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Abstract  

The paper briefly the idea of designing an algorithm for automatically locating the QRS complexes in 
the single-lead ECG signal based on continuous wavelet transform (CWT) and cluster analysis. The local 
QRS complexes are first detected in the transformed signals at three different scales. The global QRS 
complexes were then determined from separate locations in the transformed signals by using a cluster 
analysis method. The proposed algorithm was evaluated on the two-lead ECG database (MIT-BIH 
Arrhythmia Database), which contains global reference positions common for all lead. 
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I. Introduction 

Electrocardiogram (ECG) is a nearly 
periodic signal that reflects the activity of the 
heart. Much information on the normal and 
pathological physiology of heart can be 
obtained from ECG. Therefore, the features 
extracted from the ECG signal are significant 
for the doctors as a guide to correct clinical 
diagnosis [1]. 

Many studies have been done in the field 
of ECG signal analysis using various 
approaches and methods for the past three 
decades. The basic principle of all the 
methods involves the transform of ECG 
signal using different transform techniques 
including Fourier Transform, Hilbert 
Transform, Wavelet Transform, etc. Pan and 
Tompkins [2] proposed an algorithm (the so-
called PT method) to recognize the QRS 

complexes. In [3], the authors have been 
implemented as a method to detect the ECG 
beat using Geometrical Matching Approach 
algorithm.  Based on the estimation of the 
first-order derivative, the slope vector form 
algorithm has also been proposed in [4]. 
However, the ECG signals are considered to 
be a quasi-period that is of finite duration and 
non-stationary; it is challenging to analyze 
them visually. Hence, a technique like 
Fourier series (based on sinusoids of infinite 
duration) is inefficient for ECG. 

On the other hand, wavelet transform 
(WT), which is a very recent addition in this 
field of research, provides a powerful tool for 
extracting information from such signals. 
There has been the use of both continuous 
wavelet transform (CWT) as well as discrete 
wavelet transform (DWT). However, CWT 
has some inherent advantages over DWT. 
Unlike DWT, there is no dyadic frequency 
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jump in CWT. Moreover, the high resolution 
in the time-frequency domain is achieved in 
CWT [5]. 

The paper is organized as follows: in 
Section II, we present the materials and the 
QRS complex detection method. The results 
of the validation on the MIT-BIH 
Arrhythmia Database in Section III. Finally, 
the conclusions are presented in Section IV. 

II. Materials and Methods  

The proposed algorithm for the detection 
of the QRS complex is presented in Figure 1. 
This method includes signal preprocessing,  
continuous wavelet transforms, thresholding 
and identification of local QRS complexes, 
and determination of global QRS complexes 
using cluster analysis. The detail of each 
phase is described in the following sections. 
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Figure 1. Block diagram of the proposed method for 
the detection of the QRS complexes. 

1. Signal preprocessing  

In this phase, the ECG signal was divided 
into the 4096-sample segments by a sliding 
window. The incomplete QRS complexes 
located at the end of the 4096-sample 
segments can be misidentified as Not QRS 
peaks, so an overlap of 150 samples has been 
designed to overcome this problem. Thanks 
to the 150-sample overlap, these unfinished 

QRS complexes can be included entirely at 
the beginning of the next segment. We used 
then two median filters to remove the low-
frequency baseline drift [6]. Each segment 
was first filtered by a median filter with a 
width of 200 �� to remove the QRS 
complexes and P waves, the resulting signal 
was then filtered again by a median filter 
with a width of 600 �� to eliminate the T 
waves. Therefore, the baseline drift noise can 
be extracted by the output of the second 
median filter, and the baseline drift 
eliminated ECG signal can be obtained by 
subtracting the estimated baseline drift signal 
from the original ECG signal. 

 
Figure 2. Illustration of removing the low-frequency 
baseline drift noise. 

2. Continuous wavelet transforms 

Wavelets are a powerful tool for the 
representation and analysis of physiological 
waveforms like ECG, etc. [5], [7]. They 
provide both time and frequency view. 
Unlike the Fourier transform, the WTs are 
very efficient for non-stationary signals like 
ECG. In WT, a fully scalable modulated 
window is used to solve the signal-cutting 
problem. The window is shifted along with 
the signal. Spectrum is calculated for every 
position. This process is repeated by varying 
the length of the window. The result is that 



Automatic detection of QRS complex based on wavelet transform and cluster analysis 3 

we have a collection of representations, 
hence the name multi-resolution analysis. 

In this work, the CWT is applied to 
decompose the ECG signal into a set of 
coefficients that describe the signal 
frequency content at given times. The CWT 
of the continuous signal, �(�), is defined as 

���(�, �) =  
�
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���

�
�

��

��
��     (1) 

where �(�) is a continuous function called 
the mother wavelet, and the asterisk denotes 
the operation of the complex conjugate. 

To implement the proposed algorithm, 
each filtered signal segment is transformed 
into the wavelet domain by CWT at an 
appropriate mother wavelet and scales. The 
most commonly used types of mother 
wavelet for detecting the QRS complexes are 
the quadratic spline function [8], [9] and the 
first derivative of the Gaussian function [10]. 
However, the mother wavelet used in this 
work is the biorthogonal family, namely 
bior1.5. The wavelet bior1.5 is an odd-
symmetry wavelet that transforms the 
extremes of the original signal into zero-level 
passages and transforms the inflection points 
into extremes. Moreover, instead of finding 
for similarities across the other dyadic form 
of discrete-time wavelet transforms 
(DyDTWT) scales as in [8], [9], the proposed 
algorithm used appropriate scales. The best 
results were achieved with scales such as 15, 
20, and 30. 

3. Thresholding and identification of the 
local QRS complexes 

The output from the CWT phase is signals 
transformed at three different scales 15, 20, 
and 30. For each of these transformed 
signals, the algorithm will then find pairs of 
near opposite sign extremes, whose absolute 
values are higher than the threshold ����. If 

such pairs of extremes are found, and if these 
extremes are spaced less than the refractory 
period, 120 ��, then the positions of these 
extremes correspond to the ascending and 
descending edges of several of the QRS 

complexes. The position of the waves is then 
determined by the zero-crossing position 
between the two adjacent extremes. In this 
way, one or more candidates of the QRS 
complex can be detected. Because the 
detection indicates the position of the 
complex as a whole, it is necessary to 
identify a unique exact position representing 
the QRS complex. Therefore, there is a 
refractory period, 120 ��, before the next 
one can be detected since the QRS 
complexes cannot occur more closely than 
this physiologically. The positions preceded 
by another position in an interval shorter than 
this refractory period are removed from the 
detected positions. Therefore, the position of 
the QRS complex is the position of the first 
detected wave within candidates of the 
complex. The threshold level, ����, is given 

by the equation, 

���� = �. �
�

�
∑ (�� − �̅)��

���       (2) 

and thus, the threshold level corresponds to K 
times the standard deviation calculated from 
all the values of the transformed signal. In 
this work, the constant K was determined as 
a suitable factor of the standard deviation 
based on the analysis of the complete ECG 
signal database (highest detection rate) and is 
1.3. Deriving a threshold level from a 
standard deviation is a more robust approach 
than once derived from the maximum value 
or the difference between the maximum and 
the minimum values that can easily be 
affected by the artifact or extrasystoles. The 
threshold level is fixed and is the same for 
the entire segment of the analyzed signal. 

From the position of the detected QRS 
complexes in the signal segments, the local 
QRS complexes of the whole signal 
transformed at a specific scale will again be 
reconnected by the location of the segments.  

4. Determination the global QRS complexes 

The reliability of detection will increase 
significantly if we can combine the complex 
locations across the individual transformed 



Van Manh Hoang 4

signals. The result of such a combination is 
the global position of QRS complexes that 
are the QRS complexes to the original signal. 
This algorithm used to combine the local 
QRS complexes here is cluster analysis. 

The term cluster analysis refers to a 
variety of algorithms and methods for 
grouping similar objects into clusters. The 
similarity between the objects of one cluster 
should be as large as possible, and the 
similarity between objects belonging to 
different clusters is as small as possible. The 
clustering method used by us is one of the 
so-called hierarchical agglomerative methods 
that are based on individual objects, and their 
sequential clustering creates a hierarchical 
tree structure ending with a single cluster of 
all objects. The clustering of objects in more 
massive clusters is based on the measurement 
of similarities or distances between objects.  

In this study, we used the clustering-based 
method taken from [11], [12], and [13]. The 
input of the used method is the position of all 
detected QRS complexes in the individual 
transformed signals. A matrix of Euclidean 
distances is first calculated between all 
possible pairs of QRS complex positions. 
Besides, a hierarchical tree structure is 
created, and for the clustering itself, the 
nearest distance method is used. The cluster 
parameter of this method is the smallest 
distance between two objects of different 
clusters. The set of clusters is then selected 
from the tree structure that meets the 
specified criterion. The criterion used here 
was the minimum distance of adjacent 
clusters of 100 ��. 

The obtained clusters represent candidates 
for global QRS positions. Clusters containing 
fewer objects than half the number of scales 
is excluded from the set of clusters. These 
clusters are considered to be false detection. 
From the remaining clusters, global QRS 
complex positions are determined based on 
median positions within each cluster. 

III. Results and Discussions 

This section will present the results of the 
QRS complexes detection on several signal 
segments from the MIT-BIH Arrhythmia 
Database. At the top of each figure, short red 
lines are used to denote the detected QRS 
peaks. FP denotes a false positive peak. 
Figure 3 shows the QRS complex detection 
results for a high-noise ECG signal from 
recording 104. From the figure, we can see 
that if the detection of QRS peaks is based on 
CWT at scale 15, several peaks are 
misidentified as QRS peaks, as shown in the 
top figure of Figure 3. If the detection of 
QRS peaks is based on CWT at scale 20 or 
30, all QRS peaks are identified accurately, 
as shown in the middle two images of Figure 
3. These local QRS complexes achieved at 
each scale were then used as the input to the 
cluster analysis algorithm. As a result, the 
global QRS complexes have been correctly 
identified despite the high-noise in the signal. 
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Figure 3. Illustration of the QRS detection results for a 
noisy ECG signal (take from recording 104). 

From Figure 4, the results indicate that the 
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proposed algorithm succeeded in finding a 
QRS peak with a significantly reduced 
amplitude compared to the two adjacent QRS 
peaks (6th peak). This beat is the peak of a 
Ventricular Premature Contraction (VPC) 
beat.  

VPC

 
Figure 4. Illustration of the detection failures caused by 
significantly reduced amplitudes of QRS peaks 
compared to the adjacent QRS peak (take from 
recording 106). 

Besides the above results, the proposed 
algorithm still has some limitations. Figure 5 
shows the detection failures caused by large-
amplitude artifacts. It is evident that the three 
peaks of large-amplitude noises are very 
similar to QRS peaks and are misidentified 
as QRS complexes.  Figure 6 illustrates the 
detection failures caused by a P-peak sharper 
than the QRS peak. When a P- or T-peak is 
sharper than a QRS peak, it can cause 
detection failures.  

FP FP FP

 
Figure 5. Illustration of the detection failures caused by 
large-amplitude artifacts (take from recording 105). 

FP

 
Figure 6. Illustration of the detection failures caused by 
the P-peak being sharper than the QRS peak (take from 
recording 203). 

IV. Conclusion 

This paper proposes a QRS complex 

detection algorithm based on a continuous 
wavelet transform. The identification of QRS 
complexes was based on the extremum pairs 
in the wavelet coefficients and the proposed 
decision rules (cluster analysis). The 
performance of the proposed algorithm has 
been tested on several pieces of data in the 
MIT-BIH arrhythmia database and yielded 
good results despite some limitations. 
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