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Abstract: Malware on devices connected to the Internet via the Internet of Things (IoT) ) is evolving and is a

core component of the fourth industrial revolution. IoT devices use the MIPS architecture with a large proportion

running on embedded Linux operating systems, but the automatic analysis of IoT malware has not resolved. We

proposed a framework to classify malware in IoT devices by using MIPS-based system behavior (system call

- syscall) got from our F-Sandbox passive process and machine learning techniques. The F-Sandbox is a new

type for IoT sandbox, automatically created from the real firmware of the specialized IoT devices, inheriting

the specialized environment in the real firmware, therefore creating a diverse environment for sandboxing as an

important characteristic of IoT sandbox. This framework classifies five families of IoT malware with F1-Weight

= 97.44%
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1 Introduction

The rapid growth of the fourth industry, develop the Internet of Things (IoT) leads to an unprecedented
revolution in the cyber-physical systems and provides rich utilities to users. It envisaged the number
of interconnected devices to exceed 50 billion by 2020, with an estimate of about 8 devices per person
[1]. Such an enormous amount will impact our digital lives in many application domains, transportation,
healthcare, smarthome, smartcity, medical and health equipment, energy management, etc. However,
in parallel with the developing of IoT technology, there is a security issue of information leakage when
anything can become a spy device anytime, anywhere. Since the last decade, the number of malware
on IoT devices has exploded. In the first half of 2018, there were more than 120,000 IoT malware
instances detected by the Kaspersky IoT Lab [2]. That’s more than triple the amount of IoT malware
seen throughout 2017. Kaspersky Lab warns that the snowballing growth of malware families for smart
devices is a continuation of a dangerous trend: 2017 also saw the number of smart device malware
modifications rose to 10 times the amount seen in 2016.

Recorded attacks showed that target IoT devices have become critical. In September 2016, IoT
malware built from Linux/Mirai malware responsible for 1.1 Tbps DDoS attacks directed at the Dyn



Domain Name System (DNS) provider [3]. In 2017, Linux/Brickerbot, a botnet similar to Mirai, infected
more than 10 million IoT devices around the world [4]. There are many vulnerabilities that attackers can
use to obtain privileges for IoT devices. OWASP has identified the ten main issues [5] in which insecure
firmware, insecure web interface, and insufficient authentication mentioned.

These problems have caused research [6, 7, 8, 9, 10, 11, 12], the widespread attention of researchers
such as IoT malware. These methods can be divided into two main categories: Static methods are
expressed by analyzing and detecting malicious files without executing them. In static malware analysis,
analysts reverse an executable file into assembly code to deepen their understanding of malware activity.
The static analysis [8, 9] relies on extracting varieties characteristics from the executable such as Printable
String Information (PSI), Function Length Frequency (FLF), Operational codes (Opcodes), n-gram of
byte sequences, header section, and so on. Novom et al. [11] used fuzzy pattern tree for the opode of the
executable to detect and classify in the IoT nodes. One of the major advantages of static analysis is the
ability to observe the structure of malware. All possible execution paths in the malware sample without
considering the processor architecture. Although static analysis has its advantages, it also has some
limitations. The key disadvantage of this approach is that it is unable to detect complex and polymorphic
malware. Therefore, the static analysis approach alone might not be sufficient to identify malware and
should be complemented by the dynamic analysis [13]. The dynamic approach consists of monitoring
executable files during its run-time to detect abnormal behaviors. This approach performed by collecting
information such as API calls, network behavior, instruction traces, registry changes, memory writes, and
so on during the running process. Based on these captured data, researchers have built machine learning
(ML) or deep learning (DL) models to detect if a target file is a malware or not [11, 17, 22].

Almost all malware research is focusing on computing devices with the Intel architecture (x86-64)
[14, 15] and recently has switched to develop frameworks to detect IoT malware such as [4, 16, 17, 18], es-
pecially with the ARM architecture. There have been a lot of frameworks to collect system calls of malware
on the computer and mobile devices and automatically analyzed by machine learning. Deep4MalDroid
[17] extracted the Linux kernel system calls from the executing apps on Android, generates a weighted
directed graph and then applies a deep learning framework resting on the graph-based features. Martin
et al. [18] proposed a framework for dynamic and static analysis with a large dataset extracted from
Android applications and detected malware using a fusion of features and voting between classifiers.
However, no framework can collect system calls of IoT samples, automatically analyze their logs, then
measure classification model in a holistic of a full IoT dataset.

In general, the above frameworks have three main components: collection of IoT executable samples
(including malware and benign executables), behavior extraction, and detection/classification. Concern-
ing the first component, IoTPOT developed by Pa et al. [16] was the first honeypot to mimic IoT devices,
allowing the authors to capture more than 4,000 IoT malware samples (according to [9]). Another IoT
malware database, we can mention contains with more than 9,000 samples [20]. Besides IoT malware
samples, it is crucial to collect benign files to be able to implement detection algorithms. Brash [21] has
created 1,078 benign and 128 malware samples for ARM-based IoT applications. Similarly, Nguyen et
al. [22] have collected 10,033 ELF files including 4,002 IoT malware samples and 6,031 benign files from
different sources. Samples were then labeled as malware/benign with VirusTotal [23] before inputting for
classifiers.

The second component comprises analyzing and logging executable files during its run-time to detect
abnormal behaviors. To perform this approach, the most important part is to build a sandbox, called an
emulator, so that executable files reveal all their behaviors. In such an environment, malware can only
affect the virtual environments and not physical devices. Researchers use QEMU [24], a very popular
open-source system emulator, to deal with this problem. QEMU supports many types of processors such
as ARM, MIPS, PowerPC, x64, x86, etc that are popularly used in embedded devices [25]. Some works are
focusing on developing sandbox such as [20, 19, 26, 27]. The sandboxes are used as a core of IoT malware
analysis and detection frameworks such as [4, 16]. However, these frameworks exist drawbacks that limit
the detection capabilities of malware. IoTBox [16] has built a sandbox to capture and analyze Telnet
behaviors of IoT malware used for DDoS attacks. This approach could be useful for detecting network
abnormal behaviors, but can not detect malware that behaves mostly inside the operating system of the
device such as Linux/TheMoon [28]. Andrei et al. [4] proposed a framework to collect collect dynamic
malware features based on the open-source Cuckoo sandbox [19] to determine whether a Linux/Elf file is



a malware or not. However, this framework is not presented on how the collected data was analyzed and
the precision, accuracy of the obtained results. Rare [29] focused on how to activate malware on Router
by discovering static and dynamic information to build a suitable environment for malware. But Rare
only use OpenWrt to build emulated router, did not emulate NVRAM and did not mention detecting
malware on the router. In the same approach, Chang et al. [30] proposed IoT sandbox which can support
9 kinds of CPU architectures including ARM (EL, HF), MIPS, MIPSEL, PowerPC, SPARC, x86, x64 and
sh4. Then, machine learning or deep learning based classifiers used for classifying malware and benign
files.

Current sandboxes have been built on basic environments, including a common Linux-based operating
system and several additional monitoring tools. This strongly impacts on capture behaviors of a target
executable file and the whole detection process. Firmwares are built and packaged for specialized devices,
with specialized functions in many environments that have little in common. Many firmware programs
cannot run in traditional malware analysis sandboxes based on basic environments. It is also hard
to install required environments like firmware on the basic environment because it packages them in
unpublished firmware. Therefore, we need to generate multi-vendor environments like firmwares. That
means, IoT sandbox can set up not only an basic environment but also many environments like firmware
of physical devices. To our knowledge, there are currently no sandboxes that can build environments
based on an actual device firmware, can emulate NVRAM of devices and collect enough syscalls to classify
malware.

The MIPS processor architecture [31] appears in many network devices such as routers, wireless trans-
mitters, cameras [6, 25]. The program’s behaviors are different when running on each different processor
architecture and operating system. Therefore, studying malware on devices using the Embedded Linux
operating system and MIPS processor (MIPS ELF) is necessary. Many studies have focused on detecting
malware through the syscall behavior with good detection results [32, 33, 34], but to our knowledge,
research has not been carryout, to detect malware via syscall in MIPS ELF. Previous studies focused on
detecting malware on Windows operating system for the i386 processor architecture. Canzanese et al.
[32] evaluated with many machine learning methods or deep learning applied with positive results. It
can also detect malware on the Android operating system via syscall like [33]. Asmitha et al. [34] ex-
perimented with the method of detecting malware on Linux through syscall with many machine learning
methods, but the dataset is small with only 668 samples and also done on the i386 architecture.

In this paper, we propose a novel framework that consists of analyzing MIPS ELF files based on
syscall behaviors. We have collected and created a database of 3,773 MIPS ELF malware samples from
Detux [20], IoTPOT [16], and VirusShare [35]. We have built a specific QEMU-based sandbox, which
was inherited from Firmadyne [25] and Detux [20], aimed at monitoring system-call of the executable file.
This sandbox, named F-sandbox, can self-configure the suitable requirement for a target MIPS executable
file to reveal all behaviors. Within this framework, we also implement popular machine learning classifiers
such as SVM, Random Forest, Naive Bayes to evaluate obtained data. The experiments show that our
proposed framework can classify malware on MIPS with high accuracy by F1-Weight up to 97.44%. Our
main contributions in this paper are:

• Proposing a novel sandbox which automatically set up the adaptive environment for activating
MIPS ELF files.

• Comparing and selecting a suitable method of extracting features and machine learning classifiers
for MIPS-based IoT malware detection purposes.

• Combining feature selection, feature reduction and machine learning methods with suitable param-
eters to build a novel framework for detecting MIPS-based IoT malware with high precision.

• Supporting the open source activities, we make our system available to the research community
under an open-source license (GPL) to encourage further research into IoT. For more information
about source code, please see https://gitlab.com/Nghiphu/c500-sandbox. The F-sandbox system
and malicious code detection module are provided at address http://firmware.vn, in which the IoT
dataset and instructional materials updated and provided to the community.

The remaining sections of the paper are organized as follows: Section 2 shows related works; Section



3 presents the F-Sandbox; Section 4 describes the IDMD framework; Section 5 is about experiments;
Finally, the conclusions and directions of the next development are with Section 6.

2 Related works

To perform the dynamic analysis, the sandbox has a very important role. There are 2 types of sandboxes
that are physical and virtual. Physical sandboxes are based on real hardware components such as RAM,
CPU, network peripheral that give a better environment for the malware to reveal all their behaviors.
However, physical sandboxes are difficult to customize, to store/restore their states. The type that is not
suitable for IoT-based malware. Because of the diversity of hardware in IoT devices. Differs from PC,
IoT devices have various processor architectures such as MIPS, ARM, PowerPC, SPARC. To deal with
this problem, Virtual sandbox, based on the simulation and virtualization technology, is often used for
monitoring executable files. In general, a virtual sandbox is built based on QEMU [24], a generic and
open source machine emulator and virtualizer. QEMU supports 26 different CPU architectures, especially
IoT processor architectures such as MIPS, ARM and supports Windows and Linux operating systems.
The main challenge of the virtual sandbox is the difficulty of setting up the same function configuration,
especially network peripherals. There are two main virtual sandboxes that we can mention, which are
IoTPOT [16] and Detux [20].

Detux is an open-source sandbox based on QEMU that supports traffic analysis of the Linux malware
in five different CPU architectures: MIPS, MIPSEL, ARM, x86, and x64. The first problem of Detux
is that it does not virtualize network peripheral so malware can infect other devices through external
connections. Second, the interaction with the operating system was not considered, so the information
such as file creation, file deletion or read file are missing. Finally, the operating system to execute files
in Debian Linux and it is not a common environment as used by IoT devices, therefore it could be not
suitable for some malware.

IoTBox [16] is a sandbox aiming at analyzing network behaviors of IoT malware. It supports 8
different processor architecture as MIPS, ARM, MIPSEL, PowerPC, etc. IoTPOT can detect common
types of DOS attacks such as SYN flood, UDP flood, ACK flood and scan (Telnet, UDP, TCP scan in
some special port). DOS traffic will be blocked or allowed with low packet frequency to avoid harming
the real system. However, limited to emulating only IoT devices from a few specific vendors, IoTBOX
is not suitable for analyzing all kinds of malware that can infect IoT devices. When executing malware
and monitoring, DOS attack behavior may not be immediately executed, therefore we have to wait for a
long time to observe it.

Sandboxes capture two main data sources during the execution of target files that are system-calls
and network behaviors. Syscalls can be collected with different tools such as Strace or Kernel probes.

• Strace [36] is a tool on Linux operating system that allows monitoring running programs, collecting
the system-calls including the name, parameters, and results of calling the system-calls. Strace
allows tracking processes generated from the process being tracked by Strace. Strace has been used
in many works to collect the interaction between executable files in the Android environment [33]
or Linux [34].

• Kernel probes abbreviated as Kprobes is a tool that allows dynamically breaking into kernel routine
and collecting debugging information, one of the information kinds is a syscall. Our sandbox used
Kprobes built-in Kernel to monitor syscalls of all processes running on the firmware of an IoT
device. Sometimes using strace is not suitable for a tracking system called. First, many processes
could run before starting Strace, therefore we can miss system calls. Second, Strace can be easily
resisted by some anti-debug technical as check ptrace status in source code. During the process of
collecting syscalls, in our experiments, we have encountered such malware samples.

Concerning network behaviors, the popular tool that could be used is InetSim [37]. InetSim is a
Linux-based software package, containing Perl scripts used to simulate many network services such as
DNS, HTTP, FTP, etc. PynetSim [38] is considered being an upgrade to improve InetSim for IoT devices.
PyNetSim is developed in Python3, which allows detecting malicious code protocols, supporting scripts
to interact with IoT malicious codes like bot DDoS, Mirai and LizardStresser.



It is important to note that these previous works did not focus on virtualizing network peripheral.
This point limits considerably monitoring the IoT malware behaviors, especially IoT botnet malware.
This issue is indirect solving by Chen et al. [25]. They proposed a framework, named Firmadyne, aiming
at emulating router firmware’s web-interface using QEMU. Firmadyne can auto-configure a suitable
emulation environment for a wide range of the router, enabling a dynamic analysis of 23,035 firmware
images gathered from 42 devices vendors. This method does not rely on physical hardware to perform
the analysis like Avatar [39] but Firmadyne emulates the firmware non-volatile memory to execute the
firmware web-interface. Once the router web-interface is emulated, the popular scanning framework
Metasploit is used for exploring vulnerabilities and its corresponding exploits. However, Firmadyne
analyzes only the web interfaces and ignore the firmware operating system execution. Hence, these
methods can not trace abnormal behaviors to detect malware as shown in the analysis of Linux/TheMoon
and Linux/Mirai malware experimentation. Based on Firmadyne, we have built a novel sandbox that
can set up the network configuration for most IoT executable files including malware and benign. This
sandbox, named F-Sandbox, is presented in the next section and it is a part of the IDMD framework.

3 F-Sandbox architecture

Our proposed sandbox uses instrumentated kernel that was built with Kprobes allow tracing Linux kernel
function calls and any instruction inside the kernel and inspecting the registers. Using INetSim/PyNetSim
to simulate the Internet, the F-Sandbox provides a full environment that reveals behaviors of an ELF
file, including both syscalls and network interaction [40] during its runtime. The collected results from F-
Sandbox will be static analysis information of the sample, network data generated in the pcap’s form file,
log INetsim/PyNetSim about information interacting with the Internet and other syscall system behavior
in the form of a file syscall log. F-Sandbox structure has 4 main components: Sandbox Controller, Virtual
Machine, QEMU Monitor and INetSim/PyNetSim server shown in Figure 1.

Figure 1: F-Sandbox structure

• The Sandbox Controller interacts with the QEMU monitor through calling commands that display
network configuration and restore snapshots. The sandbox controller interacts with the virtual
machine by calling SSH/Telnet procedures to the virtual machine, transmitting executable files



from the real machine inside, granting execution rights, requesting file execution and getting log
files. It supports two methods, SSH and Telnet, to connect and interact virtual machine while
Detux only supports SSH, this is our improvement over Detux. The sandbox controller operates
the virtual machine by Telnet protocol, the file will be transferred to a virtual machine by wget, ftp
or tftp instead of scp depending on the specific environment of the firmware.

• The virtual machine based on QEMU includes 2 components: QEMU image and Linux kernel. The
image of QEMU used in F-Sandbox containing the file-system is extracted from the firmware by the
Firmadyne Extract tool. It is added more tool and modified some configuration info to emulate in
QEMU but still fully inheriting the packaged environment of the firmware. The Linux kernel used
in the F-Sandbox is the F-Kernel which improved from the Firmadyne instrumented kernel. The
instrumented kernel of Firmadyne can only listen to 15 syscalls of the system, therefore we extend to
listen to all syscalls of the system aiming to collect all malicious code behavior. Collecting all syscalls
can affect the speed of the F-Sandbox, in many situations it is only necessary to collect syscalls
with a high frequency, therefore the F-Kernel allows flexible configuration of syscall quantities to be
collected with different thresholds by setting syscall parameter when starting the F-Sandbox. The
virtual machine interacts with the INetSim server through sending requests (HTTP, FTP, DNS,
etc) and recovers fake responses from INetSim. enp0s3 is an Ethernet Network Interface of the host
machine, eth0 is the Ethernet Network Interface of the virtual machine. A virtual bridge connected
host machines and virtual machines.

• The monitor performs virtual machine interaction through snapshot restore; it is the same function
of Detux.

• InetSim server performs a simulate of the Internet environment, it will redirect all network traffic
to the InetSim server via IPtables and DNS poisoning. This is one of the best tools for simulation of
network service, it helps us to emulate the network environment to make malware reveal behaviors
as connecting to a server, scanning port without harming the real Internet environment. The
INetSim log will record the interactions with the Internet.

We use QEMU as shown in Figure 2 to emulate firmware with loaded ELF files. A good deal of firmware
had an SSH server, other ones had only Telnet server. Hence, the F-Sandbox controller provides both
Telnet and SSH connectors to interact with the two types of firmware. Our method of transferring files to
the virtual machines is also very diverse, we created an FTP server, an Apache web server and a TFTP
server used by the virtual machine to download malware file and execute it.

The sandbox controller calls a procedure to start the virtual machine and QEMU monitor, initializes
the virtual machine from the existing state by using the image recovery function or configuring the
network, installing required packages and creating a snapshot to restore after running a sample.

4 IoT dynamic malware detection framework

We propose an IoT dynamic malware detection (IDMD) framework to learn and classify IoT malware, all
steps as shown in Figure 4. The IDMD framework includes two phases: classification model generation and
classification. In the classification model generation phase, labeled it to extracts ELF samples feature by
feature vectors generation function, then these feature vectors with their labels are used to train a model.
The feature vectors generation function includes three steps: sandbox initialization, sandbox execution,
and feature selection. In the classification phase, unlabeled samples will be extracted feature by the
feature vector generation function with generated parameters from the classification model generation
phase, then the extracted feature vector will be classified by the generated model from the classification
model generation phase.

4.1 Sandbox initialization

As mentioned above, our sandbox can build adaptive environments with samples by using suitable
firmware. To select the suitable firmware for an ELF file to be executed, this step extracts neces-



Figure 2: F-Sandbox with Multi-vendor environments

Figure 3: Captured system-calls log of a malware sample

sary information such as: Architecture (MIPS, ARM, etc), the endianness (Big-endian/Little-endian),
bit-length (16/32/64). This static information is extracted by using file utility in Linux. It helps our
framework to select suitable firmware, among our database of 253 real MIPS-based firmware of D-Link,
TP-Link, Asus, Belkin, Linksys, etc. The selected firmware is used to initialize our Sandboxes. The
selected firmware has many parameters such as what types of transfer protocol they supported (FTP,
TFTP, SCP), what control protocol they supported (SSH, Telnet). This information will configure the
sandbox controller, start and control the sandbox. It is not trivial to determine which firmware is the
most suitable to an ELF file, therefore, for each ELF file, our sandbox loads selected firmware one by one
to perform with, and the file with the most captured system-call will be kept for the next steps.

4.2 Sandbox execution

After initializing the sandbox with suitable required parameters, the sandbox controller transfer the
input ELF file into the sandbox. Then, by granting all permissions to the ELF file, F-Sandbox starts the
monitoring function for 30 seconds. Kprobe will collect the syscall generated from the running program



Figure 4: Proposed process for IoT malware classification

and its child processes. Therefore, it will be analysed and filtered to capture all log by the input ELF
file. If the malware sends a network request outside, it will be automatically redirected to INetSim via
Iptables and the built-in DNS-poisoning technique in InetSim and INetSim server will return the fake
response of the same type as the object that the template requires. It presents a sample of captured
syscall log in Figure 3.

4.3 Feature selection

To avoid the training time-consuming and reduce the risk of overfitting, we try to extract the most relevant
features related to the label and then apply machine learning algorithms to improve the performance of
the model. In this paper, there are two main selection steps:

• The selection of quantity and name of syscall among log files.

• The selection of feature vectors among n-gram features generated by selected syscall

The MIPS architecture Linux operating system has 345 different syscalls. However, they are not
used by performed ELF files, especially ELF malware. The average used syscalls by 3,223 ELF files
is about 146. The syscalls that are read and sentto are the most used ELF file which represents 86%
of all captured log files. 30 most frequent syscalls represent over 99% of the whole captured ones. In
our experiments, the more syscalls monitoring, the slower the performance system. When we try to
implement F-Kernel monitoring of more than 45 syscalls by Kprobe, F-Sandbox slowdowns, leads to
programs not working because of a timeout and the calculation time. F-Sandbox used Kprobe which
is dynamic instrumentation by trap instructions and then looking up handlers will incur an enormous
overhead. It is because of this reason that when we try to implement too many syscalls, our system
will slowdown. Therefore, instead of taking into account all captured, we remove every syscalls except
for the 30 most frequent ones and then apply the n-gram technique to construct feature vectors afterward.



Figure 5: The ratio between the total features scores and the sub-features scores ranking order by
descending

The n-gram is the method of counting the occurrences of n elements standing close to each other in a
sequence, it stores the number of these occurrences in a vector to characterize that string. It has proven
this method effective in detecting malware based on syscall [14]. In our research, we use n-gram with
n = 1, 2, 3 to get the feature vectors of the syscalls sequence. With the selection of the syscall set as
above, the vector is characterized by 2-gram and 3-gram directions with how to choose 30 features are
30 ×30 = 900 features and 27,000 features.

To select n-gram features that have the strongest relationship with the label, it can use efficient
feature reduction techniques based on scores such as Chi-square or Information Gain [41]. But Chandra
et al. [42] said that most of their cases, Chi-square was ahead or at part with Information Gain. In our
experiments, Chi-square is more efficient than Information Gain. Therefore, our framework used Chi-
square as a feature reduction method. The Chi-square score is computed between each feature and the
target, afterward we select the desired number of features with the best Chi-square scores. It determines
if the association between two categorical variables of the sample, would reflect their real association in
the population and it is the technique we chose for selecting the most relevant features in this paper. We
will rank features according to the following formula:

X2(D, t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)2

Eetec

(1)

Where et = 1 when the content of D contains a characteristic, otherwise et = 0; ec = 1 when D
belongs to class c, otherwise ec = 0. N is the observed frequency of D and E as the expected frequency.
We choose the number of feature vectors based on the ratio between the total features scores and the
sub-features scores ranking order by descending. We determine that 350 features having the highest score
represent 99.9% of the total score of 900 features (n=2) as shown in figure 5. These selected features will
then input to the classification step.

4.4 Classification

The machine learning methods are well studied in detecting malware, each method will give the result
for different datasets. Souri et al. [43] have reported many recent studies and evaluated three popular



Table 1: Number sample of each class
Label Lightaidra Mirai Gafgyt Dofloo Benign
Number of samples 796 477 132 241 280
Average length of syscall log 354 3.012 300 691 286

research methods with malware detection and the best result is Support Vector Machine (SVM), Random
Forest (RF) and Naive Bayes (NB). The SVM classification method has performed well on traditional
classification tasks, and we selected it for the text classification systems, intrusion detection systems and
promotes the ability with the n-gram feature extraction method. The advantage of this method is that
its general capability can be improved by using the principle of structural risk minimization. SVM uses
a kernel function to map training data into a higher-dimension space so that the problem is separable.
Decision Tree is a structured hierarchical tree used to classify objects based on a series of rules. Random
Forest uses many trees and forecast by averaging the predictions of each component tree. Naive Bayes is
a probability-based classification method, which gives good results in detecting malicious code [44].

5 Experiments

5.1 MIPS IoT samples

An IoT sample dataset used for testing is a set of 3,403 MIPS ELF samples, including 3,223 malware
samples and 228 benign files. Malware datasets collected from 2 different sources: Detux [20] and IoTPOT
team [16]. Detux has collected more than 9,000 samples, including more than 3,200 MIPS ELF samples.
IoTPOT has collected 4,000 samples, of which 938 MIPS ELF samples and only 38 samples coincide with
the MIPS ELF pattern of Detux. To label the experimental samples, there are 2 main options which are an
evaluation based on a reputable antivirus like Kaspersky [45] or antivirus software combination [15]. We
labeled the templates based on Virustotal [23], first identify malicious designs that are Virustotal samples
discovered by over 10 software, including reputable software Kaspersky, Avast, Avg, Symantec, we got
3,223 malicious samples. We then labeled this 3,223 malware based on the antivirus combination, which
uses Symantec’s main label, the antivirus engine has a good detection capability and a clever naming
scheme. In the malicious dataset, there are 37 different families, many popular and popular malicious
codes like LightAidra / Aidra / Zendran, Dofloo / Spike / MrBlack / Wrkatk / Sotdas / AES.DDoS /
DnsAmp, Gafgyt / BASHLITE / Lizkebab / Torlus, Tsunami / Kaiten, SecurityRisk, Moose, Hajime,
Trojan.Gen etc, but to ensure the classification accuracy, avoid the imbalance in the number of samples
of the classes in the training process, articles select only 4 typical malicious family names and have a
sample number greater than 100. We show the distribution of the malicious codes in the IoT dataset is
shown in Figure 6.

We collect the benign dataset from the basic programs available on Embedded Linux, BusyBox built-
in programs, Embedded Linux kernel, and some MIPS-based basic applications. The number of clean
samples collected is 280 samples. Devices using MIPS chips are specialized devices, there are very limited
application stores, the number of clean programs collected is therefore also limited. Thus, the input
dataset has five labels, four malware labels including LightAidra, Mirai, Gafgyf, Dofloo, and one Benign
label.

5.2 Collecting syscall log

According to [14], the syscall log must be collected within a certain time, the minimum length of the syscall
log is 1,500, which will show the result in the best detection with malware on Windows i386 architecture.
The numbers generated during the first 30s-focused sandbox implementation, when increasing this time
to 60s, 90s, 120s, the syscall number obtained does not change much, so we continue to collect the log for
each sample in 30 seconds. The average syscall log length of the sample set is lower than the threshold
of 1,500 syscalls and for each type of malware, it gives the average length of the different logs, which is
the average length of malicious code families shown in Table 1.



Figure 6: Types of malware in the IoT dataset

Table 2: Evaluating the number of syscall samples
Label 50 100 200 300 400 500 1,500
Number of benign samples 280 259 145 123 104 94 6
Number of malware samples 2,370 2,288 2,165 2,142 765 756 67

By analyzing the collected logs when executing the templates in F-Sandbox, the log files of length less
than 50 are generated by samples with errors such as insufficient parameters to operate, lack of libraries,
errors initialize and so on. A sample when is normally active has a length of syscall log more than 50,
the number of programs with several syscalls over 1,500 such as [14] is not large, most programs call the
number of syscalls in the range from 50 to 500 as shown in Table 2. The range of syscall’s length MIPS
ELF files is shorter which can also be explained because programs written on IoT are often simpler on
multi-purpose computers due to constrained resources and functions.

From the initial process created when running the sample, the malicious code creates a lot of child
processes, in which malicious code creating 1,000 child processes, and most malicious code creates 3
child processes. It shows the number of generated child processes is shown in Figure 8. Therefore, when
collecting the syscall log of the sample, it is a syscall log of all processes generated when executing that
pattern.

Analyzing the collected log file, the malware only uses 136 syscalls, the benign set uses 127, most
of the syscall of 2 episodes overlap, there are 160 syscalls appear in both sets. Distributing irregular
patterns, 2 syscalls read and send to occupy 86% of the system. It shows detailed statistics of syscalls in
Figure 7. The data feature syscall log is also consistent with the published behavior of malicious code is
sending information to the destination.

Through analysis, malware on IoT devices also has hidden features such as detection of analysis pro-
grams. Several malware samples can detect Strace tracking, so it does not activate them. Some previous
observations suggest that malicious code on IoT is simple but still uses common hidden techniques of
malware.



Figure 7: The rate of system calls

5.3 Performance measures

We measure the effectiveness of the classifiers in terms of precision, recall, and F1 score. It computes these
three quantities on a per-class basis. The precision for a class Ck is the fraction of processes classified as
Ck,

PrecisionCk =
TPCk

TPCk + FPCk
(2)

Where TPCk and FPCk are the numbers of true positives and false positives predicted by the classifier,
i.e., the number of processes correctly and incorrectly classified as belonging to Ck. The precision measures
the relevance of the positive classifications. A precision of 1 indicates that the classifier is always correct
when it classifies a process as belonging to class Ck, whereas a precision of 0 shows it is never correct
when it does so. The recall of a class Ck is the fraction of the processes belonging to Ck in the ground
truth that are correctly classified,

RecallCk =
TPCk

TPCk + FNCk
(3)

Where FNCk is the number of false negatives, i.e., the number of instances of Ck misclassified as
belonging to another class. The recall measures the sensitivity of the classifier. A recall of 1 shows that
a classifier correctly identifies every instance of class Ck, whereas a recall of 0 indicates that a classifier
never identifies instances of Ck. The F1 score of a class Ck is the harmonic mean of the precision and
recall of that class. An F1 score of 0 indicates 0 recall or 0 precision, whereas an F1 score of 1 indicates
perfect recall and precision. In this study, per-class F1 scores are averaged over all the classes to provide
an overall characterization of a classifier. We consider three averaging techniques accounting for the
unbalanced representation of the malware classes used in this study.

• Micro-averaged F1 score: The F1 score computed from the aggregate set, characterizing classifier
performance on large classes.

• Macro-averaged F1 score: The average of the F1 scores of the classes, characterizing classifier
performance on small classes.



Figure 8: Statistics of the number of processes created by the IoT dataset

• Weighted F1 score: The weighted average of the F1 scores of the classes, with weights proportional
to their support in the ground truth.

5.4 Training and evaluation

We installed the test based on the Scikit-learn Python library 0.19.2 on laptop Core i5 MacBook Pro,
Ram 16 GB. Build 10 datasets generated from the IoT dataset according to the minimum length of syscall
log n, with n = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 to determine which threshold is the most
suitable for detecting MIPS ELF malware classification. If the length of the selected log file is too small,
there will not be enough information to determine the program characteristics. On the contrary, if the
length of the log file is too large, many programs that simply click are not evaluated and the ability to
detect malicious code will be delayed. The goal is to determine the threshold as small as possible and
measurement is most suitable, so that means the ability to classify and detect results very early when
implementing the sample.

With the method of extracting n-gram characteristics, if n is too small (1-gram), the information got
shows only the frequency of single syscall occurrences. If n is too large, the number of the characteristic
collections is very large and the characteristics obtained are sensitive to the transformation techniques of
malware. Recent studied experiments [32] [45] gave the best results with 2-gram and 3-gram, so in this
model test with 2-gram and 3-gram.

With the n-gram characteristic got to reduce the dimension with Chi-Square with the number of
dimensions reduced to K. Based on the experiments in [45, 46], we set K = 350.

We experimented with the dataset to select the best parameters for SVM, NB, and RF using the grid
search method. For SVM, we classify using OVO method, use the Sigmoid kernel, and find the optimal



parameter C in the range [1-100,000], the gamma value in the range [0.0000001-1]. For RF we find two
pros-parametric parameters, the feature function, which is one of three functions [sqrt, log2, sqr] and the
number of n estimators in the range [2-700].

Cross-validation is a popular method in machine learning to assess a detection/classification method’s
outcomes gained from experiments that can be generalized into an independent sample. It consists
of many techniques such as Repeated Random Sub-sampling, K-fold, and Leave-Out. K-fold involves
randomly dividing the set of observations into K groups, or folds, of equal size. The first fold is treated as
a validation set, and the method is fit on the remaining K-1 folds [47]. The K-fold validation is suitable for
limited size datasets [48]. In the experiments, we use a 5-fold cross-validation method with the selected
parameter set in training and evaluating step. It divides data into different five sections, four of them
are used as training data and the remained section is used as testing data for each experiment. Measures
are calculated as the average of five times in these experiments.

5.5 Experimental results

The table in Figure 9 represents the overall results of F1-Macro, F1-Micro and F1-weight corresponding
to different machine learning methods and threshold syscall lengths. The results show that the models
for the measurements are approximately the same, altogether about one value and there are no many
deviations that demonstrate a good model.

Figure 9: F1-Macro, F1-Micro and F1-weight with 2-gram feature

The charts in Figures 10 11 12 compare the results of identification methods RF, SVM and NB with
2-gram and 3-gram feature. Experimental results show that 2-gram gives the best value for the classifier
with all three algorithms RF, SVM, and NB.

The charts in Figures 13 and 14 compare the F1-Weighted value of 3 sets classifier with different
minimum syscall log thresholds. The experimental results show that RF gives the best classification
ability, then to SVM and NB. From both charts above it can be seen that the minimum syscall log
threshold for classifying malicious code on the MIPS ELF set is 400.

From the experimental results, we can see:

• With MIPS ELF samples, our framework gets the highest results with the 2-gram feature extraction
method with the Random Forest classification method, the minimum syscall length threshold is 400.
Compared to the minimum length of the syscall log evaluated by Canzee et al. [32] with malware
dataset on Windows is 1,500, the MIPS ELF file is smaller, the reason why it can be explained is
because of the simple embedded program sets. There are fewer functions than Windows, which is
also the feature of embedded software. That may also be the reason for the 2-gram explanation for
the ability to classify better than 3-gram.

• The results in the IoT dataset are good and gather classification from objective sources, thus proving
that F-Sandbox works correctly and efficiently.



Figure 10: Random Forest Classification with 2-gram and 3-gram

Figure 11: SVM Classification with 2-gram and 3-gram

Figure 12: Naive Bayes Classification with 2-gram and 3-gram



Figure 13: F1-Weighted with 2-gram

Figure 14: F1-Weighted with 3-gram

6 Conclusions and future work

In this paper, we proposed a framework for detecting and classifying MIPS ELF malware based on syscall
and machine learning methods. This is the first study specializing in malware in MIPS ELF. In particular,
the main contribution is MIPS IoT dataset, a novel type for IoT sandbox, based on the improvement
and integration of Detux sandbox and Firmadyne emulation. We also collected, standardized the MIPS
IoT dataset. In theory, the study has shown many characteristics of the malware type in MIPS ELF,
finding the most suitable methods and parameters for detecting MIPS ELF malware based on machine
learning methods. To the best of our knowledge, this paper is the first to provide a comprehensive
framework, including not only an overall methodology but also a sandbox environment and related tools,
for collecting MIPS-based malware syscalls, classifying them to their respective families, and evaluating
the classification performances. We provided the generated IoT dataset used in our experiments and
the source code of our sandbox tool to researchers at sites https://gitlab.com/Nghiphu/c500-sandbox and
http://firmware.vn for academic purposes.

In future work, we continue to develop F-Sandbox so that malware can execute at high rates, exposing
more behavior. In this framework, we have only exploited the information about syscall obtained from
F-Sandbox to detect malware, other information such as network behaviors, process states will be further
considered and researched. Static information not only uses to initialize F-Sandbox but also combines



with dynamic behaviors to detect/classify malware. Therefore, our works in near time integrate static
information, static feature, system behaviors and network behaviors that extracted from F-Sandbox to
detect/classify malware. F-Sandbox supports and experiments for the MIPS architecture, therefore next
time, we will deploy for another architecture such as ARM, PowerPC.
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