
Maintaining Ad-Hoc Communication Network in
Area Protection Scenarios with Adversarial Agents

Marika Ivanová
Department of Informatics

Faculty of Mathematics and Natural Sciences
University of Bergen, Norway

marika.ivanova@uib.no

Pavel Surynek
Faculty of Information Technology

Czech Technical University
Czech Republic

pavel.surynek@fit.cvut.cz

Diep Thi Ngoc Nguyen
AIRC, National Institute of Advanced

Industrial Science and Technology (AIST)
Japan

diep.nguyen@aist.go.jp

Abstract

We address a problem of area protection in graph-based sce-
narios with multiple mobile agents where connectivity is main-
tained among agents to ensure they can communicate. The
problem consists of two adversarial teams of agents that move
in an undirected graph shared by both teams. Agents are
placed in vertices of the graph; at most one agent can occupy
a vertex; and they can move into adjacent vertices in a con-
flict free way. Teams have asymmetric goals: the aim of one
team - attackers - is to invade into given area while the aim
of the opponent team - defenders - is to protect the area from
being entered by attackers by occupying selected vertices. The
team of defenders need to maintain connectivity of vertices
occupied by its own agents in a visibility graph. The visibility
graph models possibility of communication between pairs of
vertices.
We study strategies for allocating vertices to be occupied by
the team of defenders to block attacking agents where connec-
tivity is maintained at the same time. To do this we reserve a
subset of defending agents that do not try to block the attackers
but instead are placed to support connectivity of the team. The
performance of strategies is tested in multiple benchmarks.
The success of a strategy is heavily dependent on the type of
the instance, and so one of the contributions of this work is
that we identify suitable strategies for diverse instance types.

Introduction

In this work we study a generalization of Area Protection
Problem (APP) with connectivity maintenance (APPC). APP
is already a computationally hard problem (Ivanova, Surynek,
and Hirayama 2018) (namely PSPACE-hard). In addition to
APP, where two teams of mobile agents move in an undi-
rected graph in a conflict free way, a possibility of communi-
cation among agents is required in APPC. APP itself can be
regarded as a modification of known problem of Adversar-
ial Cooperative Path Finding (ACPF) (Ivanová and Surynek
2014) where two teams of agents compete in reaching their
target positions. Unlike ACPF, where the goals of teams of
agents are symmetric - agents of each team try to reach their
targets as first, the adversarial teams in APP have different
objectives. The first team of attackers contains agents whose
goal is to reach a pre-defined target location in the area being

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

protected by the second team of defenders. Each attacker
has a unique target in the protected area, and each target
is assigned to exactly one attacker. The opponent team of
defenders tries to prevent the attackers from reaching their
targets by occupying selected locations, referred to as desti-
nations, so that they cannot be passed by attackers. Specially
in APPC, we require that vertices occupied by the defender
team always form a connected subgraph with respect to the
visibility graph. We assume that both teams use the same
cooperative path-finding (CPF) algorithm for reaching tem-
porarily selected locations.

Another distinction between ACPF and APP is a definition
of victory of a team. A team in ACPF wins if all its agents
reach their targets and agents of no other team manage to
do so earlier. In APP, the team of defenders wins if all at-
tackers are kept out of their targets. Our effort is to design
destination allocation strategies for the defending team. A
hard constraint that can never be violated will be that defend-
ing agents always form a connected component. Success of
the strategy is measured from the defenders’ perspective via
an objective function which plays a role of soft constraint
(area protection may not be perfect). The following objective
functions can be pursued:

1. maximize the number of target locations that are not cap-
tured by the corresponding attacker

2. maximize the number of targets that are not captured by
the corresponding attacker within a given time limit

3. maximize the sum of distances between the attackers and
their corresponding targets

4. minimize the time spent at captured targets

The common feature of APP, APPC and other related
problems is that once a location is occupied by an agent it
cannot be entered by another agent until it is first vacated by
the agent which occupies it (opposing agent cannot push it
out). This property represents a key tool for the defenders to
protect the area.

APPC has many real-life motivations from the domains
of access denial operations, robotics with adversarial teams
of robots or other type of penetrators (Agmon, Kaminka,
and Kraus 2011), and computer games. In most practical
applications, agents of given team need to communicate with
each other while individual robots can communicate at short

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

348

visual range only as it has been already done in contempo-
rary multi-robot systems Hence it needs to be ensured that
the communication reaches every agent of the team. Such
property can be modeled as connectivity over the visibility
graph whose edges represent possibility of communication
between pairs of vertices.

Our contribution consists in suggesting several on-line
solving strategies for defenders that determine suitable ver-
tices to be occupied by defenders so that attacker agents
cannot pass into the protected area, and connectivity in the
defender team is maintained. We conduct an experimental
evaluation of the proposed strategies and assess their suitabil-
ity for diverse types of APPC instances.

Communication Maintenance

APPC requires, in addition to APP, that any two defenders are
able to communicate with each other at any time during their
movement. The communication within the team of defenders
is modeled by a connectivity of subgraph of the visibility
graph induced by the set of occupied vertices. The visibility
graph is derived from the graph in which agents move; it has
the same set of vertices, but the set of edges is different in
general. This assumption allows us to model the inability to
communicate of two agents, if there is an obstacle between
them.

In various practical applications of APP, the possibility
of sending messages among the agents is often demanded.
Agents may be equipped by an omnidirectional antenna or
visual communication device (such as LEDs and IR sensors
(Rubenstein et al. 2014)), and hence a message reaches all
nodes within the communication range of its sender. This
feature is often referred to as wireless advantage (Wieselthier,
Nguyen, and Ephremides 2002). We assume that the agents
have equal and constant communication range, and that they
can also work as transceivers, which means that they have
the ability to both transmit and receive a signal.

Related Work

APPC, APP, as well as ACPF share the way how movement
of agents is treated with the basic variant of cooperative path-
finding problem - CPF (multi-agent path-finding - MAPF)
(Silver 2005; Ryan 2008; Wang and Botea 2011). In CPF,
the task is to plan the movement of agents so that each agent
reaches its unique target in a conflict free manner. Move-
ments of agents in APPC at the low reactive level are assumed
to be planned by some CPF algorithm where agents of own
team cooperate while the opposing agents are considered as
obstacles.

There exist multiple CPF algorithms both complete and
incomplete as well as optimal and sub-optimal under various
objective functions. A good compromise between quality of
solutions and the speed of solving is represented by subop-
timal/incomplete search based methods which are derived
from the standard A* algorithm. These methods include
LRA*, CA*, HCA*, and WHCA* (Silver 2005). They pro-
vide solutions where individual paths of agents tend to be
close to respective shortest paths connecting agents’ loca-
tions and their targets. Conflict avoidance among agents is
implemented via a so called reservation table in case of CA*,

HCA*, and WHCA*. Another approach is LRA* which plans
path for individual agents independently using A*, and relies
on replanning whenever a conflict occurs. Since our setting
in APPC is inherently suitable for a replanning algorithm,
LRA* is a candidate for the underlying CPF algorithm for
APPC. Moreover LRA* is scalable for large number of agents
which is expected to happen in APPC.

Aside from CPF algorithms, systems with mobile agents
that act in the adversarial manner represent another related
area. These studies often focus on patrolling strategies that
are robust with respect to various attackers trying to penetrate
through the patrol path (Elmaliach, Agmon, and Kaminka
2009). Theoretical works related to APP also include stud-
ies on pursuit evasion (Vidal et al. 2002) or predator-prey
(Haynes and Sen 1995) problems. The major difference be-
tween these works and the concept of APP/APPC is that we
consider a relatively higher number of agents and our agents
are more limited in their abilities.

Definitions and Assumptions

The environment in APPC is modeled by an undirected un-
weighted graph G = (V,E). In this work we restrict the
instances to 4-connected grid graphs with possible missing
vertices indicating obstacles. Agents are not considered as
obstacles. The team of attackers and defenders is denoted by
A = {a1, . . . ,am} and D = {d1, . . .dn}, respectively. Contin-
uous time is divided into discrete time steps. At each time
step agents are placed in vertices of the graph so that at most
one agent is placed in each vertex. Let αt : A∪D →V be a
uniquely invertible mapping denoting configuration of agents
at time step t. Agents can wait or move instantaneously into
adjacent vertex between successive time steps to form the
next configuration αt+1. Abiding by the following movement
rules ensures preventing conflicts:

• An agent can move to an adjacent vertex only if the vertex
is empty, or is being vacated at the same time step by
another agent

• No two agents enter the same vertex at the same time

• A pair of agents cannot swap across an edge

We do not assume any specific order in which agents per-
form their conflict free actions at each time step. However,
our experimental implementation moves all attacking agents
prior to moving all defender agents at each time step. The
mapping δA : A →V assigns a unique target to each attacker.
The task in APP is to move defender agents so that area
specified by δA is protected. This task can be equivalently
specified as a search for strategy of destination assignments
for the defender team. That is, we are trying to find an in-
jective mapping δD

t : D →V which specifies where defender
agents should proceed at time step t as a response to pre-
vious attackers movements. The superscripts A and D are
sometimes dropped when there is no danger of confusion.

From APP to APPC

APPC generalizes APP by considering connectivity con-
straints. As we assume that G is always a grid graph we
can introduce connectivity constraints in the following way.

349

Consider an embedding of G in a plane such that all edges
have length 1 and each vertex v ∈V has coordinates (xv,yv).
The physical location lv represented by v is the unit square
area centered at Cv = (xv,yv). Furthermore, let O denote the
set of square locations representing obstacles.

Let r be the visibility range, i.e. the maximum dis-
tance between two locations such that two agents located
at them can communicate together. The locations lu and
lv can communicate with each other if the line segment
CuCv does not intersect any obstacle and the length of the
shortest path puv from u to v is at most r; shortly we say
that lu is visible from lv and vice-versa. The visibility
graph Gr = (V,Er) for a visibility range r contains edges be-
tween every two vertices that are mutually visible, formally:
(u,v) ∈ Er ⇔ CuCv ∩O = /0∧ |puv| ≤ r. For any S ⊆ V we
use Gr [S] in order to denote a subgraph of Gr induced by S.
Finally, let St be the set of vertices occupied by defenders in
time step t. Formally, St = {δD

t (d) : d ∈ D}.
APPC is stated as a decision problem as follows:

Definition 1. The decision APPC problem: Given an in-
stance Σ = (G,A,D,α0,δA,r) of APPC, is there a strategy of
destination allocations δD

t : D →V such that Gr [St] is con-
nected for each t = 0,1,2, . . . , and such that the team D of
defenders is able to prevent all attackers from reaching their
targets by moving defending agents according to δD

t .
Typically it is not possible to protect all targets. We are

therefore also interested in the optimization variant:
Definition 2. The optimization APPC problem: Given an
instance Σ = (G,A,D,α0,δA,r) of APPC, the task is to find
a strategy of destination allocations δD

t : D → V such that
Gr [St] is connected for each t = 0,1,2, . . . , and such that the
team D of defenders minimizes the number of attackers that
reach their target by moving defenders according to δD

t .

Destination Allocation

Since solving APPC in practice is a challenging problem
due to its high computational complexity, designed methods
are inexact and heuristic. Owing to the large search space
we do not consider game-theoretic approaches even though
the problem can be regarded as a two-player game. Our
solving approaches are based on a technique called desti-
nation allocation. The basic idea is to assign a destination
vertex to each defender and subsequently use some CPF al-
gorithm adapted for the environment with adversaries, and
to lead each defender to its destination while satisfying the
connectivity constraint. A defender may be allocated to any
vertex, including the attackers’ targets. Solving approaches
can be divided into two basic categories: single-stage and
multi-stage. In single stage methods, targets are assigned to
defenders only once at the beginning, as opposed to multi-
stage methods, where the destinations can be reassigned any
time during the agents’ course. In our implementation, once
all defenders are allocated to some destinations, they try to
get to the desired locations using adapted LRA* algorithm.
This work focuses merely on the single-stage methods. In
all the studied strategies, every agent is allocated to exactly
one location and every location is assigned to at most one
defender. Attackers react on defenders by replanning within

Figure 1: An example of bottleneck blocking. The defenders
(green circles) may protect all the targets (empty red circles)
from attackers (red circles) if they move to locations marked
by the two arrows.

LRA* if they find that their original path is blocked. Let us
recall several destinations allocation strategies and discuss
their properties (Ivanova, Surynek, and Hirayama 2018).

Random Allocation

For the sake of comparison, we consider a strategy, where
each defender is allocated to a random target of an attacker.
Neither the agent location nor the underlying grid graph
structure is exploited.

Greedy Allocation

A greedy strategy is slightly improved approach. It takes the
defenders one by one in a random order and allocates them to
their closest target of an attacker. The greedy as well as the
random strategy do not consider initial locations of attackers
and do not exploit the structure of underlying graph in any
way. These two methods always allocate defenders to given
targets of attackers. The advantage of this approach is that if
a defender manages to reach its assigned target, it will never
be captured by the attacker aiming for that target. This can be
useful in scenarios where the number of defenders is similar
to the number of attackers. Unfortunately, such a strategy
would not be very successful in instances where attackers
significantly outnumber defenders.

Bottleneck Simulation Allocation

The idea behind the bottleneck simulation strategy is to gain
some information from the map structure and the positions of
attackers and assign defenders to vertices that would divert
attackers from the protected area as much as possible. The
aim is to successfully defend the targets even with a small
number of defenders, as illustrated in Fig. 1.

We attempt to identify strategic bottlenecks and block
them by defenders. In order to discover bottlenecks of gen-
eral shape, we develop the following simulation strategy
exploiting the underlying grid graph. The basic idea is that
as attackers move towards the targets, they are expected to
pass through vertices close to a bottleneck more often than
through other vertices. This observation suggests to simulate
the movement of the attackers and find frequently visited
vertices. As defenders do not share the knowledge about
paths being followed by attackers, frequently visited vertices
are determined by a simulation in which paths of attackers
are estimated.

After obtaining such a frequently visited vertex, we then
explore its vicinity up to a given distance. If we find out

350

that there is indeed a bottleneck, its vertices are assigned to
some defenders as their new destinations. Under the assump-
tion that the bottleneck is blocked by defenders, the paths
of attackers may substantially change. For that reason we
estimate the paths again and find the next frequent vertex
of which vicinity is searched for bottlenecks. The whole
process is repeated until all available defenders are allocated
to a destination, or until no more bottlenecks are found. Alg.
1 describes this procedure more formally.

Data: G = (V,E), D, A
Result: Destination allocation δD

Davailable = D; // Defenders to be allocated
F = /0 ; // Set of forbidden locations
δ′A = Random guess of δA;
while Davailable �= /0 do

for a ∈ A do
/* find the shortest path in G between

an attacker a and its estimated
target, that avoids passing through
the forbidden locations in F */

pa = shortestPath(α0(a),δ′A(a),G,F);
end
f (v) = |{pa : a ∈ A∧ v ∈ pa}|; // Frequency of
v

w ∈ argmaxv∈V f (v);
B = exploreVicinity(w); // Search a
bottleneck

if B �= /0 then
D′ ⊆ Davailable, |D′|= |B|;
assignToDefenders(B, D’);
Davailable = Davailable \D′;
F = F ∪B

else
/* If no new bottleneck is found, assume

all have been already discovered */
break ;

end

end
/* If there are some defenders without a

destination left, they will be allocated
randomly */

assignToRandomTargets(Davailable);

Algorithm 1: Bottleneck simulation procedure

Another approach for bottleneck detection could be based
on finding cut-set in a graph. However, our bottleneck simu-
lation prefers bottlenecks frequently used by attackers.

Connectivity Maintenance

The requirement of preserving the possibility of communica-
tion is modeled by a connectivity maintenance of subgraph of
the visibility graph induced by the defenders’ locations. The
first task is therefore to create the visibility graph, which de-
pends on the positions of obstacles in the map and a predeter-
mined visibility range. The agents move using an adaptation

Figure 2: Three occupiers managed to reach the targets, but
due to the wall they are not able to communicate. The pres-
ence of two communicators enables the communication via
links marked by the dashed lines.

of the LRA* algorithm that keeps the visibility subgraph con-
nected. Paths are planned such that the first step of a defender
must lead to a position which induces a connected visibility
subgraph. Defenders follow paths computed by LRA* and
whenever an agent is about to enter an occupied location,
or if the next move would disconnect the communication
subgraph, its path is recalculated.

The movement determined by such an approach will surely
maintain the connectivity, however, in many instances, some
defenders will not be able to reach the destination locations
assigned to them. Our effort is to modify the allocation
strategies so that the number of defenders that are not able to
reach their assigned destinations is minimized.

Intuitively, defenders should be allocated to their destina-
tions so that in the most optimistic case, when they all reach
their desired locations, the connectivity is preserved. This
constraint is not guaranteed to be satisfied in general. We
propose the following approach to tackle this issue.

Initially, the defenders are partitioned into two sub-sets,
communicators Dc and occupiers Do, with a selected ratio
|Dc| : |Do|. The occupiers are allocated to attackers’ targets
according to one of the allocation strategies described above.
In the best scenario, all defenders manage to reach their desti-
nations. It is easy to check, for example by using BFS or DFS
on the induced subgraph, whether the ideal final position of
defenders maintains connectivity. If the connectivity is vio-
lated, the defenders reserved as communicators are allocated
to targets so that the subgraph of the visibility graph induced
by the defenders’ target locations has as few connected com-
ponents as possible. Fig. 2 depicts a situation where the three
occupiers reached the attackers’ targets assigned to them,
but they alone are not able to communicate. Nevertheless, a
suitable placement of two communicators ensures that the
communication can take place. In fact, the question whether
it is possible to allocate destinations for Dc so that the de-
sired position allows a communication among all defenders
is already difficult.

Proposition 1. Let Σ be an APPC instance with the set of de-
fenders D=Dc∪Do, and let δDo(d) for each occupier d ∈Do
be already determined. The decision problem whether there
exists a destination allocation δDc : Dc →V to communica-
tors in Dc such that all defenders maintain connectivity of
the visibility graph at their final positions is NP-complete.

Sketch of proof. The problem is obviously NP, because check-
ing a connectivity can be done in polynomial time. In or-

351

der to prove the NP-hardness, we reduce the known NP-
complete problem of Vertex Cover (VC) to our problem. Let
H = (VH ,EH) be an instance of VC. For each e ∈ EH we
create ve ∈V such that Ve is a destination assigned to some
occupier d ∈ Do. For each u ∈VH we construct vu ∈V such
that for all e ∈ EH incident with u we create {vu,ve} ∈ E.
Vertices vu s. t. u ∈VH form a complete subgraph of G. Fi-
nally, we set |Dc|= k. Now H has a vertex cover of size at
most k if and only if it is possible to assign destinations to
communicators so that the connectivity of Gr is maintained
in the desired position given by δDo .

Let To and Tc be the set of targets allocated to occupiers and
communicators, respectively. If the induced subgraph Gr [To]
has several connected components, the used modification of
LRA* algorithm could not lead all of them to their targets,
because it would cause a loss of communication ability. At
this point the set of communicators comes into play. The aim
is to find target locations for communicators so that the graph
Gr [To ∪Tc] is connected. First, the connected components
of Gr [To]. are identified. We then iterate while there are
available communicators and connected components to be
covered by them. In every iteration, a location l from which a
communicator can cover a set of connected components that
contains maximum number of targets allocated to occupiers
is selected together with the set of covered connected compo-
nents. The location l is subsequently assigned to the closest
unallocated communicator. For a more formal explanation
see Alg. 2.

Data: Gr = (V,Er), Do, Dc, To
Result: Destination allocation δDc

Tc = /0; // Destinations assigned to
communicators

while Dc �= /0 do
C = connected components of Gr [To ∪Tc];
while C �= /0 do

/* A pair of a locatoin l and a subset
C′ of connected components covered by
l that minimizes the number of
vertices in C′ */

(l,C′) = arg max
C′∈C,l∈V

{ ∑
C∈C′

|C| : ∃v ∈C :

(v, l) ∈ Er};
/* An available agent closest to l */
a = argmina∈Dc{|pα0(a),l |};
δDc(a) = l; // assign destination to
agent

Tc = Tc ∪{l};
C= C\C′;
Dc = Dc \{a};
if Dc = /0 then

break ;
end

end

end

Algorithm 2: Destination allocation to communicators

Preliminary Experiments

The aim of experimental evaluation is to compare individual
strategies described above with their counterparts adapted to
connectivity maintenance. We would like to find out whether
the adaptation improves the success rate of a strategy and
also how instance types affect its performance.

Our hypothesis is that when there is a sufficient number
of defenders, the adaptation has little or no effect. We pre-
dict that in instances, where defenders are outnumbered by
attackers, the adaptation increases the success rate of the
corresponding strategy. Furthermore, it is likely that the
simulation strategy is worse when the connectivity mainte-
nance is required, because the identified bottlenecks may
be far from each other, which makes it difficult to preserve
communication among them.

We implemented all suggested strategies in Java as an
experimental prototype. In our testing scenarios we use maps
of different structure with various initial configurations of
attackers and defenders. Our choice of testing scenarios
is focused on comparing performance of the strategies and
discovering what factors have impact on their success.

Different strategies are successful in different types of
instances. It is therefore important to design the instances
with a sufficient diversity, in order to capture strengths and
weaknesses of individual strategies.

Instance generation and types

The instances used in the practical experiments are generated
using a pseudo random generator, but in a controlled manner.
An instance is defined by its map, the ratio |A| : |D| and
locations of individual defenders, attackers and their targets.
These three entries form an input of the instance generation
procedure. Further, we select rectangular areas inside which
agents of both teams and the attackers’ targets are placed
randomly. The experiments are conducted on 3 different
maps that vary in their structure (see Fig. 3).

(a) Orthogonal rooms (b) Ruins (c) Waterfront

Figure 3: Three different maps used in the evaluation

Each map is populated with agents of 3 different |D| : |A|
ratios, namely 1 : 1, 1 : 2 and and 1 : 5, with fixed number of
attackers |A|= 50. The maximum number of moves of the
agents is set to 150 for each team. Note that the individual
instances are never completely fair to both teams. It is there-
fore impossible to make a conclusion about a success rate of
a strategy by comparing its performance on different maps.
The comparison should always be made by inspecting the
performance in one type of instance, where we can see the
relative strength of the studied algorithms.

352

Table 1: Average number of agents that eventually reached
their target in the map Orthogonal rooms

|D| : |A| RND RND-C GRD GRD-C SIM SIM-C

1:1 26.0 29.0 25.5 29.1 20.8 28.3

1:2 41.0 39.6 39.4 40.5 29.3 31.7

1:5 48.1 45.7 46.1 46.8 46.9 46.8

Experimental results

The following set of experiments compares random, greedy,
simulation strategy and their communication counterparts
in different instance settings. Each of the following tables
contains results associated with one map.

Each entry in the tables shows an average number of at-
tackers that reached their targets at the end of the time limit.
The average value is calculated for 10 runs in each settings,
always with a different random seed. Random and greedy
strategies have very similar results in all positions and team
ratios. It is apparent and not surprising that with decreasing
|D| : |A| ratio, the strength of defensive strategies decreases.

We focused on evaluation of the effect of using commu-
nicating agents in implemented target allocation strategies.
For each target allocation strategy we compare the standard
version and the version with communicating agents.

Tab. 1 shows results for Orthogonal rooms map. It can be
observed that using communicators is beneficial in case of
random strategy where defenders tend to be outnumbered by
attackers. On the other hand, communicators cause no im-
provement in Ruins map (Tab. 2). Small improvement of the
bottleneck simulation strategy can be observed in Waterfront
map (Tab. 3) again in cases when defenders are outnumbered.
Both types of maps where communicators turned out to be
beneficial appear to have the structure of large open spaces
separated by narrow bottlenecks.

Conclusion and Future Work

We have designed several practical algorithms for APPC. We
extended previous algorithms for APP with a technique of
connectivity maintenance. This is done by dividing defending
agents into two groups - occupiers and communicators. The
role of occupiers is to protect the area while communicators
are placed so that they cover as largest part of the protected
area as possible in order to support connectivity among occu-
piers. Performed experimental evaluation indicates that the
effect of using dedicated agents as communicators is much
smaller than expected but there is some in maps having the
structure of large open spaces separated by bottlenecks. One

Table 2: Average number of agents that eventually reached
their target in the map Ruins.

|D| : |A| RND RND-C GRD GRD-C SIM SIM-C

1:1 21.5 21.1 24.8 24.7 18.3 18.6

1:2 42.1 40.2 39.0 40.3 37.1 36.9

1:5 47.1 47.1 46.0 46.2 44.3 43.8

Table 3: Average number of agents that eventually reached
their target in the map Waterfront

|D| : |A| RND RND-C GRD GRD-C SIM SIM-C

1:1 20.7 21.6 18.9 18.5 20.8 21.9

1:2 35.2 31.2 30.7 31.4 35.8 33.5

1:5 41.6 41.4 40.7 40.7 42.3 41.3

possible explanation of this behavior is that several defenders
are not able to reach their targets because the ability of com-
munication would be lost during their movement and this is
not significantly affected by the target allocation. Hence, for
the future work we plan to design and evaluate algorithms
with more sophisticated mechanism for connectivity mainte-
nance. A more promising direction seems to be an adaptation
of LRA* rather than modifications of the allocation strate-
gies.

References
Agmon, N.; Kaminka, G. A.; and Kraus, S. 2011. Multi-robot
adversarial patrolling: Facing a full-knowledge opponent. J. Artif.
Intell. Res. 42:887–916.
Elmaliach, Y.; Agmon, N.; and Kaminka, G. A. 2009. Multi-
robot area patrol under frequency constraints. Ann. Math. Artif.
Intell. 57(3-4):293–320.
Haynes, T., and Sen, S. 1995. Evolving beharioral strategies in
predators and prey. In Proc. of Adaption and Learning in Multi-
Agent Systems, IJCAI’95 Workshop, 113–126.
Ivanová, M., and Surynek, P. 2014. Adversarial cooperative path-
finding: Complexity and algorithms. In 26th IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2014, 75–
82.
Ivanova, M.; Surynek, P.; and Hirayama, K. 2018. Area pro-
tection in adversarial path-finding scenarios with multiple mobile
agents on graphs - a theoretical and experimental study of strate-
gies for defense coordination. In Proceedings of the 10th Interna-
tional Conference on Agents and Artificial Intelligence - Volume
1: ICAART,, 184–191. INSTICC.
Rubenstein, M.; Ahler, C.; Hoff, N.; Cabrera, A.; and Nagpal,
R. 2014. Kilobot: A low cost robot with scalable operations
designed for collective behaviors. Robotics and Autonomous Sys-
tems 62(7):966–975.
Ryan, M. R. K. 2008. Exploiting subgraph structure in multi-
robot path planning. J. Artif. Intell. Res. 31:497–542.
Silver, D. 2005. Cooperative pathfinding. In Proc. of the 1st
Artificial Intelligence and Interactive Digital Entertainment Con-
ference, 2005, 117–122.
Vidal, R.; Shakernia, O.; Kim, H. J.; Shim, D. H.; and Sastry,
S. 2002. Probabilistic pursuit-evasion games: theory, implemen-
tation, and experimental evaluation. IEEE Trans. Robotics and
Autom. 18(5):662–669.
Wang, K. C., and Botea, A. 2011. MAPP: a scalable multi-agent
path planning algorithm with tractability and completeness guar-
antees. J. Artif. Intell. Res. 42:55–90.
Wieselthier, J. E.; Nguyen, G. D.; and Ephremides, A. 2002.
Energy-efficient broadcast and multicast trees in wireless net-
works. Mob. Netw. Appl. 7(6):481–492.

353

