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Abstract

In this paper, we stage five real-world scenarios for six

state-of-the-art text detection methods in order to evaluate

how competent they are with new data without any train-

ing process. Moreover, this paper analyzes the architecture

design of those methods to reveal the influence of pipeline

choices on the detection quality. The setup of experimen-

tal studies are straight-forward: we collect and manually

annotate test data, we reimplement the pretrained models

of the state-of-the-art methods, then we evaluate and ana-

lyze how well each method achieve in each of our collected

datasets. We found that most of the state-of-the-art methods

are competent at detecting textual information in unseen

data, however, some are more readily used for real-world

applications. Surprisingly, we also found that the choice

of a post-processing algorithm correlates strongly with the

performance of the corresponding method. We expect this

paper would serve as a reference for researchers as well as

application developers in the field.

All collected data with ground truth annotation and

their detected results is publicly available at our Github

repository: https://github.com/chupibk/

HBlab-rlq19.

1. Introduction

Technology development benefits tremendously from

new research achievements. Adapting new state-of-the-art

(SOTA) methods is always desirable with the hope to obtain

the best or better performance. However, research methods

are studied on carefully curated datasets, their achievement

may not remain once the domains of data are shifted. In the

text detection and recognition field, the same happens. To

become a state-of-the-art method in this field is to achieve

better scores over time in existing benchmark datasets such

as ICDAR 13 Scene Text [5], ICDAR 15 Incidental Text [4],

SVT [11], SCUT-CTW1500 curved text [15], and many

others. On the other hand, real-world target data are often

less complicated and applications are more about the ro-

bustness and quality of the detected results. Moreover, the

resources to collect a sufficient data amount to train a deep

learning model from scratch are often scarce.

This paper investigates how readily competent a model

with pretrained weights of a SOTA method can be when

applying to different text detection problems. We stage five

common real-world scenarios for experiments as follows:

1. Digitalization of purchase receipts for accounting pur-

pose;

2. Extraction of photo captions of pictures (e.g., pictures

in museums, exhibitions) for information indexing;

3. Payment card reading for financial services;

4. Business name cards organizing;

5. Indexing product names and prices in supermarkets.

We collect objects of each category, capture their pho-

tos using smartphone cameras then manually annotate the

captured image data. We select and reimplement six SOTA

methods. Then we conduct both qualitative and quantitative

experiments to evaluate how well each method obtain on

each of our collected datasets. The analysis of the architec-

ture design of methods are bottom-up. We use the detected

results of each method to understand how each pipeline de-

sign affects its overall performance.

The paper is organized in six sections. In Section 2 we

describe how we collect and annotate five datasets. Sec-

tion 3 describes six state-of-the-art methods that we select

and why we select them for our experiments. Section 4 and

Section 5 are the main sections that show the experimen-

tal results and give discussion on what can be learned from

them. Section 6 summarizes and gives a list of future works.

For audiences with engineering purposes, it is suggested

to look at Section 4 and Section 5 without any loss of impor-

tant information. For more eager audiences, one eight-page

paper is not too long to follow.



2. Collecting and annotating test data

Five datasets which correspond to five real-world sce-

narios in this paper are: “BILL”, “CAPTION”, “CARD”,

“NAME”, and “PRODUCT”. For each category, we col-

lect some sample objects, capture their photos using smart-

phones, and then assign one annotator to make the ground

truth bounding boxes for each image. There are differ-

ent objects to be captured in CAPTION and PRODUCT.

In BILL and NAME, same objects can be captured twice

or more. The CARD datasets contains photos of only one

object but in many different orientations, light conditions,

and backgrounds. Overall, the datasets vary from their cat-

egories, languages of textual information, and the condi-

tions when images are captured. Each dataset has 20 or 21

images. The overview of five datasets are summarized in

Table 1.

Ground truth is annotated for each image and comprises

the bounding quadrilateral of each text line. No transcrip-

tion of the words are provided since we focus only on text

detection problem. It is to note that we do not annotate

“do not care” text boxes. It is because when deploying a

text detection method in real-world application, it is unusual

to know before hand which texts belongs to “do not care”

without any extra processing such as recognition or classi-

fication. The annotator only annotates the bounding boxes

for the text lines in an image that she thinks to be important

for the application scenarios. Figure 1 shows some sam-

ple images and their ground truth bounding boxes from our

collected datasets.

The number of bounding boxes is different in each im-

age. However, the number of bounding boxes in images of

the same datasets is approximately the same. The average

number of bounding boxes in BILL, CAPTION, CARD,

NAME, PRODUCT are 39, 4, 16, 12, and 7, respectively.

3. Selecting State-of-the-art methods

3.1. Six state-of-the-art methods

We chose six state-of-the-art methods which are

CRAFT [1], CTPN [9], EAST [16], FOTS [7], Pix-

elLink [2], PSENet [12]. Table 2 shows a brief summary

of why we selected those methods. We mainly look for

methods which are at the top on the leaderboards of Robust

Reading Competition or widely appraised by the commu-

nity which is indicated by the number of stars or forks on

Github. We assume that standing-at-the-top is state-of-the-

art and widely-used means the methods are stable in many

applications. We don’t assume these are better than non-

chosen methods.

3.2. Implementation of SOTA methods

We obtained the available source code of SOTA methods

and installed them on our local machine. The machine runs

on Ubuntu 16.4.5, with Intel(R) Core(TM) i7-8700K CPU

@ 3.70GHz, 16GB RAM and a 2GB GeForce GTX 1080

Ti GPU.

The list of the links to source codes is as following:

• CRAFT [1]: pytorch, https://github.com/

clovaai/CRAFT-pytorch

• CTPN [9]: keras, https://github.com/

eragonruan/text-detection-ctpn

• EAST [16]: tensorflow, https://github.com/

argman/EAST

• FOTS [7]: pytorch, https://github.com/

Vipermdl/OCR_detection_IC15

• PixelLink [2]: keras, https://github.com/

opconty/pixellink_keras

• PSENet [12]: pytorch, https://github.com/

whai362/PSENet

Note that we did not use the official source code of

FOTS at https://github.com/xieyufei1993/

FOTS because the pretrained weights are not available.

Likewise, we could not reproduce the official source code of

PixelLink at https://github.com/ZJULearning/

pixel_link. We instead used their reimplementation of

their codes for experiments.

4. State-of-the-Art in action

4.1. Evaluation protocol: W2LEval

We will evaluate a SOTA method based on the speed

(processing time) and the detection quality (precision and

recall).

The evaluation of a detection as a match or a correct

detection is commonly done by a threshold-based protocol

such as the Intersection over Union (IoU) protocol [10] or

the DetEval protocol [13]. Both are also used in Robust

Reading Competition.

Let G be a collection of N ground truth text areas Gi

and D be a collection of M detected text areas Dj . The

IoU protocol defines a match if the detection Dj overlaps a

ground truth Gi by more than a threshold s as:

IoU(Gi, Dj) =
Dj ∩Gi

Dj ∪Gi

≥ s (1)

where s = 0.5 is commonly used.

However, if the ground truth is annotated in text lines

but the detection results are in text words, the IoU(Gi, Dj)

will be very small and there will be not many matches. The

DetEval protocol compensates for these cases by consid-

ering not only one-to-one matches but also one-to-many



Dataset Image count Description Language Image status

BILL 20 Purchase receipts (e.g., at

supermarkets, restaurants,

convenient stores, post

offices)

Japanese, Viet-

namese

varying angles, handwriting in-

cluded, distorted

CAPTION 20 Pictures with text captions Vietnamese, En-

glish

Varying angles, slightly blurred, in-

cidental text

CARD 21 A prepaid visa card (mem-

ber card)

Japanese, English varying angles, may out of focus,

complex background

NAME 21 Business name cards Japanese, En-

glish, Vietnamese

varying angles, format and fonts;

old name card included; horizontal

and vertical text

PRODUCT 20 Product labels of goods at a

supermarket

Vietnamese varying angles, handwriting in-

cluded, incidental text

Table 1: Overview of our five collected datasets for experiments

Figure 1: Sample images with their annotated bounding boxes from our collected datasets: BILL, CAPTION, CARD, NAME, PRODUCT

Method Published year/venue Reason

CRAFT [1] CVPR 2019 Rank #1 at Robust Reading Competition, Focused Scene Text 2013-

20151

CTPN [9] ECCV 2016 1st starred repository on Github (2,226)2

EAST [16] CVPR 2017 2nd starred repository on Github (1,847)3

FOTS [7] CVPR 2018 Rank #1 at the state-of-the-art leaderboards (IC15 dataset)4

PixelLink [2] AAAI 2018 Highly starred repository on Github; #2 method with source code avail-

able at Ranking table of Robust Reading Competition, Incidental Scene

Text 20155

PSENet [12] CVPR 2019 Rank #3 in Curved Text Detection on SCUT-CTW1500 leaderboard;

highly starred repository on Github; #1 method with source code avail-

able at Ranking table of Robust Reading Competition, Incidental Scene

Text 20155

1
https://rrc.cvc.uab.es/?ch=2&com=evaluation&task=1

2
https://github.com/eragonruan/text-detection-ctpn

3
https://github.com/argman/EAST

4
https://paperswithcode.com/task/scene-text-detection

5
https://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1&e=1&f=1&d=0&p=0&s=1

Table 2: Selected state-of-the-art methods in text detection (as of July 29, 2019)

(splits) and many-to-one (merges) matches. The one-to-

many type is when a ground truth is matched by a group
of detection (i.e., the ground truth is splitted in to many ar-

eas). The many-to-one type is when a group of ground truth



is matched by a detection (i.e., the ground truth is merged

into one area). The many-to-many type is not suppported

since the experimental observation shows this type is very

infrequent.

The DetEval protocol [13] uses two ovelapping matrices

σ and τ as originally proposed by Liang et al. [6] where σ

relates to the area recall and τ relates to the area precision:

σij = RAR(Gi, Dj) =
Area(Gi ∩Dj)

Area(Gi)
(2)

τij = PAR(Gi, Dj) =
Area(Gi ∩Dj)

Area(Dj)
(3)

A match in the DetEval protocol is defined using two

thresholds for area recall and precision tr ∈ [0, 1] and tp ∈
[0, 1]. A one-to-one match of Dj to Gi is if σij > tr and

τij > tp.

A one-to-many match of a group Sk of Dj to Gi is if

each detection Dj overlaps enough with the ground truth

and a sufficient large proportion of the ground truth Gi has

been detected:

∀Dj ∈ Sk : τij ≥ tp and
∑

Dj∈Sk

σij ≥ tr (4)

A many-to-one match of a detection Dj to a group Sm

of Gi is when each ground truth has been detected with a

sufficient area precision and a large enough proportion of

each ground truth has been detected:

∑

i∈Sm

τij ≥ tp and ∀Gi ∈ Sm : σij ≥ tr (5)

Since our collected data are annotated in line-level

whereas most of the SOTA methods predict word-level text

areas, we choose the DetEval protocol without many-to-one

type. Additionally, in Equation 4, we use a cascaded union

of the group Sk of Dj instead of theirs
∑

σij . A cascaded

union is more suitable for evaluating whether a group of de-

tection covers a large portion of the ground truth because

there is a situation that Dj ∈ Sk overlaps much with each

other but do not actually cover a large portion of the ground

truth if using their arithmetic sum. We call this modified

version of the DetEval protocol as W2LEval protocol.

Finally, the precision and recall scores for one image in

W2LEval are defined as follows:

P =

∑
j MatchD(Dj , G, tr, tp)

|D|
(6)

R =

∑
i MatchG(Gi, D, tr, tp)

|G|
(7)

where MatchD = 1 if Dj is a one-to-one or one-to-many

match to a ground truth; and MatchG = 1 if Gi is detected

by a one-to-one or one-to-many type. We use tr = tp = 0.5

We use similar formulas for evaluating multiple images

as in [13]. For a collection of K images, with K ground

truth Gk and K detection Dk. The overall precision and

recall scores are:

P =

∑
k

∑
j MatchD(Dk

j , G
k, tr, tp)∑

k |D
k|

(8)

R =

∑
k

∑
i MatchG(G

k
i , D

k, tr, tp)∑
k |G

k|
(9)

4.2. Qualitative results and result analysis

Figure 2 and 3 show the comparison of detected results

by six selected state-of-the-art methods for two sample in-

put images from our “BILL” and “CARD” datasets. The

ground truth of these images are in Figure 1. The results are

cropped in order to hightlight the detected text areas.

Several observations on these results are:

• CRAFT seemingly has the best performance: it detects

correctly both horizontal and multi-oriented text areas.

Other good performance are from EAST and PSENet.

• CTPN detects horizontal texts quite well but fails for

multi-oriented texts.

• PixelLink is said to detect multi-oriented texts but the

detected bounding boxes seems either horizontal or

having largely redundant spaces; We believe the extra

space are caused when combining the eight-orientation

link maps in its design.

• CTPN detects longer text areas than other methods;

We believe this is due to the connectionist mechanism

which tends to connect horizontally close text propos-

als.

• CTPN, EAST, FOTS, PixelLink can have detected text

areas that overlap each other; We believe this over-

lapping behavior occurs in methods which use post-

processing methods like Non-Maximum Suppression

(NMS) or contour detection.

• A non-text area such as a portion of logos or barcodes

is detected as a text area: CTPN, EAST, FOTS, Pix-

elLink, PSENet; We believe that CRAFT can avoids

this false positive because it predicts a segmentation

map at character-level instead of pixel-level in other

methods.

• CTPN and PixelLink are more likely to detect text ar-

eas that merge two or more lines; We believe this is

because the neighbor connectivity in the network de-

sign (CTPN) or in post-processing step (PixelLink).

Other methods make this kind of mistakes when two



(a) CRAFT (P = 1.0, R = 1.0) (b) CTPN (P = 0.62, R = 0.59) (c) EAST (P = 0.76, R = 0.88)

(d) FOTS (P = 0.68, R = 0.47) (e) PixelLink (P = 0.54, R = 0.24) (f) PSENet (P = 0.55, R = 0.35)

Figure 2: Comparison of the detected text bounding boxes of six SOTA methods for a sample image in our “BILL” dataset

(a) CRAFT (P = 0.88, R = 0.71) (b) CTPN (P = 0.17, R = 0.12) (c) EAST (P = 1.0, R = 0.88)

(d) FOTS (P = 0.73, R = 0.65) (e) PixelLink (P = 0.50, R = 0.53) (f) PSENet (P = 0.89, R = 0.82)

Figure 3: Comparison of the detected text bounding boxes of six SOTA methods for a sample image in our “CARD” dataset



Method Orientation Border

to text

Broken

charac-

ter

False

negative

False

positive

Box

overlap-

ping

Merged

line

Post-processing

CRAFT [1] multiple tight no scarcely scarcely no scarcely connected

component +

minAreaRect

CTPN [9] horizontal loose no sometimes sometimes yes often NMS + text line

formation

EAST [16] multiple,

somewhat

horizontal

loose yes sometimes sometimes yes scarcely thresholding +

NMS

FOTS [7] multiple loose no often sometimes yes scarcely Thresholding +

NMS

PixelLink [2] multiple,

somewhat

horizontal

loose yes often sometimes yes often contour1 +

minAreaRect

PSENet[12] multiple tight yes sometimes scarcely no scarcely connected com-

ponent + scale

expansion

1 Deng et al. reported to use connected component in the published paper [2] but we found a contour finding algorithm was actually used in their published source code.

Table 3: Comparison of result quality of six state-of-the-art methods by seven characteristics. The desired qualities are in bold font. There is a noticeable

correlation between the post-processing algorithms and the desired qualities. Using “connected component” is likely better than “NMS” or “contour finding”.

text lines are too close to each other. This happens

with even PSENet, which are designed to avoid merg-

ing of adjacent texts using “progressive scale expan-

sion” [12].

• PixelLink can return text areas which are extremely

small and are a part of a character of a word; We be-

lieve this is because of the behavior of the contour find-

ing in its post-processing step.

We summarize those observations in Table 3.

4.3. Quantitative results: Speed

Table 4 shows a comparison of six state-of-the-art meth-

ods in speed of loading and detecting text areas in an input

image. The CRAFT method needs a moderate amount of

time to load its deep learning model and pretrained weights

into the working memory but quickly detects text areas in

an image, only 0.23s The EAST method is originally well-

known for its speed and still responds quickly (0.29s).

In application development, the loading time can be done

once so it does not affect the performance of the applica-

tion. However, an application is usually expected to respond

in less than one second. In this case, the PixelLink and

PSENet methods are unlikely applicable. Note that we run

all programs on a machine with GPU, which helps speed up

computation of deep learning models, for a machine with

CPU, we expect the detection time to be much higher.

Method Library Loading (s) Detection (s)

CRAFT [1] pytorch 10.95 0.23

CTPN [9] keras 0.14 0.88

EAST [16] tensorflow 1.6 0.29

FOTS [7] pytorch 2.81 0.45

PixelLink [2] keras 6.84 6.03

PSENet [12] pytorch 29.21 1.96

Table 4: Comparison of time to load model and pretrained weights and

average time to detect text bounding boxes by SOTA methods. Time unit

is in second.

4.4. Quantitative results: Precision and recall

Table 5 and 6 show the precision and recall scores of

the selected state-of-the-art methods based on two evalua-

tion protocols, IoU with threshold = 0.5 and our modified

version W2LEval of the DetEval (see Section 4.1 for more

details).

In Table 5, the precision and recall scores of all meth-

ods are very low. This is as expected since the text area

level of the ground truth in our datasets is line whereas most

methods are trained to predict word-level text areas. Using

IoU protocol, what we can infer from those results are: (1)

CTPN seems to detect longer and larger text areas therefore

the overlap with ground truth is larger; (2) other methods

will fail badly if the length of the text areas increases such

as in CAPTION or NAME datasets.

The W2LEval protocol shows a more fair evaluation



Method
BILL CAPTION CARD NAME PRODUCT Average

P R P R P R P R P R P R

CRAFT [1] 0.25 0.41 0.0 0.0 0.28 0.35 0.13 0.27 0.28 0.53 0.19 0.31

CTPN [9] 0.48 0.4 0.52 0.78 0.48 0.33 0.31 0.3 0.38 0.47 0.44 0.46

EAST [16] 0.21 0.34 0.0 0.0 0.36 0.55 0.09 0.23 0.27 0.49 0.18 0.32

FOTS [7] 0.17 0.26 0.0 0.0 0.24 0.32 0.04 0.10 0.17 0.33 0.12 0.2

PixelLink [2] 0.06 0.15 0.0 0.0 0.18 0.27 0.02 0.05 0.15 0.36 0.08 0.17

PSENet [12] 0.12 0.23 0.0 0.0 0.30 0.46 0.07 0.2 0.16 0.26 0.13 0.23

Table 5: Comparison of precision (P) and recall (R) scores of state-of-the-art methods on our collected datasets using the IoU protocol with threshold = 0.5

Method
BILL CAPTION CARD NAME PRODUCT Average

P R P R P R P R P R P R

CRAFT [1] 0.95 0.84 0.76 1.0 0.89 0.77 0.97 0.97 0.61 0.95 0.84 0.91

CTPN [9] 0.45 0.35 0.56 0.81 0.47 0.33 0.33 0.31 0.38 0.46 0.44 0.45

EAST [16] 0.89 0.76 0.80 1.0 0.95 0.87 0.90 0.86 0.56 0.79 0.82 0.86

FOTS [7] 0.85 0.63 0.81 0.92 0.74 0.54 0.87 0.73 0.61 0.64 0.78 0.69

PixelLink [2] 0.66 0.53 0.77 0.87 0.46 0.44 0.60 0.56 0.57 0.78 0.61 0.64

PSENet [12] 0.79 0.61 0.81 0.99 0.91 0.72 0.89 0.78 0.49 0.57 0.78 0.73

Table 6: Comparison of precision (P) and recall (R) scores of state-of-the-art methods on our collected datasets using our W2LEval protocol (a modified

version of the DetEval protocol)

of how well each method is as in Table 6. Evaluating

by method-wise, all text detection methods are moderately

competent in all five demo datasets. Overall, CRAFT yields

the highest scores in both precision and recall scores and in

most of the datasets. Following CRAFT is EAST, PSENet,

FOTS, and PixelLink. CTPN has almost similar scores as

being evaluated by IoU in Table 5.

Evaluating by dataset-wise, we can see that the scores

vary from one dataset to another. CAPTION is likely the

most correctly predicted dataset. Following CAPTION

by recall score is NAME, PRODUCT, BILL, and CARD

datasets. It seems that the homogeneity of font, font size, di-

rection and the number of incidental texts correlate to those

scores. The more homogeneous and simple the fonts are

used, the better detection can be done.

Also, CAPTION and PRODUCT datasets have recall

scores is higher than precisions by all methods. This can

be explained by the number of incidental texts in the data.

Because there are no “do not care” label in ground truth

data, once those incidental text areas are predicted, they are

treated as “false positive” and that causes lower precision.

5. Discussion

Section 4 has shown several observations on the results

when applying the state-of-the-art methods in our collected

datasets. Overall, we find CRAFT to be the most competent

method in both quality of detected areas and quantitative

performance. Using only pretrained weights, the CRAFT

model can apply to the data which it has never seen and ob-

tains very good precision and recall scores. We believe this

achievement is due to its innovative design in training net-

work (character-level instead of pixel-level like other meth-

ods). The linking mechanism (neighborhood connectivity)

has already been proposed in other forms in many other

methods such as CTPN [9] for connecting region propos-

als, or PixelLink [2] for linking neighbor pixels. However,

connecting characters like in CRAFT seems to be the most

effective.

We also discussed in Section 4.2 and summarized in Ta-

ble 3, the post-processing algorithms are strongly related

to the performance of the text detection methods. Con-

cretely, defining bounding boxes using connected compo-

nents is likely to achieve better performance with more de-

sired qualities of the outputs such as tight border or no box

overlapping. Moreover, it seems that processing with con-

nected components also provides an economic way to adjust

the outputs on any new dataset by modifying the connectiv-

ity thresholds. We will investigate this point further in a

future work.

A next discussion is regarding the multilingual compe-

tence of all methods. The Vietnamese and Japanese texts in

our datasets are not seen in the existing datasets on which

the state-of-the-art methods are originally trained. The de-

tection quality of most methods show that there are a strong

capacity of deep learning models to distinguish textual pix-

els out of its surrounding background. This seems to be

more effective comparing to traditional ways to detect texts

using Maximally Stable Extremal Region (MSER) [8] or

Stroke Width Transform (SWT) [3]. We are looking for-



ward to seeing new methods that utilize this property while

combining more sophisticated post-processing algorithms

such like methods before deep learning era.

A final discussion is about how to boost the competence

of a SOTA method (e.g., CRAFT) further without retraining

the model due to development resources. All SOTA meth-

ods use two-step pipeline, consisting of an trainable neural

network model and a post-processing step to do final infer-

ence of text areas. When retraining a model is not possible,

one suggestion is to improve the post-processing algorithms

on the outputs of the first step. The post-processing algo-

rithms such as connected components or contour finding or

NMS always need fixed thresholding parameters. We can

optimize these parameters based on our data or develop an

algorithm to find an optimal set of parameters. Besides, we

can apply classic computer vision approaches to text detec-

tion as post-processing algorithms. Those approaches can

be seen in survey works such as [14, 17]. Another sugges-

tion to boost the performance is to ensemble the prediction

of the first steps of several methods. A concrete guideline

on how to ensemble will need a further study.

6. Conclusion

We have presented several analysis on the performance

of six state-of-the-art text detection methods on our five

real-world datasets. Our datasets are unconstrainedly col-

lected and manually annotated. The state-of-the-art meth-

ods are reimplemented on our machine but using their orig-

inal pretrained models. The results show that CRAFT is the

most competent to most of the datasets than other methods

in both speed and quality. We also analyzed which aspect

of architecture design affects the performance and found a

strong correlation between the post-processing algorithms

with the quality of the detected text areas. In future, we

would like to expand our experiments on a bigger list of

methods and conduct a quantitative study on how much

this post-processing contribute to the final performance of

a method.

References

[1] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee. Character

region awareness for text detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 9365–9374, 2019. 2, 3, 6, 7

[2] D. Deng, H. Liu, X. Li, and D. Cai. Pixellink: Detecting

scene text via instance segmentation. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018. 2, 3, 6, 7

[3] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural

scenes with stroke width transform. In 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition, pages 2963–2970. IEEE, 2010. 7

[4] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh,

A. Bagdanov, M. Iwamura, J. Matas, L. Neumann, V. R.

Chandrasekhar, S. Lu, et al. Icdar 2015 competition on

robust reading. In 2015 13th International Conference on

Document Analysis and Recognition (ICDAR), pages 1156–

1160. IEEE, 2015. 1

[5] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. i Big-

orda, S. R. Mestre, J. Mas, D. F. Mota, J. A. Almazan, and

L. P. De Las Heras. Icdar 2013 robust reading competition.

In 2013 12th International Conference on Document Analy-

sis and Recognition, pages 1484–1493. IEEE, 2013. 1

[6] J. Liang, I. T. Phillips, and R. M. Haralick. Performance eval-

uation of document layout analysis algorithms on the uw data

set. In Document Recognition IV, volume 3027, pages 149–

160. International Society for Optics and Photonics, 1997.

4

[7] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan. Fots:

Fast oriented text spotting with a unified network. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 5676–5685, 2018. 2, 3, 6, 7

[8] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-

baseline stereo from maximally stable extremal regions. Im-

age and vision computing, 22(10):761–767, 2004. 7

[9] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao. Detecting text

in natural image with connectionist text proposal network.

In European conference on computer vision, pages 56–72.

Springer, 2016. 2, 3, 6, 7

[10] K. Wang, B. Babenko, and S. Belongie. End-to-end scene

text recognition. In 2011 International Conference on Com-

puter Vision, pages 1457–1464. IEEE, 2011. 2

[11] K. Wang and S. Belongie. Word spotting in the wild. In

European Conference on Computer Vision, pages 591–604.

Springer, 2010. 1

[12] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao.

Shape robust text detection with progressive scale expansion

network. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 9336–9345,

2019. 2, 3, 6, 7

[13] C. Wolf and J.-M. Jolion. Object count/area graphs for the

evaluation of object detection and segmentation algorithms.

International Journal of Document Analysis and Recognition

(IJDAR), 8(4):280–296, 2006. 2, 4

[14] Q. Ye and D. Doermann. Text detection and recognition in

imagery: A survey. IEEE transactions on pattern analysis

and machine intelligence, 37(7):1480–1500, 2014. 8

[15] L. Yuliang, J. Lianwen, Z. Shuaitao, and Z. Sheng. Detecting

curve text in the wild: New dataset and new solution. arXiv

preprint arXiv:1712.02170, 2017. 1

[16] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and

J. Liang. East: an efficient and accurate scene text detector.

In Proceedings of the IEEE conference on Computer Vision

and Pattern Recognition, pages 5551–5560, 2017. 2, 3, 6, 7

[17] Y. Zhu, C. Yao, and X. Bai. Scene text detection and recog-

nition: Recent advances and future trends. Frontiers of Com-

puter Science, 10(1):19–36, 2016. 8


