrete which might be incorrect due to bad implementation. In contrast, we

simply use execution results to check whether the value of a condition true or false.

Therefore, there is no mistake in this step.

Figure 7 presents the architecture of ICFTCpp. In brief, the architecture of

ICFT4Cpp is similar to CFT4Cpp, which is proposed in [23]. There are two main

layers including presentation layer and logic layer. The logic layer takes responsibility

for interacting with Z3 SMT-Solver [4] and MingW32 compiler. The implemented tool

uses plug-in Eclipse CDT to assist in syntax analysis [20] and mcpp library for re-

moving preprocessor.e Eclipse CDT supports name resolution directly in its AST so it

is easy to resolve the properties of a variable, e.g. its de¯nition or its references.

6.2. Experimental results

The experiment is performed on a Windows machine with an Intel(R) Core(TM)

i5-4200U CPU @1.6GHz–2.3GHz using Mingw32 with 12GB RAM. The testing C+

dhttps://github.com/ducanhnguyen/cft4cpp-core.
ehttp://mcpp.sourceforge.net/.

Improvements of DART in Test Data Generation 1307

+ project is created as follows. First, we collected functions from various websites,

i.e. programmingsimpli¯ed.com, geeksforgeeks.org, and pathcrawler-online.com.

A function is selected if it satis¯es two criteria: (1) it must be compatible with our

implementation and (2) it should be related to algorithm. Here, a function is com-

patible if it is fully supported by our symbolic execution engine. Choosing the

functions related to algorithm ensures that the select functions have high level of

complexity. As a result, 51 functions were found in total and the number of lines of

code adds up to 1000. Most of the selected functions are related to algorithms such as

BubbleSort, Merge, etc. In the second step, these functions were put into a project

created by IDE Dev-Cpp. We choose this IDE because Dev-Cppf is a popular IDE for

C/C++ and used widely in universities.

In this experiment, the comparison between DART and SDART is carried out

under the same con¯gurations as follows:

. DART. The depth of DART is initialized to 3. At each depth, at most 10

iterations will be performed. In total, there are at most 30 iterations during test

data generation for each function. The bound of integer variables is [0...30]. The

bound of character is set in the visible range. The path selection strategy of DART

used in this experiment is BFS.

. SDART. The maximum iteration for each function in SDART is equivalent to

that of DART (i.e. 30 iterations). The con¯guration of variables in SDART is

similar to DART. The threshold to switch to the static test data generation mode

is four. It means that if there exist four continuously random test data which do

fhttps://www.bloodshed.net/devcpp.html.

Fig. 7. The architecture of ICFT4Cpp.

1308 D.-A. Nguyen et al.

not increase code coverage, the static test data generation mode will be used

instead.

With the given con¯guration, it could be seen that in the worst case, both DART

and SDART will take at most 51 functions � 30 iterations ¼ 1530 iterations. Also,

in the best case, both strategies will perform at least 51 iterations in total. It also

means that the ¯rst random test data will traverse all branches.

In Fig. 8, it can be seen that SDART tends to achieve the higher number of visited

branches compared to DART. Speci¯cally, although SDART does not show its ef-

fectiveness in about 120 beginning iterations, SDART gradually surpasses DART in

the remaining ones. While DART takes around 410 iterations in total, SDART only

executes these testing functions with approximately 370 iterations. The main reason

is when SDART detects the low possibility of increasing code coverage, it switches to

the static test data generation. With this strategy, SDART expects that more

branches will be found earlier than keeping the current path selection strategy.

More details about the comparison between DART and SDART are presented in

Table 3. First, the total number of solver calls in DART is considerably greater than

that of SDART, with 1279 solver calls and 413 solver calls, respectively. The main

reason is that DART tends to generate the next test data by negating the conditions

which are seem to be useless in terms of increasing code coverage. Second, SDART

generates a larger number of meaningful test data with a smaller number of iterations

in comparison with DART. Here, test data are considered as a meaningful test data

when the test data increase code coverage. Speci¯cally, the meaningful test data

Fig. 8. The comparison between DART (BFS) and SDART (threshold = 4) in terms of visited branches.

DART-BFS and SDART (threshold = 4) are represented in a dashed line and a solid line, respectively.

Improvements of DART in Test Data Generation 1309

generated in SDART accounts for 101/366 * 100% = 27.6%, where 101 and 366 are

the numbers of meaningful test data and the number of iterations, respectively. This

percentage in DART is just 102/409 * 100% = 24.94%. Whenever SDART detects, it

is less likely to increase code coverage under a number of iterations, SDART will

switch to the static test data generation. SDART expects that this static test data

generation will generate a series of newly meaningful test data.

7. Conclusion

This paper presented two improvements for tackling the problems related to the

number of test data and the computational cost of test data compilation on C++

projects. The ¯rst improvement named SDART aims to increase code coverage as

fast as possible by combining the BFS strategy of DART with the static test data

generation approach. Speci¯cally, whenever it is less likely to generate a new test

data increasing coverage, the static test data generation will be chosen instead. A list

of partial test paths covering unvisited branches will be selected by analyzing

CFG. The cost for analyzing these partial test paths in symbolic execution engine is

reduced because these paths are made up of a smaller number of statements. Second,

concerning the computational cost of test data compilation, the proposal tries to

generalize a C++ test driver to deal with various data types to reduce the compu-

tational cost of test data compilation on C++ projects. In order to do that, the

proposed method extends the DART to deal with C++ projects. All of the test data

are stored in an external ¯le and a C++ general test driver takes responsibility for

reading these values to initialize the parameters of a testing function dynamically.

The experiment has shown that the proposed SDART only takes a smaller

number of iterations with the smaller number of iterations while gaining higher

branch coverage in comparison with the BFS strategy of DART. Currently, the

proposed method has been implemented in the tool named ICFT4Cpp. This tool is

currently used in Toshiba Software Development Vietnam company and received

many positive feedbacks. Based on these suggestions, the proposal will be improved

to deal with more C++ features used widely in industrial projects. First, generating

test data for templates and polymorphism is still considered as a big challenge. The

main reason is that it is di±cult to detect exactly the functions which are called

Table 3. Information about test data generation in DART

(BFS) and SDART.

SDART DART (BFS)

Number of solver calls 413 1279

Number of symbolic statements 12,922 16,167

Number of meaningful test data 101 102

Number of iterations 366 409
Branch coverage 93.48% 92.03%

Meaningful test data rate 27.6% 24.94%

1310 D.-A. Nguyen et al.

during execution. Second, the proposal will extend to generate test data for the

functions containing exceptions. Speci¯cally, the research will extend to produce a

series of test data which cause runtime errors. Third, the C++ general test driver will

be improved to support more various types in C++ such as vector, list, etc. Finally,

the symbolic execution needs to be improved to analyze the statements using over-

loading mechanism. Speci¯cally, both memory model and symbolic map should be

enhanced to deal with overloading, e.g. the subtraction of two class instances.

Acknowledgments

This work is supported by the research project No. QG.16.31 granted by Vietnam

National University, Hanoi (VNU).

References

1. G. C. Necula, S. McPeak, S. P. Rahul and W. Weimer, CIL: Intermediate language and
tools for analysis and transformation of C programs, in Proc. 11th Int. Conf. Compiler
Construction, 2002, pp. 213–228.

2. J. C. King, Symbolic execution and program testing, Commun. ACM 19 (1976) 385–394.
3. C. Cadar and K. Sen, Symbolic execution for software testing: Three decades later,

Commun. ACM 56 (2013) 82–90.
4. L. De Moura and N. Bjrner, Z3: An e±cient SMT solver, inTools and Algorithms for the

Construction and Analysis of Systems, 2008, pp. 337–340.
5. G. Li, I. Ghosh and S. P. Rajan, KLOVER: A symbolic execution and automatic test

generation tool for C++ programs, in Proc. 23rd Int. Conf. Computer Aided Veri¯cation,
2011, pp. 609–615.

6. C. Cadar, D. Dunbar and D. Engler, KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs, in Proc. 8th USENIX Conf. Operating
Systems Design and Implementation, 2008, pp. 209–224.

7. D. Riehle, Composite design patterns, in Proc. 12th ACM SIGPLAN Conf. Object-
Oriented Programming, Systems, Languages, and Applications, 1997, pp. 218–228.

8. Z. Wang, X. Yu, T. Sun, G. Pu, Z. Ding and J. Hu, Test data generation for derived types
in C program, in Third IEEE Int. Symp. Theoretical Aspects of Software Engineering,
2009, pp. 155–162.

9. N. Williams, B. Marre, P. Mouy and M. Roger, PathCrawler: Automatic generation of
path tests by combining static and dynamic analysis, in Proc. 5th European Conf.
Dependable Computing, 2005, pp. 281–292.

10. P. Godefroid, N. Klarlund and K. Sen, DART: Directed automated random testing, in
Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation, 2005,
pp. 213–223.

11. K. Sen, D. Marinov and G. Agha, CUTE: A concolic unit testing engine for C, in Proc.
10th European Software Engineering Conf. held jointly with 13th ACM SIGSOFT Int.
Symp. Foundations of Software Engineering, 2005, pp. 263–272.

12. T. Su et al., Automated coverage-driven test data generation using dynamic symbolic
execution, in Eighth Int. Conf. Software Security and Reliability, 2014, pp. 98–107.

13. J. Burnim and K. Sen, Heuristics for scalable dynamic test generation, in Proc. 23rd
IEEE/ACM Int. Conf. Automated Software Engineering, 2008, pp. 443–446.

Improvements of DART in Test Data Generation 1311

14. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler, EXE: Automatically
generating inputs of death, in Proc. 13th ACM Conf. Computer and Communications
Security, 2006, pp. 322–335.

15. D. M. Perry, A. Mattavelli, X. Zhang and C. Cadar, Accelerating array constraints in
symbolic execution, in Proc. 26th ACM SIGSOFT Int. Symp. Software Testing and
Analysis, 2017, pp. 68–78.

16. H. Palikareva and C. Cadar, Multi-solver support in symbolic execution, in Proc. 25th
Int. Conf. Computer Aided Veri¯cation, 2013, pp. 53–68.

17. Z. Xu, T. Kremenek and J. Zhang, A memory model for static analysis of C programs, in
Proc. 4th Int. Conf. Leveraging Applications of Formal Methods, Veri¯cation, and Val-
idation ��� Volume Part I, 2010, pp. 535–548.

18. B. Elkarablieh, P. Godefroid and M. Y. Levin, Precise pointer reasoning for dynamic
test generation, in Proc. Eighteenth Int. Symp. Software Testing and Analysis, 2009,
pp. 129–140.

19. T. Sun, Z. Wang, G. Pu, X. Yu, Z. Qiu and B. Gu, Towards scalable compositional test
generation, in Ninth Int. Conf. Quality Software, 2009, pp. 353–358.

20. D. Piatov, A. Janes, A. Sillitti and G. Succi, Using the eclipse C/C++ development
tooling as a robust, fully functional, actively maintained, open source C++ parser, in
Open Source Systems: Long-Term Sustainability, 2012, p. 399.

21. P. Godefroid, Compositional dynamic test generation, in Proc. 34th Annual ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages, 2007, pp. 47–54.

22. P. C. Jorgensen, Software Testing: A Craftsman's Approach (CRC Press, Boca Raton,
2014), pp. 6–9.

23. D.-A. Nguyen and P. N. Hung, A test data generation method for C/C++ projects,
in Proc. Eighth Int. Symp. Information and Communication Technology, 2017,
pp. 431–438.

1312 D.-A. Nguyen et al.

	Improvements of Directed Automated Random Testing in Test Data Generation for C++ Projects
	1. Introduction
	2. Related Works
	3. Directed Automated Random Testing
	4. The Proposed Overview and Source Code Preprocessing
	4.1. Structure tree generation
	4.2. Function instrumentation

	5. An Improvement of DART
	5.1. Path constraint generation
	5.1.1. Symbolic execution
	5.1.2. Rewrite a statement
	5.1.3. Discussion

	5.2. SMT-Lib generation
	5.3. C++ general test driver generation
	5.4. Control flow graph generation
	5.5. Code coverage computation

	6. Experiments
	6.1. The implemented tool
	6.2. Experimental results

	7. Conclusion
	Acknowledgments
	References

