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Abstract Many multimedia retrieval tasks are faced with
increasingly large-scale datasets and variously changing
preferences of users in each query. There are at least three
distinctive contextual aspects comprised to form a set of pref-
erences of a user at each query time: content, intention, and
response time. A content preference refers to the low-level
or semantic representations of the data that a user is inter-
ested in. An intention preference refers to how the content
should be regarded as relevant. And a response time prefer-
ence refers to the ability to control a reasonable wait time.
This paper features the dynamic adaptability of a multime-
dia search system to the contexts of its users and proposes a
multicontext-adaptive indexing and search system for video
data. The main contribution is the integration of context-
based query creation functionswith high-performance search
algorithms into a unified search system.The indexingmethod
modifies inverted list data structure in order to construct disk-
resident databases for large-scale data and efficiently enables
a dynamic pruning search mechanism on those indices. We
implement a frame-wise video navigation system as an appli-
cation of the indexing and search system using the a 2.14TB
movie dataset. Experimental studies on this system show
the effectiveness of the proposed pruning search method
whendealingwith dynamic contexts and its comparative high
search performance.
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1 Introduction

While to end users, search is the most basic and quickest way
to find information, at the core of a search engine, it is the
indexing and search algorithms that work cleverly to meet
that information need. Large-scale multimedia data chal-
lenge a search engine in severalways: organizing the contents
of unstructured data; indexing large amount of records into
databases; interpreting and adapting to changing contexts of
users at query time; and quickly returning relevant informa-
tion from the databases to users.

The information need of users is the topic that has been
widely studied in information retrieval field [1,7,8]. While
in principle text retrieval including document retrieval or
Web page retrieval and multimedia retrieval share some
principal concepts and methodology, in practice multime-
dia search seems to be more complex and exploratory [1].
Spink et al. [42] stated that “multimedia searching appears
to require greater interactivity between users and the search
engine.” Comparing to the general Web page search, multi-
media retrieval shows “a significant increase in the number
of query terms, search session length, query reformulations,
and number of search results clicks” [1].

Those differences can be explained by addressing the rep-
resented contents in a full-text document comparing to a
multimedia datum. The contents of a document are often
represented by the set of its words, whereas the contents of
an image, for example, are often more unstructured and can
vary depending on the low-level features chosen to represent
it such as color, shape, or texture features. This gap between a
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low-level features and high-level semantics is often known as
a semantic gap. Besides the semantic gap, recent researches
in multimedia retrieval have also realized another gap, the
intention gap between search intent of a user and the query
at query time [19,45]. However, instead of defining explicitly
what can be an intention, the existing methods often suggest
to use the user’s feedbacks (i.e., the evaluation of a result
is relevant or irrelevant) as an implicit interpretation of the
search intent.

In this paper, three distinctive contextual aspects com-
prised to form a set of preferences of a user at query time are
defined and treated: content, intention, and response time.

Content of interest This aspect refers to the low-level
features of an image or video, which include color, shape,
texture.
Intention of search This aspect refers to how the con-
tent will be regarded as relevant. There are three kinds
of intention preferences: “dominant,” “similar,” and
“exact.” A “dominant” intention preference signifies that
the strong characterized features should be considered as
more important; therefore, a result will be counted as a
match if it contains these features with high values. A
“similar” intention preference indicates a desire to find
similar data to the input datum given a preferred con-
tent. An “exact” intention preference suggests a search
for only exactly matched data given the input datum and
a preferred content.
Response time This aspect refers to the ability of users to
control the response time of a search engine. Currently,
most search systems run to completion and then return
results to users. However, there are situations when the
users want to choose a reasonable running time and want
to get results by this time limit. This demand is suppos-
edly raised when the dataset is large and the response
time may be longer than an affordable wait time of a
user.

Different persons, or the same person under different cir-
cumstances, may have different interest under one query. For
a same input image in content-based image search, for exam-
ple, one person may be more interested in the colors while
another may be more interested in the shapes of objects in
the input. Likewise, another person may wish to search for
images that contain the vivid red colors as those are in the
input image ignoring other light red colors or other colors.
Only those returned images that match the user’s interest
and intention are evaluated as “relevant.” This state of affairs
challenges a search system to be able to treat those prefer-
ences and return reasonable results.

This paper features the dynamic adaptability of a multi-
media search system and proposes a new indexing and search
system for large-scale video data. The indexing method

modifies inverted list data structure in order to construct disk-
resident databases for large-scale data and efficiently enables
a dynamic pruning search mechanism on those indices. The
search method works adaptively to the preferences set up by
users as input at query time. It reflects users’ content pref-
erences by selecting an appropriate subset of inverted lists
and then adapts to the intention preferences by prioritizing
indexes to search and initializing starting points to search for
candidates. The searching for high-possibility relevant can-
didates is based on a greedy strategy to maximize the impact
of importance content and the relevance of content measured
by a similarity function.

The main contribution of this paper is an integrated
context-based search system for multimedia with two impor-
tant features: (1) a new disk-resident database construction
to index low-level features of multimedia data using value-
sorted inverted indices and (2) a dynamic pruning search
method that adapts to multiple preferred contexts of users.
We implement a frame-wise video navigation system using a
2.14 TBmovie dataset and use it to assess the performance of
our proposed search method comparing to other state-of-the-
art algorithms such as KD-tree, ball tree, and local sensitive
hashing (LSH forest).

The outline of paper is as follows: Sect. 2 describes related
works and the originality of our methods comparing to them,
Sect. 3 is themain section of this paper, in which ourmethod-
ology is discussed after an introduction of the geometric
intuition. In Sect. 4, we discuss the implementation of the
video navigation system and the experimental studies on this
system. Sections 5 and 6 discuss overall evaluations and con-
clude the paper.

2 Indexing and retrieval for large-scale datasets

2.1 Inverted indexing

Inverted index is a optimized data structure that facilitates
efficient retrieval. This data structure is broadly used in infor-
mation retrieval (IR) tasks where target data are documents.
An inverted index includes a list of inverted lists for each
word (or term). Each inverted list is a list of identifiers of
the documents containing that term. The answers to a query
“find the documents where word X occurs” can be retrieved
quickly by looking up at the inverted list X . When querying
one or more terms, documents are retrieved by looking up
indexes of corresponding terms, and they are processed by
computing their vectors of word frequencies and ranked to
return as closer distance to the query. In either case, the time
and processing resources to perform the query are dramati-
cally improved.

Using inverted index structure for other multimedia infor-
mation retrieval tasks such as for image and video is currently
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Table 1 Categories of methods use inverted index

Viewpoint Categories

Organization In-memory, on-disk

List structure Document sorted, frequency
sorted, dual sorted, value sorted

Content representation Low-level features, “visual
words”

Search method Pruning from head,
context-adaptive pruning

Application Text retrieval, image retrieval,
video retrieval

The bold methods are used or newly proposed in this research

investigated, e.g., [13,20,34,41,43]. Researches in this direc-
tion treat either low-level features of images such as color and
texture in [43] or “visual words” of quantized descriptors
such as [41] as set of terms to be indexed. By searching time,
the algorithms get out all the images which contain features
appear in query and adding them to the pool of candidate
images to be ranked.

There are two common ways to organize the inverted list:
document sorted [20,41] and frequency sorted as stated in
[39]. Document-sorted inverted list means the list of docu-
ments are sorted by document identifiers, commonly by an
increasing order. Frequency-sorted listmeans the list of docu-
ments are sorted by the frequency of the term occurring in the
documents, commonly by a decreasing order. The document-
sorted technique is useful for Boolean queries, whereas the
frequency-sorted technique is useful for ranked document
retrieval. A combined technique named dual sorted [36] can
be used tomaintain a single data structure that offers both two
orderings of frequency-sorted and document-sorted inverted
lists.

From storage viewpoint, the inverted index is stored either
in-memory [41] or on-disk [20,41] and either be compressed
[26,44] or not. For large-scale data, it’s more appropriate to
use on-disk storage so that the memory consumption can be
reduced significantly by transferring only needed part of each
inverted list from disk [2].

Table 1 summarizes categories of methods that use
inverted index: organization of inverted index (either in-
memory or on-disk), structure of inverted index (either
document sorted or frequency sorted), representation of
semantic content (either using low-level features or visual
words), and its applications (either text, image, or video
retrieval). We present in this paper an on-disk, modified
frequency-sorted (called “value sorted”) inverted indexing
method, which is as an improved method to support video
retrieval by dynamic path finding search method with a guar-
anteed performance.

2.2 The curse of high dimensionality

Searching in a large amount of multimedia data whose
semantic features are represented in high-dimensional meta-
data has been main objective of many researches. There is
a phenomenon called “curse of dimensionality” that arises
when analyzing data in high-dimensional spaces. This phe-
nomenon suggests that close objects might get separated by a
partition boundary when partitioning the space. The straight-
forward and common solution to tackle this problem is to
reduce the number of dimensions (or features) that are used
to represent the multimedia data such as feature selection
methods [9] or dimension reduction methods [21]. However,
reducing the number of dimensions causes reduced “subtle-
ness” expressed in the original data, which is, most of the
time, what users are looking for.

It is observed that despite the high dimensionality of data,
the number of dimensions with respect to a content prefer-
ence can be relatively small. For example, even if we use
thousands of colors to represent the content of image data,
it is more likely that we want to search for some particular
colors at query time. For that reason, this paper suggests to
manipulate the dimensionality of data in a context-adaptive
way.

2.3 Fast nearest neighbors retrieval

Many researches have utilized approximate nearest neigh-
bors problems to solve large-scalemultimedia retrieval tasks.
Content-based image retrieval systems have been able to
manage collections having sizes that could be very diffi-
cult years back. Most systems can handle several million
to hundred million images [15,20,23,27,35,46], billions
of descriptors [22,28,35], or address web-scale problems
[3,16,29,46], and so on.

The approaches to overcome large-scale datasets andhigh-
dimensional presentation of data vary frommany ranges, but
in general can be categorized as follows:

– Cluster based and its derivatives, e.g., [18,29,35,40]
– Locality-sensitive hashing, e.g., [29,31]
– Tree-based, e.g., [27,28,30,37,38]
– MapReduce paradigm, e.g., [35]

Most of the approximate high-dimensional nearest neigh-
bor search methods based on the above categories are based
on some kinds of segmentation of the data collection into
groups named clusters or partition the data space into areas
so that close data are indexed in the same cluster, or with the
same hash code, or at the same node leaf.

It is easy to see that the space partitioning is done at index
time in these methods, but using space partitioning at search
time is our original proposal. The importance of treating the
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data space dynamically depending on the contexts at query
time has been recognized early [25,34]. However, the current
situation of emergence of large-scale data and demanding
attention to users’ preferences when searching for infor-
mation have made this idea more alerted. Additionally, the
computational resources as well as the storage resources that
we have nowadays enable us to extend this research direction
further.

3 Multicontext-adaptive search method

3.1 Geometric intuition

Suppose we have a dataset distributed in a high-dimensional
space and when a contextual preference is given, a subspace
of a less number of dimensions is selected as the new space
for calculation, which is either searching or ranking or more
complex integrated tasks. The intuition is shown in Fig. 1a.
This idea emphasizes the importance of dynamic recognition
of contexts for computing and has been early recognized and
proposed by Kiyoki et al. [24]. The context-based subspace
selection has an intrinsic ability to alleviate the curse of high
dimensionality as discussed in Sect. 2.2. Moreover, it also
yields some degrees of interpretability of semantic comput-
ing processes.

Assume that we are interested in two attributes of data
and want to proceed a search for information with respect to
an existing preference. In this case, the data and query from
high-dimensional space are projected into a two-dimensional
space as shown in Fig. 1b.Wewill only treat numerical values
of attributes of data so that the subspace is a subspace of real
numbers in which orders between every two values can be
made.

In Fig. 1b, the content preference is supposedly expressed
by the position of the query point. At this moment, we can
have at least three intentions to order other data points and
have them listed as the results of a search problem. The first
intention is to find the answers to the question: “which is the
closest point to the query?” The second intention is to find
the answers to the question: “which points are close to the
query?” And the third intention is to find the answers to the
question: “which points have a large sum of values in some
direction?” The first and second questions are common in
information retrieval, while the third question expects more
exploratory answers.

Intuitively, if a data point is close to the query, it is close to
the query in any direction. Based on this observation, we can
approximate the locations of candidates as some areas that
are remote from the query points by some small distances
as shown in Fig. 1c. The original idea has been proposed
by Kiyoki et al. [25] who applied this intuition for docu-
ment retrieval problems. Figure 1c shows howwe can quickly

approximate some candidates , “c” and “a” by looking at the
areas that are less remote from the query point in both direc-
tions. Although it can be seen that the point “a” is unlikely to
closer to the query point comparing to other points like “e”
and “b,” this kind of errors is hopefully resolved in some next
searches starting from the location of “c” on the horizontal
and from the location of “a” on the vertical axis.

Figure 1d shows that the search for close candidates
depends on the query’s location. Firstly, it assumes that the
larger value in one direction of a datum implies the greater
importance. Therefore, in this case of the new query, the
vertical direction is prioritized higher when looking for the
candidates. Secondly, this idea suggests a notable search
technique that can adapt to the context to switch its own
search path for results in a meaningful way.

The next question is where can we find the closest point
to the query without any error. The intuitive location to find
such point is the covering rectangle as shown in Fig. 1e. This
rectangle covers the least distance intervals from the query
point in all directions. Ifwe continue searching for candidates
like in Fig. 1c, there will be a moment we find at least one
candidate appears in both directions and we have a rectangle
that covers already found candidates. The closest point will
be among these, not any outside the rectangle.

The third question is “which points have a large sum of
values in some direction.” The answers are expected by find-
ing candidates starting from the points which have very large
values in one direction as shown in Fig. 1f. This intuition has
been originally applied for image data in the work of Miya-
gawa et al. [34]. In Fig. 1f, we see that we re-rank the data
points on each direction based on a descending order of val-
ues. On the first prioritized feature direction, we find point
“g” which has the highest value and on the second feature
direction, we find the point “d.” They are the starting points
to continue looking for the candidates. It is important to note
that this intuition works as a greedy strategy and does not
guarantee that the final order based on the sums of values in
both directions. The sums of values in both directions will be
done giving us the final order of candidate points. It is to be
shown by experiments in Sect. 4.5 that this intuition can fail
badly when the number of preferred features is increased.

3.2 Generalized indexing and search method

We propose a multicontext-adaptive search method based on
the geometric intuition discussed in Algorithm 1. The logic
of the search method contains five steps: (1) reflecting con-
tent preference onto query vector, (2) prioritizing directions
for searching, (3) initializing starting points of search, (4)
iteratively finding matching candidates, and (5) ranking can-
didates and returning top results to users.

In this algorithm, the content preference is expressed as a
vector p and reflected during computation in lines 1 and 15.
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Fig. 1 Geometric intuition of the multicontext-adaptive search strat-
egy.aData onhigh-dimensional space and subspace selection.bSample
data and query on the selected subspaceR2. c Approximating locations

of the first similar candidates. d Location approximation depending on
the query’s location. e Location of exact-match candidates. f Locations
of dominant candidates
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Algorithm 1 Multicontext-adaptive pruning search
mechanism
Input:

– A query vector q ∈ R
d+;

– A dataset X ⊂ R
d+;

– A preference vector p ∈ R
d+ such that pi = 1 if i-th feature is

preferred and pi = 0 otherwise;
– A preference of intention I ∈ dominant, similar, exact;
– Optional: Maximum number of priorities m, by default m = 5;
– Optional: Timelimit t , by default t = 1(second) or None for exact

matching;
– Optional: Number of results R, by default, R = 20.

Output: Top R ranked relevant x ∈ X.

1: [Step 1: Reflect content preference onto query] Set q ← q� pwhere
� is the elementwise multiplication or Hadamard product.

2: [Step 2: Prioritize features] A permutation function σ of the set
{1, . . . , d} that sorts elements of vector q in a descending order:(
qσ(1) ≥ . . . ≥ qσ(d)

)
.

3: [Step 3: Initialize starting points] Accumulator vector v ∈ R
m :

4: if I = dominant then
5: v ←

(
maxx∈X xσ(1), . . . ,maxx∈X xσ(m)

)
.

6: else
7: v ←

(
qσ(1), . . . , qσ(m)

)
.

8: end if
9: [Step 4: Find candidates]
10: List of candidates C ← {}
11: while time limit t is not reached do
12: for i from 1 to m do
13: c ← arg minx

∣∣xσ(i) − vi
∣∣ for all x ∈ X not yet in C.

14: vi ← cσ(i)
15: score = relevant(q, c � p). � see section 4.1.4.
16: if I = exact and score = 0.0 then
17: return c
18: end if
19: Update C with candidate c and score.
20: Sort C by an appropriate order of scores. � see section 4.1.4
21: end for
22: end while
23: [Step 5: Return top results]
24: return top R of C to users.

The intention preference is processed at conditional branch-
ing in lines 4 and 5. The response time limit preference is
controlled in the while loop from line 11.

The iterative finding candidates in each direction of prior-
itized features are repeated as in line 13. In order to speed up
this process, we propose to index each feature as an inverted
list with value sorted. Moreover, all indices and reference
data will be written to binary files on disk by data blocks so
that each can be accessed by random access when needed.

Using a value-sorted inverted list, the first candidate in
each direction can be found quickly using binary search and
the next candidates can be found incrementally from the
index of the first candidate.

Algorithm 1 describes the generalized pruning search
mechanism which is the main proposal of this paper. In
Sect. 4, we implement three concrete algorithms based on
this generalized mechanism which are called “combinato-

rial search algorithm,” “exact-match search algorithm,” and
“Maxfirst search algorithm.” The geometric intuitions for
these algorithms are shown in Fig. 1c, e, f, respectively.

Table 2 shows the classification of contexts in which each
proposed search algorithm can be applied. The content pref-
erences are introduced following the feature types of video
data which are used in the experimental video navigation
application system in Sect. 4. They include “color,” “shape,”
“texture,” or combination of those features. However, these
content preferences are not limited to these types.Any feature
type that canbeordered is applicable to the search algorithms.

It is also to note that the “interruptible” preference regard-
ing the response time limits introduced in Table 2 refers to
an interactive behavior of a user to abort the search process
at anytime it is running. This interaction between users and
search systems can provide an interesting usability in which
the users of search systems can receive “better” results while
the systems are running and decide at their will when to stop.
Although this is not shown in Algorithm 1, it is possibly
implemented by modifying the main while loop (line 11) of
each corresponding algorithm.

4 Experiments

In this section, we introduce a frame-wise video navigation
system and described some experimental studies based on
this system.

4.1 Frame-wise video navigation system architecture

The overall system architecture is shown in Fig. 2. It includes
six modules which are (1) data collection, (2) frame extrac-
tion, (3) feature extraction, (4) indexing, (5) search, and (6)
ranking and display. The data collection module collects
image and video data from many resources which can be
either from personal collections of photos and videos or
from the Internet such as YouTube (video data) or Flickr
(image data) and many others. The frame extraction module
works only with video data, and its purpose is to reduce the
number of frames of a video to be indexed. This module con-
tains three main steps: for each video record, it samples the
video frames from the beginning by a fixed time (by default,
δt = 1s) and applies a threshold-based scene detection algo-
rithms to detect scenes in the video. Finally, the thumbnails
of the detected scene frames are extracted from the video and
temporally saved as key frames of the video to be indexed.

The scene detection algorithm detects a new scene com-
paring to previous scene and keeps only the starting frame in
the consecutive frames of a scene as a representative frame
for the scene. The frame at 0 s (the beginning of the video)
is the first presentative frame of a video by default. A frame
is said to be on new scene if it is less similar to the current
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Table 2 Classification of
applicable contexts of three
proposed search algorithms

Contextual preference Maxfirst search Combinatorial search Exact-match search

Content Color Yes Yes Yes

Shape Yes Yes Yes

Texture Yes Yes Yes

Combination Yes Yes Yes

Intention “Dominant” Yes No No

“Similar” No Yes Yes

“Exact-match” No No Yes

Response time Limited Yes Yes No

Unlimited Yes Yes Yes

Interruptible Yes Yes No

Fig. 2 Overall architecture of the frame-wise video navigation system with multicontext-adaptive indexing and search

frame by a fixed threshold. We extract the CEDD [11] inte-
grated feature vector for each frame and use cosine distance
to calculate the similarity between two frames. The cosine
similarity is defined by

cosine_similari t y(x, y) = 1 − x · y
‖x‖ ∥∥y∥∥ . (1)

where ‖x‖ is the magnitude of a vector represented by frame
x and x · y operation is the dot product between two vectors
x and y.

The computed distance ranges from 1.0 to 0.0 in which
0.0 means two frames are completely similar, and 1.0 means
two frames are completely different.

The feature extraction module implements conventional
feature extraction methods to extract metadata of images
and key frame thumbnails. The extracted features are color
[17], shape [6], texture [32] and integrated features includ-
ing FCTH [12], CEDD [11], and JCD [10]. The number of
dimensions for color, shape, texture, FCTH, CEDD, JCD
features is 63, 40, 60, 192, 144 and 168, respectively.
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Table 3 Details of movie dataset used for experiments

Movie dataset

Number of videos 806

Total length 597h

Total storage size 2.14TB

Total number of frames 2,150,428

Total number of scene frames 485,337

Reduced rate 22.60%

Table 4 Six databases
constructed from the movie
dataset and their storage size

Database Size of database

10k 105M

50k 517M

100k 1.0G

200k 2.0G

300k 3.0G

500k 4.9G

4.1.1 Dataset

We use a 2.14 TB movie data as the dataset for the system
with details shown in Table 3. The dataset is a personal col-
lection ofmovie DVD including various genres but mainly of
animation, drama, and documentary. The total view length
is 597h for 806 movies meaning the averaged length of a
movie is 45min. We run the scene detection algorithm dis-
cussed earlier to reduce the number of frames from 2millions
to about 500 thousands scene frames.

4.1.2 Video indexing

Wedivide the scene frames into six subsets,which include 10,
50, 100, 200, 300, and 485 thousand frames, and construct
the respective database of inverted lists for each. The six
databases are named “10k,” “50k,” “100k,” “200k,” “300k,”
and “500k,” respectively. Table 4 shows the six databases and
their on-disk storage size. Although the size of a database
is large, at query time, only a part of the database will be
used. Moreover, we assume that the concern of storage size
is trivial for the task at hand, which is to perform adaptive
search based on context preferences.

4.1.3 Search algorithms implementation

We define three concrete algorithms based on the general
search algorithm 1. The first algorithm is named “Maxfirst”
algorithm, which corresponds to the context where the inten-
tion preference is “dominant.” The second search algorithm
is named “combinatorial” algorithm, which corresponds to
the context where the intention preference is “similar.” The

third search algorithm is named “exact-match” algorithm,
which corresponds to the context where the intention prefer-
ence is “exact.” Section3.2, andTable 2describes the detailed
descriptions of the three proposed search algorithms.

We implement our search method using Python program-
ming language version 2.7.121 on two computers: a desktop
and a laptop. The desktop computer, which is a labora-
tory server, has a faster processor and larger memory, but
databases are stored on its hard disk drive (HDD). Its config-
urations are: CentOS Linux release 7.1.1503 (Core), 32 CPU
Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz. The laptop
computer is a general-purpose computer, which is a Mac-
Book Air 1.7 GHz Intel Core i7, 8 GB 1600 MHz DDR3
with OXS Yosemite operating system. On this laptop, the
databases are stored on an external SSD disk (Samsung 850
EVO 500 GB), connecting to the laptop via a USB 3.0 cable.

4.1.4 Baseline setting

We use top 20 results returned by a brute force algorithm as
the baseline for a query search. When searching for “sim-
ilar” or “exact,” the relevant similarity will be calculated
by the cosine similarity. In this case, the candidates will be
ranked by an ascending order of scores. But when search for
“dominant,” the sum of corresponding prioritized features is
calculated as relevant scores and the ranks of candidates will
be on a descending order of those scores.

For each database, we randomly select 50 frames as input
images and then run the brute force algorithm for each of six
feature kinds. In total, we have 300 queries for each database.

4.1.5 R-Precision criterion

We use “R-precision” as the measurement of precision of
an algorithm comparing to the baseline. The definition of
R-precision is as follows [14]: For a given query topic Q,
R-precision is the precision at R, where R is the number of
relevant data for Q. In other words, if there are r relevant
frames among the top-R retrieved frames, then R-precision
is r

R . Chistopher et. al [33] showed a high correlation of this
measure to the well-known mean average precision(MAP).
In our experiments, we set R = 20.

4.2 Running time and confidence of finding an exact
match

In this experiment, we examine the running time of our
exact-match algorithm at different settings of database
size and number of prioritized features used (#features =
{2, 5, 10, all}). Since the result of exact-match is only one

1 https://www.python.org/.

123

https://www.python.org/


Int J Multimed Info Retr

Fig. 3 Performance of the
proposed exact-match search
algorithm by different data
sizes, and settings of number of
prioritized features (#features)
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result (R = 1), instead of using R-precision, we define “aver-
age confidence” as a measure of the percentage when the
algorithm returns a right exact match.

The results are shown in Fig. 3. In this figure, we can see
the correlation between the average search time and the data
size and the correlation between the number of prioritized
features and the average time and average confidence. It is
not surprising thatwhen all features are used, the exact-match
search algorithm returns a result with 100% confidence that
it is the exact match. Although the search time is high and
increases proportionally to the data size, it is reasonably low
(about 0.15 s).

On the other hand, we can reduce the average search
time by using a smaller number of prioritized features (let
m denote this number) although if applying this, the returned
result can only be guaranteed to be the right match with some
probability. When m = 2, which is the lower bound of m in
the exact-match search algorithm, we see the average search
time is very low and stable regardless of data size. However,
the average confidence is only about 60%.

Asm increases, the average search time increases but also
the average confidence. When m = 5 and m = 10, we see
that the average confidences are almost the same (slightly
higher in the casem = 5) but the average search time is quite
different, especially when the size of data is large (greater
than 300,000).

4.3 Comparative search time and precision versus data
size

In this second experiment, we compare the average search
time for one query and the average R-precision of the pro-
posed combinatorial search algorithm with the brute force
algorithm, and two spatial tree algorithms (KD-tree [5] and
ball tree [37]) and a hashing algorithm (local sensitive hash-
ing (LSH) forest [4]) for different sizes of data.2 The result
is shown in Figs. 4 and 5.

In Fig. 4, the KD-tree and LSH forest algorithms response
remarkably quick (less than 0.5 s for all databases); however,
their precisions as in Fig. 5 are also noticeably poor: less
than 50% (LSH forest) or about 70% (KD-tree). On contrary,
ball tree algorithm obtains very high precision (Fig. 5) but
responses comparatively as the brute force algorithm (Fig. 4).

In Figs. 4 and 5, we see the proposed combinatorial search
algorithm responseswith reasonably high precision and short
average search time. Although the average search time pro-
portionally increases as the size of data increases, comparing
to ball tree and brute force algorithms, this search time is

2 (1) KD-tree, ball tree, and LSH forest algorithms are imple-
mented using scikit learn nearest neighbors modules. Source: http://
scikit-learn.org/stable/modules/neighbors.html. (2) For large datasets,
themaximum recursion limit of a tree algorithm can be exceeded; there-
fore, set it before running to 10,000.
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Fig. 4 Comparative average search time of the proposed combinatorial
search algorithm to others search algorithmswith increasing size of data
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Fig. 5 Comparative average R-precision of the proposed combinato-
rial search algorithm to different search algorithms with increasing size
of data

fairly acceptable. It is to note that the response time of the
combinatorial search algorithm can be controlled by setting
a time limit for it. In Fig. 4, the average search time is set so
that the corresponding precision in Fig. 5 is above 90%.

4.4 Precision of combinatorial search algorithm

The third experiment examines the performance of our pro-
posed combinatorial search algorithm running with different
settings of number of prioritized features (m) and response
time limits and database size. The results are shown in Fig. 6.
In this figure, the overall precision drops as the size of
database increases but gradually obtains reasonable preci-
sion as the limit time increases.

By comparing the average precision by different settings
of m, we can see that a larger m does not return better pre-

cisions. It is because when m is large, the algorithm has to
look for the candidates frommore number of feature indexes,
which can be useful until a some value of m. As shown in
Fig. 6, when increasingm from 5 to 10, we obtain some bet-
ter precisions for large databases (“300k” and “500k”) but
not when m is larger than 15.

Apparently, the performance of the combinatorial search
algorithm is affected by the IO access speed as shown in
Fig. 7. In this figure, the queries are set with m = 10 and
done on two computers. Figure 7 shows that the search algo-
rithm performs better with databases on storage devices that
provides fast IO accesses.

4.5 Precision of Maxfirst search algorithm

In this experiment, the performance of the proposedMaxfirst
search algorithm will be examined by setting its parameters
with various values of response time limits, numbers of pri-
oritized features, and sizes of Bamboo forest database. The
response time limits are 0.1, 0.5, 1.0, 2.0, 3. 0, and 5.0 s.
The number of prioritized features (m) is one from the set
(#features = {2, 5, 10, 15}). And the databases are described
in Table 4.

The result of this experiment is shown in Fig. 8. In this fig-
ure, the performance is evaluated based on theR-precision. In
this figure, the proposed Maxfirst search algorithm performs
more stable and efficient when the number of prioritized fea-
tures (m) is small or the limited response time is large. As
m increases, the average precisions decrease and apparently
correlate with the size of data and the limited response time.
This can be explained by the sparse distribution of the values
of features when the number of features is large, meaning
the “dominant” characteristics are lost and shared by many
dimensions.

When m is small, increasing time limit does not neces-
sarily increase the precision unless the time limit is set to
infinite and in this case the Maxfirst search algorithm works
equivalently as a brute force algorithm. However, when m
is large, increasing time limit can increase the precision to
some limits.

5 Discussion

The previous sections have discussed the performance of
the proposed search algorithms by several settings of their
parameters. It is not surprising that in all three search algo-
rithms, increasing the time limits gains better precisions.
However, the choice of the number of prioritized features
(m) is critical in order to avoid redundant computations while
aiming for higher performance.

In the case of exact-match finding (using the exact-match
search algorithm), if the goal is to find the guaranteed right
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Fig. 6 Precision of the
proposed combinatorial search
algorithm by different response
time limits, number of
prioritized features, and
database size
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Fig. 7 Performance of the proposed combinatorial search algorithm
implemented on two computers of different computing and IO access
speeds

answer (100% confidence), thenm should not be chosen less
than the number of features that the content preference indi-
cates. In other words, all dimensions in the selected subspace
will be used. However, if the goal is to find the right answer

with some (high) probability and in a short time, then m can
be set for a value not very low or high. Figure 3 showsm = 5
is a reasonable setting.

In the same way for similar matches finding (k-NN prob-
lem) using the combinatorial search algorithm, a low or high
value set for m does not gain the higher performance. Figure
6 shows m = 10 is a reasonable setting.

On the contrary, the Maxfirst search algorithm performs
stably when m is low and when m is high, it can only gain
higher precision with higher settings for time limits.

The next comment regards to the indexing time and size
of indexed databases. In Sect. 4.3, only the average search
time per query of each algorithm was used to compare the
performance of the proposed combinatorial searchwith other
search algorithms. It is to note that the brute force algorithm
performs similarity calculation directly on the data without
any pre-indexed database. KD-tree, ball tree, and LSH forest
search algorithm index the data into their defined data struc-
tures (in-memory database) and query for results on those
database. The indexing time for each algorithm for each size
of data was not counted in the search time. Likewise, the pro-
posed search algorithm works with the pre-indexed on-disk
databases and the index time was not taken into account. The
sizes of the databases have also not yet been concerned.
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Fig. 8 Average precision of the
proposed Maxfirst search
algorithm by different settings
of the number of prioritized
features, the size of database,
and the limited response time
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Fig. 9 A typical bad case of the proposed heuristic search strategy in
which the searching process wastes time at “local” candidates

Finally, we discuss “when do the proposed algorithm suf-
fer.” A typical bad case for the multicontext-adaptive search
algorithms is intuitively shown in Fig. 9. The query point has
x-axis value larger than y-axis value; therefore, the x-axis is
prioritized higher than the y-axis. A search process based on
a heuristic search strategy described in Sect. 3.1 will start

checking the candidates which has x-axis value close to the
x-axis value of the query point. In this case, those candidates
are the red points. Intuitively, the actually distances from the
query to those data points are larger than those to some blue
data points. In other words, the search process wastes time
at some “local” candidates.

This kind of bad cases is supposed to happen in several
special situations: (1) the size of dataset increases, (2) there
are too many duplicated data in the dataset, or (3) there are
non-discernible features used for representing data.

The degree of a proposed search algorithm suffering from
this “local candidate” phenomenon depends on the distribu-
tion of data on the search space. However, it is likely that the
Maxfirst search algorithm will suffer more than other two
algorithms.

6 Conclusion

In this paper, we proposed a new indexing and pruning
search system for large-scale video data that provide users
more controls of their preferences at query time: content,
intention, and response time. The proposed system is an inte-
gration ofmulticontext-adaptive queryingmethods and high-
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performance search algorithms for multimedia retrieval. We
implemented a frame-wise video navigation system and used
it to study the performance of our methods. The experiments
show the effectiveness of the heuristic search strategies on
modified inverted list databases that canobtain comparatively
high precisions in a relative low response time comparing to
other state-of-the-art methods including tree-based and hash-
ingmethods. The experiments also show the scalability of the
system for large-scale datasets.
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