
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-11, September 2019

32

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J99090881019/2019©BEIESP

DOI: 10.35940/ijitee.J9909.0981119



Abstract: Nowadays, there are many discussions on the fourth

industrial revolution with a combination of real physical and

virtual systems (Cyber Physical Systems), Internet of Things (IoT)

and Internet of Services (IoS). Along with this revolution is the

rapid development of malicious code on IoT devices, leading to not

only the risk of personal privacy information leaking but also the

risk of network security in general. In this paper, we propose

C500-toolkit, a novel tool for malware detection in

Commercial-off-the-shelf routers, based on dynamic analysis

approach. The main contribution of C500-toolkit is to provide an

environment for fully emulating router firmware image including

both operating system and web-interface. To show the advantage

of C500-toolkit, experiments of this tool with embedded malwares

Linux/TheMoon and Linux/Mirai are presented.

Keywords: IoT security, Router security, firmware,

C500-toolkit.

I. INTRODUCTION

 The term Internet of Things (IoT) has become popular in

recent years and it is the main core of the forth industrial

revolution. Kevin Ashton defines “Internet of Things” as an

integration of sensors and embedded controllers inside

devices that are connected through the Internet, wire or

wireless [1]. In this trend, object and human are given an

identification and able to exchange related data, information

each other without the intervention of human or computer.

IoT devices such as smartTVs, router, ipCamera, lamps,

microwave oven and so on are becoming more and more

intelligent. These smart things can communicate with each

other to exchange data to perform their intended

functionality. According to Cisco’s report [2], 50 billions IoT

devices will connect to Internet by 2020 around the world

opening significant opportunities for a large number of new

applications that promise to improve the quality of our lives.

Because smart things can receive privacy-sensitive

information from their sensors such as user’s location, user’s

activities, with whom this user is talking, or carry out a safety

critical function such as actuators that lock the front door,

errors in the firmware of devices, whether present result in an

accidental mistake or purposeful malice, can have serious and

varying implications in both the digital and physical world

[3]. Therefore, in parallel with the development of IoT

technology, there are many security problems such as

disruption to operation, information leaking or, in some

scenarios, even loss of lives [4] when some smart thing can

Revised Manuscript Received on September 03, 2019

* Correspondence Author

Tran Nghi Phu*, VNU University of Engineering and

TechnologyInstitute of Informatics, Hanoi, Vietnam.

become a spying device to collect information and interact

with us anytime.Recent recorded attacks show that these

scenarios become more and more critic. In September 2016,

an IoT botnet built from the Linux/Mirai malware was

responsible for a 600 Gbps DDoS attack, perhaps the largest

botnet on record, targeting Brian Krebs’s security blog [5].

Another case that could be mentioned is Weeping Angel [6],

one program used Samsung smart-televisions as secret

listening devices. According to the Wikileaks news, even

when it appears to be turned off, the television “operates as a

bug, recording conversations in the room and sending them

over the Internet to a covert C.I.A. server”. There exist a lot

of vulnerabilities that attackers can use for getting privileges

of IoT devices and OWASP has identified top ten issues [7]

in which insecure firmware, insecure web interface and

insufficient authentication are mentioned. These issues have

been attracting much attention from researchers who are

dealing with IoT network devices. Inside IoT network,

network devices such as router, switch, IoT gateway play a

important role in transmitting data between devices. To

secure these IoT devices, especially routers, works presented

in [8, 9, 10, 11, 12, 13] allow identifying

vulnerabilities/malware in commercial off-the-shelf (COST)

network devices. There are two main classes in firmware

analysis: static and dynamic approach. Static approach,

consists of analyzing and evaluating without executing them,

uses techniques such as Data Flow Graph (DFG), Control

Flow Graph (CFG), Symbolic Execution (SE) to analyze

every single file found in firmware and identify malware

characteristics [13] such as Printable-Strings-Information

(PSI), bytecode, headers, system-calls, API etc. For example,

Drew et al. [9] perform static analysis on embedded systems

with FIE based on symbolic execution engine to detect bugs

in firmware for the popular micro-controllers MSP430

family. This method is precise for a small range of open

source firmware programs of 16-bits RISC processors, but it

can not be applied to large-scale analysis for IoT devices in

general. To deal with this problem of scalability,

Shoshitaishvili et al. [3] presented Firmalice, Costin et al.

[14] have built an automated framework for analysing

router’s firmware images. Firmalice is a static analysis

framework built on top of a symbolic execution engine to

identify authentication bypass flaw that attackers could

determine the required inputs to execute privileged

operations. This framework could analyze firmwares on the

binary level, in a scalable manner and with no requirement to

instrument code on the original device. While Costin’s

framework scales to thousands of firmware images but it is

A System Emulation for Malware Detection in

Routers

Tran Nghi Phu, Ngo Quoc Dung, Le Van Hoang, Nguyen Dai Tho, Nguyen Ngoc Binh

A System Emulation for Malware Detection in Routers

33

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J99090881019/2019©BEIESP

DOI: 10.35940/ijitee.J9909.0981119

very generic and produces a large number of false

positives. The main drawback of these methods is it cannot be

used for malware detection purpose and firmwares

containing complex obfuscation code. Therefore, using only

the static analysis approach could not be sufficient to identify

malware and should be combined with dynamic analysis [4].

Dynamic approach consists of monitoring the whole

device during its run-time to detect abnormal behaviors. The

principle of this method is to define a set of rules that are

considered normal behavior to determine whether an
observed device signals intentionally violates the these

predefined rules. To perform this approach, the most

important parts were to build a virtual emulator for running

firmware. In such environment, malware can only affect the

virtual PC and not the physical one. In general, researchers

used QEMU [15], a very popular open-source system

emulator, to deal with emulator challenges. Indeed, QEMU

supports many types of architecture processor such as Intel

ATOM, X86, ARM, MIPS, PowerPC that are widely used in

IoT devices.

In this perspective, Jonas et al. have built the Avatar

framework to analyze embedded devices by orchestrating the
execution of a QEMU based emulator and hardware of that

embedded device [10]. To analyze a firmware, Avatar

connects to the target device through the communication

channel or the debugging link such as Jtag and Uart to the

analysis model, in which QEMU was used for emulating its

CPU. Then, every CPU operations will be observed and

analyzed to detect abnormal behaviors. The offloading

execution of firmware to actual hardware reduces the gap

between the simulation and the reality. This point gives

Avatar the possibility to get real CPU operation signals

during its run-time that a native QEMU based emulator
cannot do. However, a lot of low-cost embedded devices do

not have standard debugging or communication channels as

required. Besides, the data transmission between the actual

device and the analysis module through Jtag or Uart is slow.

Therefore, using Avatar for real-time malware detection on

IoT devices is impossible.

Sandboxes are used as a core of IoT malware analysis and

detection frameworks such as [16, 17] aiming at extracting

behaviors of a targeted file during its run-time. However,

these frameworks exist flaws that limit the malware detection

capability. IoTPot [17] has built a sandbox to capture and

analyze Telnet behaviors of IoT malware that are used for
DDoS attacks. This approach could be useful for detecting

network abnormal behaviors, but can’t detect malware that

behave mostly inside the operating system of the device such

as Linux/TheMoon [18]. Rare [19] focused on how to

activate malware on Router by discovering static and

dynamic information to build a suitable environment for

malware and Chang et al. [16] proposed IoT sandbox which

can support 9 kinds of CPU architectures including ARM

(EL, HF), MIPS, MIPSEL, POWERPC, SPARC, x86, x64

and sh4. But they only used OpenWrt to build emulated

router, didn’t emulate NVRAM and didn’t mention to detect
malware on router.

Current sandboxes have been mostly built on basic

environments including common Linux-based operating

system, additional tools without the IoT devices specificity.

This point has a strong impact to capture behaviors of a target

executable file and the whole detection process afterwards.

But with the firmware, it is built and packaged for specialized

devices, with specialized functions in many different

environments that don’t have much in common. Therefore,

many programs that cannot be executed on a standard

environment, we also can’t install additional required

environments but need to create an environment like real

firmware, which means that the sandbox environment needs

to be very diverse and like the firmware Real equipment. That
means, with IoT sandbox we not only create an environment

but have to create a lot of IoT sandbox environment, each

sandbox has a close environment with real devices. The

installation of these environments is not feasible due to the

complexity, and they themselves are packaged in

unpublished firmware. To our knowledge, there is not any

sandbox currently that has the ability to build an environment

based on the actual device firmware, able to simulate the

device’s NVRam and gather enough syscall to serve the

malware detection.

Another well-known method to deal with vulnerabilities

detection purpose in large-scale is Firmadyne [12] proposed
by Chen et al.. Firmadyne aims at emulating router

firmware’s web-interface using QEMU. Firmadyne is able to

auto-configure a suitable emulation environment for a wide

range of routers that allows to performing dynamic analysis

of 23,035 firmware images gathered from 42 device vendors.

This method does not rely on physical hardware to perform

the analysis like Avatar but Firmadyne emulate perfectly the

firmware non-volatile memory to execute the firmware

web-interface. Once the router web-interface is emulated, the

popular scanning framework Metasploit is used for exploring

vulnerabilities and its corresponding exploits. Firmadyne is
the best tool available currently that can emulate the actual

device firmware with simulating NVRam. However,

Firmadyne analyzes only the web interfaces by scanning

from outside and ignore behaviors of the firmware operating

system. Hence, these methods can not collect abnormal

behaviors to detect malware and shows in the analysis of

Linux/TheMoon and Linux/Mirai malware experimentations.

In some cases, Chen said that their NVRam emulation

implementation didn’t work for all firmware images, and our

test experiment shows that some of whom will run with

NVRam information extracted from the real device, not

emulated NVRam. In addition, COTS embedded devices,
which directly extract from router devices, are usually

controlled by vendors and firmware images could be

different with those showcased on their websites.

In general, the considered methods have two drawbacks:

Firstly, they focus on analyzing only standard Linux image or

router firmware images that are downloaded from vendor

websites and not dealing with those that are embedded the

actual routers, so many firmwares still couldn’t operate.

Secondly, the emulated firmware environment don’t enough

a suitable environment for malware activate it’s behavior and

don’t have tools to allow monitoring system behavior of
malware. To overcome the shortcomings of previous works,

a new tool is proposed in this paper to emulate actual router

firmware images to perform the vulnerabilities and/or

malware detection at the same time. This method is relied on

a toolkit, named C500-Toolkit, with the capabilities of:

 • The C500-toolkit is able to extract firmware image

from actual router’s FLASH chip.

 • The C500-toolkit is able to crawl firmware images from

router vendor’s websites.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-11, September 2019

34

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J99090881019/2019©BEIESP

DOI: 10.35940/ijitee.J9909.0981119

 • The C500-toolkit automatically standardize router’s

firmware image as required to fully emulate it including the

operating system and the web interface.

 • The C500-toolkit can insert monitoring tools such as

Strace, TcpDump to collect data during the emulation of

router.

• The C500-toolkit is able to perform dynamic analysis to

detect malware and vulnerabilities in router’s firmware

image.

II. ROUTER AND FIRMWARE STRUCTURE

This section presents the router, the firmware image

structure and the challenges that we faced when building

C500-toolkit.

The router is a network device in layer 3 of the Network

Layer model OSI with main components are presented in Fig.

1:

Fig 1: Router structure

 • CPU: is the heart of router that executes every

instructions given by the operating system.

 • ROM: is the Read-Only-Memory contains boot strap

programming and basis software for starting up the router.

 • RAM: is Random-Access-Memory and similar to the

RAM used in traditional computer or PC, this volatile

memory is lost all stored data when the router is shutdown or

restart.

 • FLASH: is a None-Volatile Memory where the

firmware image is held, this component can be

erasable/writable and keep data when the power is lost.

 • NVRAM (None-Volatile RAM): has the same

functionality as the FLASH but with less storage capacity.

NVRAM contains configuration files of the device to ensure

that when booting up, the default configurations of the router,

including network and system configurations, will be

automatically loaded correctly into the storing states. This

component could be included in the FLASH.

 • Interfaces: are physical hardware that ensure the

transmission of packets come in and come out the router.

The composition of router is similar to PC except the

architecture of CPU, about 86% of the routers use MIPS,

ARM as in-house architecture because it was originally

simpler and cheaper. Thanks to QEMU, a full-system

emulation for any supported architecture including MIPS,

ARM, X86, SPARC etc that allows creating an emulator for

router. A router has the same components as a computer,

except NVRam and the component is also not emulated in

QEMU, it only updated by Firmadyne. It means origin

QEMU couldn’t emulate router like PC. But Firmadyne only

use emulated NVRam information, it can’t use information

from actual NVRam of router devices.

The structure of firmware image may vary, depending on

the function and the design of each manufacturer. Firmware

image can be divided into the following types:

 • Full-blown (full OS/kernel + boot-loader + libs + app):

this is a complete firmware that contains a minimalist

operating system. In this type, user-mode and kernel-mode

are separated; applications run in user-mode allowing

inserting custom tools for vulnerabilities and malware

detection purpose.

 • Integrated (apps + OS-as-a-lib): this is an incomplete

firmware. Functions, operating system are built as a library

and there is only kernel-mode in this type.

 • Partial updates (apps or libs or resources or support):

this type of firmware contains only files that used to update

the firmware.

In this paper, firmware images of the first type

(full-blown) are taken into account for the vulnerabilities and

malware detection purpose. This choice is made because

full-blown firmware images contain required components

such as bootloader, linux kernel, file-system image, user-land

binaries, web-interface and support files for the router

emulation. These firmware images can be extracted from two

sources, the first one is from vendor websites and the second

one is to extract them from actual router devices. The first

source is widely used by researchers such as Costin [14] or

Chen [12]. The second source is rarely used in previous

works even it has an important impact to determine if the

embedded firmware image on actual routers contain

malicious code or/and vulnerabilities.

To deal with the discussed challenges in the previous

section, C500-Toolkit was built with the objectives of

extracting, emulating and analyzing actual router firmware

images, especially Linux-based firmwares. To showcase the

capabilities of C500-toolkit, a real router (Tp-Link Wr842nd

with the version of the FLASH chip is Winbond W25Q64FV)

and malware (Linux/TheMoon and Linux/Mirai) were used

for our experiments. To summarize, the contributions of this

proposed toolkit are:

 • The C500-toolkit has a module, named C500-Extractor,

for extracting firmware image from an actual router device.

 • The C500-toolkit has a module, named

C500-Standardization, for completing the missing parts into

a firmware image to get a pre-emulated image that can be

performed by QEMU.

 • The C500-toolkit has C500-Detector module, for

detecting malware and vulnerabilities in a target firmware

image.

A System Emulation for Malware Detection in Routers

35

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J99090881019/2019©BEIESP

DOI: 10.35940/ijitee.J9909.0981119

Fig 2: C500-Toolkit Composition

III. C500-TOOLKIT

This section describs the C500-toolkit main components

and their functions. The overview of this toolkit is shown in

Fig. 2.

A. C500-Extractor

 The extraction of firmware images on SOHO routers

(Small Office - Home Office) can be performed through

several methods such as using the deviceâ€™s backup

function, using the serial console port or the Jtag debug

channel. However, in some cases these extraction methods

may not be as effective as desired because the manufacturers
remove these ports on the printed circuit board, therefore do

not allow users to interfere with the device. In this case,

extracting the firmware image directly from the FLASH chip

is necessary, which is also the goal of the C500-Extractor.

The C500-Extractor is a hardware module and it is

designed to read/write data from/to the FLASH chip

containing the firmware image. The first prototype version

was built to deal with popular FLASH chips used on Tp-Link

and Linksys routers that are:

 • The Winbond FLASH chips W25Q32FV, W25Q64FV,

W25Q128FV
 • The Fidelix FLASH chip FM25Q64

 • The Macronix FLASH chip MX25L1606E

 • The Eon FLASH chip EN29LV320B-70TC

To read/write data from these FLASH chips, two main

interfaces were used are the SPI (Serial Peripheral Interface)

[20] and the FSMC (Flexible Static Memory Controller) [21].

The FSMC port is employed for the Eon FLASH chip

extraction, while the SPI port is applied to the Winbond,

Fidelix, Macronix FLASH chips. This hardware module is

controlled by a micro-controller STM32F10 family and

support both communication channel SPI and FSMC. This

module is shown in Fig. 3. To start the firmware image
extraction process, the target FLASH chip is put into a

corresponding compartment. The extractor would read the ID

code of that FLASH chip to detect which one is put into, then

it adjusts the appropriate configurations to extract data to get

a binary file. The extracted binary file is then transferred to a

computer through the micro USB connection. This binary file

usually contains NVRAM, Art, Kernel vmlinux, Bootloader,

Rootfs in which three parts kernel vmlinux, Rootfs and

NVRAM have an important role. The first part indicates the

Linux kernel version used by the operating system that is

found in the Rootfs. And the NVRAM indicates the required
configurations for executing the router correctly, especially

in user-mode. Once a firmware image is extracted,

C500-toolkit standardizes this one by completing missing

data, in using the extracted parts, to emulate it by QEMU.

Fig 3: C500-Extractor Component

B. C500-Standardization

 The standardization of the firmware image is performed

by two steps:

 • Extraction and identification of hardware architecture

to replace Busybox, named C500-Reverse.

 • Addition of missing data including NVRAM, Linux

kernel and Busybox, to get a pre-emulated image for QEMU.

First, C500-Reverse is called to identify the CPU

architecture, its endianness, the kernel version and then,

unzip the extracted firmware image to get file-system

directories. There were several tools that are similar to

C500-Reverse such as Firmware-mod-kit (FMK) [22],

Binwalk [23] or the Extractor module of Firmadyne [12].

However, these modules have non-negligeable drawbacks

that were presented in [24]. As a result, C500-Reverse was

built in using the most popular extraction tools for file-system

formats such as Jefferson, Sasquatch, CRAMfs, Yaffs. These

formats represent 97% of 13,275 tested firmware images that

were crawled from router vendor websites.

 The most popular

file-system formats, based on

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-11, September 2019

36

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J99090881019/2019©BEIESP

DOI: 10.35940/ijitee.J9909.0981119

13,275 tested firmware images, are shown in Fig. 4.

Fig 4: C500-Extractor Component

C500-Reverse module was built in modular manner allowing

to be updated frequently. The details of this component is

presented in [24] and the file-system directories of Tp-Link

Wr842nd are shown in Fig. 5.

Fig 5: Root file-system directories

 Along with the familiar directories found in linux

root file system such as etc, bin, lib, we can find the router

web-interface in www, cli directory. At this stage, the module

C500-Addition starts to build an empty image format raw,

then copy required data progressively into it to make a

pre-emulated firmware. This process is similar to Firmadyne

in order to emulate the web-interface [12] except two points:

 • The initialization of the NVRAM

 • The addition of tools for monitoring the network and

the operating system behavior

For the first point, Chen et al. [12] have used a shared

library, named to persist device-specific

configuration parameters, for tested firmware images.

Because of using a generic library for all of router firmware

images, the firmware image emulation successful rate is quite

low (4,992 firmware images out of 9,486). To overcome this

shortcoming, C500-Addition module uses the extracted

NVRAM as an input for customizing to fit the

required configurations of corresponding router device. After

being extracted from an actual device, NVRAM was stored in

a database to be reused afterwards. One part of the extracted

NVRAM of Tp-Link Wr842nd is shown in Fig. 6 in which

we can retrieve information such as:

 • The device Mac address is: 00:23;69:11:A6:D0

 • The LAN interfaces are: vlan0, eth1, eth2, eth3

 • The defaut Ip address is: 192.168.1.1

 • The firmware version is: v4.21.5

Fig 6: Extracted Tp-Link Wr842nd NVRAM

The second point is not trivial to resolve. First,

manufacturers always search to optimize the storage,

therefore they have customized their firmware image by

removing unnecessary packages. Hence, Busybox, a popular

tool in embedded systems, combines tiny versions of many

common UNIX utilities into a single small-size program [25],

thought it is necessary to determine if the employed Busybox

version has enough utilities for desired monitoring tools. In

this paper, a customized Strace version and a customized

Tcpdump are used for the vulnerabilities and/or malware

detection purpose. Strace is a diagnostic, debugging and

instructional user-space utility for a specific program in

Linux, while Tcpdump is used for analyzing network traffic

data. These tools are popularly used in malware analysis,

based on abnomal behavior analysis. Thanks to Landley [25]

with different pre-built Busybox versions, we can customize

them to get more utilities. For each Linux kernel version, a

suitable Busybox version is taken to replace the one found in

bin directory, a full utilities system is then achieved as

showing in Fig. 7. Second, about 93% of COTS router

firmware images operate with Linux kernel versions 2.6.x.

The difference between Linux kernel versions 2.6.x is not

significant, therefore make a generic pre-built Linux kernel

version 2.6.34 is the adopted solution for C500-Addition

module.

A System Emulation for Malware Detection in Routers

37

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J99090881019/2019©BEIESP

DOI: 10.35940/ijitee.J9909.0981119

Fig 7: Full utilities busybox

After customizing NVRAM, Busybox and Linux Kernel with

the C500-Addition module, the raw image became a

pre-emulated firmware image and could be performed by

QEMU. Finally, the C500-Detector is used for detecting

vulnerabilities and/or malware during the run-time of the

firmware.

C. C500-Detector

 This module is built for examining the malware’s

behavior from the operating system and the network during

its run-time. In this paper, C500-Detector analyzes logs

provided by Strace and Tcpdump to identify abnormal

behaviors of creating/deleting files without user permission;

listening, opening and scanning unauthorized ports;

connecting to static black-list IP; creating infinite loops. The

experimentation results is presented in the next section.

IV. EXPERIMENTAL RESULTS

In this section, we show how 500-Toolkit deals with two

well-known malware Linux/TheMoon and Linux/Mirai. The

experiement scenarios are as follows:

1. Linux/TheMoon is downloaded from [26], this very

first uncovered router malware was observed by a researcher

at the SANS Internet Storm Center spreading itself to a large

number of Linksys router models.

(MD5: 88a5c5f9c5de5ba612ec96682d61c7bb)

2. Linux/Mirai is downloaded from [27], this malware

turned million of web-camera, printers and baby monitor

hijacked by a botnet made worldwide news after it had taken

down some very high-profile websites and this incident was

described as the largest denial-of-service attack to date [28].

(MD5: c86082bc4a75c2bbb62d8aef52a57168)

3. Two couple copies of respectively firmware images of

Linksys E2500 and Tp-Link Wr842nd are taken into account

for Linux/TheMoon and Linux/Mirai. These firmware

images were extracted from actual devices, the extracted

NVRAM is used by C500-Addition module; then we only

infect the downloaded mawlares into the first one (by

copying it into the raw image) and keep clean for the second.

4. We perform the three presented step to get two

pre-emulated raw images.

5. We emulate these two couple images and two analysis

are then performed:

 - Using Metasploit to scan the emulated images to check

if there are more vulnerabilities during Linux/TheMoon and

Linux/Mirai execution.

 - Using Strace and Tcpdump to scan two couple images

and log every system-calls and network behaviors.

 6. Based on obtained results from Strace and Tcpdump,

C500-Detector module perform the analysis to warn

abnormal behaviors.

These two malware samples are slightly different in terms

of behavior. Linux/Mirai has to connect to a C&C server and

infected firmware images are set into infinite loop waiting for

commands from the C&C Server but it’s not necessary for

Linux/TheMoon. Linux/TheMoon interacts a lot with

operating system by creating and deleting files before

executing shell commands on a vulnerable router that has

Remote Management Access enabled, and downloads a copy

of itself. Therefore, we present in details the results of

Linux/TheMoon with Strace and Linux/Mirai with Strace

and Tcpdump.First, we perform the vulnerabilities detection

for raw images containing Linux/TheMoon and Linux/

Mirai. They were emulated by QEMU to start up the

web-interface, which could be scanned by Metasploit. At this

stage, no CVE was found even though two raw had been

operating with active Linux/TheMoon and Linux/Mirai

malware, this result is shown in Fig. 8. This means that

Linux/TheMoon and Linux/Mirai did not create any

vulnerability during its execution, therefore only Firmadyne

is not enough to detect abnormal behaviors.

Fig 8: Obtained result with Metasploit

Results with Strace

Linux/TheMoon

 Linux/TheMoon (EXr.pdf) was launched within the

Linksys E2500 firmware image and some facts appeared as

Fig. 9.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-11, September 2019

38

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J99090881019/2019©BEIESP

DOI: 10.35940/ijitee.J9909.0981119

Fig 9: Captured results during Linux/TheMoon

execution

At the first sight, we can conclude that this firmware

image does not behave in normal way because there are

deleting file behaviors. To be more precise, Strace is used for

getting more analysis in detail on system-calls made by

Linux/TheMoon. After launching Strace, C500-Detector

detects deleting files with extensions , , ,

 , etc. in directory as presented by Fig. 10.

Actually, these extensions are used by Linux/TheMoon for its

several variants, therefore this step tried to remove all traces

it may have left in the system.

Fig 10: Deleting file behaviors

Then, Linux/TheMoon created an important amount of

new and empty files, about 110 files, with two commands:

 and behaviors as showning by Fig. 11.

Fig 11: Creating file behaviors

As a result, we can conclude that this firmware image has

abnormal behaviors. As for the firmware image containing

Linux/Mirai malwalre, Strace was launched for the first

image and we can retrieve a lot of interesting information.

One part of this result is shown in Fig. 12.

Linux/Mirai

Fig 12: Strace log for the first raw image

First, to control watchdog timer in embedded device,

Linux/Mirai opens the /etc/watchdog file in read-write state

at the first line:

open("/dev/watchdog", O_RDWR)

 Then, PF_INET socket for TCP protocol is opened

through a specific port (53) to self connect to Google DNS

Server (8.8.8.8) to ensure that the Internet connection was

established.

Fig 13: Executed processes in both raw images

A System Emulation for Malware Detection in Routers

39

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J99090881019/2019©BEIESP

DOI: 10.35940/ijitee.J9909.0981119

 connect(4, {sa_family=AF_INET, sin_port=hto ns(53),
sin_addr=inet_addr("8.8.8.8")}, 16)

 At this stage, everything seems fine but moving forward,

we can see that there is an abnormal behavior consisting in

opening a random TCP/port (48178), based on previous

PF_INET socket, to the specific IP address

(192.168.131.150) without user permission.

getsockname(4, {sa_family=AF_INET,
sin_port=htons(56781),
sin_addr=inet_addr("192.168.131.150")}, 16)

 Then, Linux/Mirai opens another PF_INET socket at

port 48101 from localhost IP address 127.0.0.1 and then

starting to listen to the incoming connections and start its

infinite loop.

bind(4, {sa_family=AF_INET, sin_port=htons(48101),
sin_addr=inet_addr("127.0.0.1")}, 16) listen(4, 1)

 Although this log is not exhaustive to identify backdoor

opening and changes in infected system files but it collects

significant behaviors: modifying watchdog file, opening a

TCP/port to a specific IP, listening from outside to connect to

previous port and continuously looping. Accordingly, we can

conclude that these actions is abnormal behaviors. To be

more precised, we analyzed in detail the logs captured by

Strace for both of raw images. Concerning system behaviors,

there are two supplement processes created, while

Linux/Mirai was launched, are PID 747 and 749 as showing

is Fig. 13. The analysis of the process PID 747 with Strace

shows that this process behaves as a Backdoor to connect via

Http on IP 65.222.202.53 via the port 80. Details of this

connection are shown in Fig. 14.

 Fig 14: The connection of Linux/Mirai to 65.222.202.53

via the port 80

The process PID 749 scans the Telnet port (port 23) of

random IP addresses, for example 117.235.124.105,

55.37.83.182..., this process is aimed at infecting the

Linux/Mirai malware to other devices on Internet. The

scanning step is shown in Fig. 15

Fig 15: Log of the Telnet scanning ports

To capture the network behaviors of Linux/Mirai,

Tcpdump was launched and the obtained result is shown in

Fig. 16

Results with Tcpdump

Fig 16: Obtained result with Tcpdump

 Tcpdump shows that Linux/Mirai try to reach a wide

range random IP by sending ICMP packets. Because of this

firmware image was running within our emulator and there is

no Internet connection, therefore we cannot obserse futher

the netword behaviors that Linux/Mirai perform. At this

point, we can conclude that all Linux/Mirai behaviors could

not be traced in details but two interesting comportments,

without user permission, are captured and analyzed:

 • The behavior of connecttion to an outsite IP and starting

to listen to the incoming connections.

 • The behavior of scanning a wide range of random IP to

check if these devices are alive.

Based on these two behaviors, we can conclude that the

examined firmware image could be infected by malware.

V. CONCLUSION

In this paper, we presented the C500-toolkit to deal with

the detection of malware and vulnerabilities in SOHO

routers. Three main contributions of this toolkit respectively

are: extracting firmware from an actual device FLASH chip;

auto-completing missing parts to get a pre-emulated

firmware image by QEMU; capturing and analyzing

abnormal behaviors during its run-time.

By extracting and using NVRAM for configuring

firmware images, the C500-toolkit could get a higher

successful emulation rate. Our proposed tool could use

Firmadyne as a complement to perform a full device scanning

in order to identify vulnerabilities. Although there remain

some limitations in malware detection rules or FLASH chip

types that can be extracted, but it showed that we could detect

malware by using C500-toolkit based on abnormal behaviors

captured. Dynamic analysis could be interested in many

aspects such as the obfuscation issue avoiding and the

scalability, but it could not explore all malware trigger

conditions (time, system events or network inputs) as static

analysis approach. Therefore, our next challenge is to use

static analysis as a

pre-treatment step to

automatically identify malware

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-11, September 2019

40

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J99090881019/2019©BEIESP

DOI: 10.35940/ijitee.J9909.0981119

trigger conditions to use as inputs to our simulator.

REFERENCES

1. Ashton Kevin, That Internet of things thing. RFiD Journal 22 (7)

(2009) 97-114.

2. The internet of things: How the next evolution of the internet is

changing everything. URL http://www.cisco.com/

3. Yan Shoshitaishvili, Wang Ruoyu, Hauser Christophe, Kruegel

Christopher and Vigna Giovanni, Firmalice-Automatic Detection of

Authentication Bypass Vulnerabilities in Binary Firmware, NDSS,

2015.

4. Colin Tankard, The security issues of the internet of things, Computer

Fraud&Security (9), pages: 11-14, 2015.

5. Elisa Bertino and Nayeem Islam. Botnets and Internet of Things

Security. In IEEE Computer Society, 2017, p.76-79. IEEE, n.d.

https://doi.org/10.1109/MC.2017.62.

6. P. Beckett. Gdpr compliance: your tech department’s next big

opportunity. Computer Fraud & Security 2017 (5) (2017) 9-13.

7. Internet of things top 10 project. URL www.owasp.org/

8. Pavel Celeda, Radek Krejci, and Vojtech Krmicek. Revealing and

Analysing Modem Malware. In IEEE International Conference on

Communications (ICC). Ottawa, ON, Canada, 2012, pp. 971-975.

https://doi.org/10.1109/ICC.2012.6364598.

9. Drew Davidson, Benjamin Moench, Thomas Ristenpart, Somesh Jha.

Fie on firmware: Finding vulnerabilities in embedded systems using

symbolic execution. USENIX Security Symposium (2013) 463-478.

10. Andrei Costin, Jonas Zaddach, Aure’lien Francillon and Davide

Balzarotti. A large-scale analysis of the security of embedded

firmwares. In Proceedings of the 23rd USENIX Security Symposium,

2014, pp.95-110 Online]. Available:

https://www.usenix.org/conference/usenixsecurity14/techincal-sessio

ns/presentation/costin.

11. Yan Shoshitaishvili, Wang Ruoyu, Hauser Christophe, Kruegel

Christopher and Vigna Giovanni. Firmalice-Automatic Detection of

Authentication Bypass Vulnerabilities in Binary Firmware. NDSS,

2015.

12. Daming Chen, Manuel Egele, Maverick Woo and David Brumley,

Towards Automated Dynamic Analysis for Linux-based Embedded

Firmware. Carnegie Mellon University, 2015.

13. Christopher Kruegel, Yan Shoshitaishvili. Using static binary analysis

to find vulnerabilities and backdoors in firmware. Black Hat USA,

2015.

14. Andrei Costin, Zarras Apostolis, and Aure’lien Francillon. Automated

dynamic firmware analysis at scale: A case study on embedded web

interfaces. Proceedings of the 11th ACM on Asia Conference on

Computer and Communications Security, ACM, 2016, pp. 437-448.

15. QEMU. URL http://www.qemu.org/

16. Kai-Chi Chang, Raylin Tso, Min-Chun Tsai, IoT sandbox: to analysis

IoT malware Zollard, International Conference on Internet of things

and Cloud Computing, pages: 4-12, 2017.

17. Pa Yin Minn Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu

Matsumoto, Takahiro Kasama, and Christian Rossow. IoTPOT: A

Novel Honeypot for Revealing Current IoT Threats. Journal of

Information Processing 24, no. 3 (2016): 522-533.

https://doi.org/10.2197/ipsjjip.24.522.

18. Suspected Mass Exploit Against Linksys E1000 / E1200 Routers.

Available at:

https://isc.sans.edu/forums/diary/Suspected+Mass+Exploit+Against+

Linksys+E1000+E1200+Routers/17621/.

19. Ahmad Darki, Chun-Yu Chuang, Michalis Faloutsos, Zhiyun Qian and

Heng Yin. RARE: A Systematic Augmented Router Emulation for

Malware Analysis. In Passive and Active Measurement, edited by

Robert Beverly, Georgios Smaragdakis, and Anja Feldmann, 60-72.

Lecture Notes in Computer Science. Springer International Publishing,

2018.

20. Frederic Leens. An Introduction to I2C and SPI Protocols. IEEE

Instrumentation Measurement Magazine 12, no. 1 (February 2009):

8-13. https://doi.org/10.1109/MIM.2009.4762946.

21. E. Volpi, F. Sechi, T. Cecchini, F. Battini, L. Bacciarelli, L. Fanucci,

M. Marinis. System Study for a Head-Up Display Based on a Flexible

Sensor Interface. In Sensors and Microsystems, edited by Piero

Malcovati, Andrea Baschirotto, Arnaldo Amico, and Corrado Natale,

413-417. Lecture Notes in Electrical Engineering. Springer

Netherlands, 2010.

22. Firmware mod kit.

23. URL https://code.google.com/archive/p/firmware-mod-kit

24. Binwalk. URL http://binwalk.org/

25. Tran Nghi Phu, Nguyen Ngoc Binh, Ngo Quoc Dung, and Le Van

Hoang. Towards Malware Detection in Routers with C500-Toolkit. In

2017 5th International Conference on Information and Communication

Technology (ICoIC7), 1-5, 2017.

https://doi.org/10.1109/ICoICT.2017.8074691.

26. Busybox. URL https://www.busybox.net/

27. The moon malware. URL https://www.sans.org/

28. Mirai malware. URL https://github.com/jgamblin/Mirai-Source-Code

29. T. Pultarova, Webcam hack shows vulnerability of connected devices,

Engineering Technology 11 (11) (2016) 10-10.

AUTHORS PROFILE

Tran Nghi Phu is currently working as lecturer and network

security specialist, People’s Security Academy, Hanoi,

Vietnam. He has completed his Master degree in Software

Engineering at VNU University of Engineering and Technology (2014). He

has been doing research, application and teaching since then in the fields of

network security, artificial intelligence, IoT and more recently in malware

analysis. Currently, he is a PhD student at the University of Engineering and

Technology – VNU, Hanoi, Vietnam. He has owned some applications in

network security field at http://firmware.vn.

Le Van Hoang currently a graduate Department of

Information Technology and Information Security in People's

Security Academy, Hanoi, Vietnam. His research area

includes malware analysis, artificial intelligence, natural language

processing.

Dr. Ngo Quoc Dung is currently working as Lecturer in the

Department of Information Technology, Posts and

Telecommunications Institute of Technology, Hanoi,

Vietnam. He has completed his doctoral degree in Informatics applied in

automation and manufacturing at the Grenoble Institute of Technology,

Grenoble, France. He has been actively participated in all the research

activities. He has many books and has more than 10 research papers to his

credit. He also has guest edited several edited books. His research area

includes network security, malware analysis, artificial intelligence, optimal

energy.

Dr. Dai Tho Nguyen received his PhD from University of

Technology of Compiègne, France. He is currently the

Head of Laboratory of Information Security, Faculty of

Information Technology, University of Engineering and

Technology, Vietnam National University, Hanoi. He teaches various

courses on network security, information security management, digital

forensics, and ethical hacking. His research areas include information

security, distributed computing and networking, with interests ranging from

theoretical concerns to concrete use cases and scenarios.

Nguyen Ngoc Binh is currently working as Visiting

Professor, Faculty of Computer and Information Sciences

(CIS), Hosei University, Tokyo, Japan. He is PhD in

Information and Computer Sciences from Osaka

University, Japan and is Honorary Doctor from Toyohashi

University of Technology, Japan. His profile is at

http://uet.vnu.edu.vn/~nnbinh/.

http://firmware.vn/

