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Abstract—With the increasing demand for computing ma-
chines that more closely model the biological brain, the field
of neuro-inspired computing has progressed to the exploration
of Spiking Neural Networks (SNN), and to best the challenges of
conventional Von Neumann architecture, several hardware-based
(neuromorphic) chips have been designed. A neuromorphic chip
is based on spiking neurons which process input information
only when they receive spike signals. Given a sparsely-distributed
input spike train, the power consumption for such event-driven
hardware would be reduced since large portions of the network
that are not driven by incoming spikes can be set into a power-
gated mode. The challenges that need to be solved toward
building in hardware such a spiking neuromorphic chip with a
massive number of synapse include building small-sized spiking
neuro-cores with low-power consumption, efficient neurocoding
scheme, and lightweight on-chip learning algorithm. In this paper,
we present the hardware implementation and evaluation of a
light-weight spiking neuron processing core (SNPC) for our 3D-
NoC SNN processor, and the design of its on-chip learning block.
The SNPC embeds 256 Leaky Integrate and Fire (LIF) neurons,
and crossbar based synapses, covering a chip area of 0.12mm2.
Its performance is evaluated using MNIST dataset, achieving an
inference accuracy of 97.55%.

Index Terms—Spiking Neural Network, Neuromorphic, 3D
Network on Chip, Spiking Neuron Processing Core

I. INTRODUCTION

Spiking Neural Network (SNN) is the third generation of the
computing paradigm ”Neuro-inspired computing”, modeled
after the neural networks of the biological brain to best the
setbacks of conventional computing (Von Neumann machines)
[1]. This computing paradigm tries to model specifications that
make the biological brain achieve rapid parallel computations
in real-time, fault tolerance, power efficiency, and the ability
to perform tasks like image recognition and language learning,
that the conventional computing machine cannot [2]. Unlike
its predecessors, the neurons in SNN also mimic the infor-
mation transfer in biological neurons (event triggered), and
this immensely enhances its performance [3]. Several SNN
models exist, and their spiking behaviors are different because
they abstract diverse features. Some of these models include;
Integrate and Fire [4], Integrate and Fire with Adaptation [5],

Quadratic Integrate and Fire [6], Fitshugh Nagumo [7], Morris
Lecar [8], Hodgkin huxley [9], and Izhikevich [10].

Research in SNN has experienced some success over the
years with most of its simulation in software, and this in
turn, has brought about its application in tasks like image
processing and character recognition [11]. However on the
software platform, it is still faced with the architecture and
power limitations of the Von Neumann architecture, which
prevents its full potential from being utilized. To remedy this,
hardware architectures (neuromorphic chips) that do not have
the architectural limitation of the Von Neumann architecture,
and aim at taking advantage of the sparsity of Spikes in SNN
to reduce power, are being explored [12]. These architectures
are based on spiking neurons which process input information
only when they receive spike signals, and given a sparsely-
distributed input spike train, the power consumption for such
event-driven hardware would be reduced since large portions
of the network that are not driven by current incoming spikes
can be set into power gated mode.

Over the years, several neuromorphic chips have been
designed and among them we have SpiNNaker (16 cores
covering a chip area of 102mm2) [13], TrueNorth (4,096 cores
in a chip area of 430mm2) [14], Neurogrid (one core im a chip
area of 168mm2) [15], BrainScaleS (352 cores , each covering
a chip area of 50mm2) [2], Loihi (128 cores covering a chip
area of 60mm2) [16], and MorphIC (4 cores covering a chip
area of 2.86mm2) [17]. However, the design of neuromorphic
chips are not without challenges that need to be solved.
Building in hardware such a spiking neuromorphic chip with
massive number of synapses requires building small sized
spiking neuro cores with low power consumption, efficient
neurocoding scheme, light weight on chip learning and fault
tolerance. Neuromorphic chips like Brainscale, SpiNNaker and
Loihi embed on-chip learning, however none of them were
implemented using 3D-NoC interconnect. Most neuromorphic
SNNs are trained either with supervised learning algorithms
based on back propagation, unsupervised algorithms based on
Spike Time Dependent Plasticity (STDP) and its modifica-
tions, or converted from ANNs. The STDP learning algorithm



exemplifies the changing and shaping of connections between
neurons (pre-synaptic and post-synaptic) in the biological
brain with respect to time [18], and rely on the timing of pre-
and post-synaptic spike to adapt the synaptic strength between
the neurons [19].

In our previous work [20], we presented a 3D-NoC SNN
processor architecture, an approach to attempt achieving the
level of neuron density in the biological brain without trade
off in power and footprint. Most existing neuromorphic chips
are implemented on a 2D-NoC interconnect which faces
power, footprint and communication challenges with increased
number of components [21]. 3D-NoC on the other hand is an
interconnect composed of multiple layers of 2D NoC with
continuous vertical interconnect based on Through Silicon
Vias (TSV) [22] and does not suffer the challenges of the
2D-NoC [23]. Our 3D-NoC SNN architecture [20] is a com-
bination of 3D-NoC [24] and SNN processing elements. The
SNN processing elements are considered as Spiking Neuron
Processing Cores (SNPC), and the NoC topology attributes
how the SNPCs are interconnected within the network. For
communication within the scalable interconnection 3D net-
work, spikes are sent as packets/flits and to ensure efficient
communication, a fault tolerant multicast routing algorithm
called Fault-Tolerant Shortest Path K-means based Multicast
Routing(FTSP-KMCR) algorithm is presented [20] [25]. The
focus however, was on the implementation and evaluation
of the interconnect, and because the SNPC had not been
implemented, the evaluation for hardware complexity in terms
of area and power, and the evaluation for network performance
in terms of latency, was done by injecting spikes into the
network. This evaluation approach is not so efficient, therefore
for more efficient evaluation, we present in this work the
implementation of the Spiking Neuron Processing Core.

In this work, we present an implementation of the SNPC
for the 3D-NoC SNN processor [20]. The SNPC architecture
mainly comprises of 256 LIF neurons, a crossbar based
synapse, and a control unit. we also show the design of the
Spike Time Dependent Plasticity (STDP) learning block.

The rest of this paper is organized as follows: Section
2 describes the architecture of the 3D-NoC SNN processor,
focusing on the interconnect and SNPC architecture. Section
3, presents the evaluation of the SNPC based on its perfor-
mance on MNIST data set inference. Section 4 presents the
Discussion, and section 5, the conclusion and future work.

II. ARCHITECTURE AND IMPLEMENTATION

A. Overall System Architecture

The 3D-NoC SNN architecture from our previous work
[20] is a 3D mesh architecture composed of SNPCs and
Fault Tolerant Multicast 3D Routers (FTMC-3DR) [20] [26],
arranged in a 2D mesh topology on a tile. Multiple tiles are
then stacked to form a 3D architecture. For design illustration,
a 4x4 2D tile, stacked to form a 3D architecture was presented
in [20]. However, it can be dimensioned in a manner suitable
for the designer’s application. Each SNPC embeds an adaptive
array of LIF neurons with crossbar based synapse. Although

with few modifications, a number of other neuron models
can be supported. An output spike from a LIF neuron while
performing a task is encoded and sent to the pre-synaptic
neurons which can either be in the same SNPC or in another
SNPC within the 3D network depending on the task mapping
strategy. If in the same SNPC, the spike is received by the
post-synaptic neurons after it has been identified, and the
weight of its synapse with the pre-synaptic neuron is obtained
from the synapse memory using the address deduced from the
incoming spike in the crossbar. But if in another SNPC, the
spike is packeted at the network interface (NI) and sent to
the FTMC-3DRs that routes it to the destination SNPC where
the post-synaptic neuron resides. At the destination SNPC, the
packeted spike is decoded, the post-synaptic neuron identified,
and together with the synpatic weight obtained through the
crossbar, arrives the pre-synaptic neuron. The FTMC-3DR and
the SNPC arechitecture are described in the following sections.

Fig. 1. Architecture of Spiking Neuron Processing Core (SNPC)

Fig. 2. Architecture Of A Single LIF Neuron

Fig. 3. Wave Form Of LIF Neuron Operation. The LIF neuron accumulates the
weights received from the cross bar during the Generate Spike & Comp
state of the control unit, and experiences leak during the Leak state. At the
Fire state of the SNPC control unit, if the membrane potential has exceeded
the threshold, an output spike is fired.



Fig. 4. Crossbar architecture, showing the axons, dendrites, synapses imple-
mented with SRAM, and neurons. An incoming address event activates the
first axon, causes its connections to neurons 2 and N to be read, and this in
turn updates the neurons.

Fig. 5. Architecture Fault-tolerant Multicast Spike 3D Router architecture
(FTMC-3DR) [20]

B. Interconnect architecture

Fig. 5 illustrates the architecture of the Fault Tolerant Multi-
cast 3D Router (FTMC-3DR). Each SNPC in the architecture
is accompanied by a FTMC-3DR with 7 inputs and 7 output
ports, where 1 input and 1 output port is used to connect
to the SNPC, 2 input and 2 output ports to the routers above
and below, and the remaining 4 input and 4 output ports to the
neighbouring routers, each in north, south, east and west direc-
tion. It is tasked with routing spikes across the network from
source SNPC to destination SNPC using the Address Event
Representation (AER) protocol. When an incoming packetized
spike reaches the router, the router stores it in its input buffer,
which is the first of its four pipelined stages; Buffer Writing
(BW), Routing Calculation (RC), Switch Arbitration (SA),
and Crossbar Traversal (CT) [27]. After entering the buffer,
the packet is processed and the source address is obtained
and calculated to arbitrate its output port. This is the second
pipelined stage. After this is done, the switch arbiter grants
permission in response to a request sent to it for an output

port to be used, the third pipelined stage. Finally the packet is
then sent to the proper output port through the crossbar in the
router, this is the fourth pipelined stage. Detailed information
on the FTMC-3DR can be found in our previous work [20].

C. Spiking Neuron Processing Core Architecture

The SNPC is the processing unit in the 3D-NoC SNN
architecture. It is made up of a Controller, Crossbar, Synapse
and Neuron memory, neuron array and STDP block. They are
all described in the following sections. The SNPC architecture
is illustrated in Fig. 1.

1) Control Unit: The control unit is tasked with managing
the operations and state of the SNPC. It functions as a
finite state machine, switching among seven states of SNPC
operations; Idle, Download spike, Generate Spike & Comp,
Leak, Fire, Upload spike and Learn. At the Idle state, the
SNPC does nothing, and from that state it transitions to the
Download spike state where it downloads incoming spikes
in address event representation format to the crossbar. At
the Generate Spike & Comp state, the crossbar generates
an SRAM address, and the weights stored in that address
are fetched and sent to the corresponding LIF neuron for
accumulation. The Leak state reduces membrane potential, the
Fire checks the fire condition, the Upload spike sends the
output from the LIF array to other SNPCs, and the Learn
state activates the STDP block for learning.

2) Crossbar: The neurons in the biological brain are ar-
ranged in a 3D manner, and this allows for more connection
between them. To attempt having the same level of connection
in the SNPC, a crossbar approach (which aims at merging
memory and neuron update details) is used to implement the
synapses. Fig. 4 shows a diagram of the crossbar which is
a composite of an array of wires crossing each other in a
rectangular manner with the horizontal representing the axon,
and the vertical representing the dendrite of the LIF neurons.
At the intersection of two wires is a memory cell, which stores
the synaptic weight. To implement the N x N (N signifying
the number of neurons) crossbar, an on-chip SRAM is used.

At the beginning of a simulation, the weights of the network
are loaded into the synapse memory. Spikes are fed as vectors
to the crossbar, so when a spike arrives the crossbar at a time-
step, it is decoded to determine the address of the synapse
weights. This address is fed as input to the synapse memory
which then provides access to the synaptic weights stored at
the given address. The weight is then read, and fed to the
post-synaptic neuron for computation. Fig. 6 illustrates the
pipelined process of fetching synaptic weights from synapse
memory after its address has been decoded by the crossbar
from an incoming spike.

3) Synapse Memory and Neuron Memory: The Synapse
memory stores the synaptic weights, and Neuron memory store
the data for neural computations. They are both implemented
with SRAM.

4) LIF array: Fig. 2 shows the schematic diagram of the
implemented LIF neuron which performs computations on
the data read from the Crossbar and the memory. A LIF



Fig. 6. Timing Diagram Of Loading Weights Into Synapse Memory.

neuron accumulates incoming spikes to increase its membrane
potential while experiencing leakage. when the membrane
potential crosses a threshold, it fires an output spike. This
operation is illustrated in Fig. 7 and Fig 3

Fig. 7. LIF neuron operation: A post synaptic neuron (N4) receives spikes
from presynaptic neurons (N1), (N2), (N3). The received spikes are accumu-
lated, increasing the membrane potential of neuron (N4) from t1 to t3, while
experiencing leak. At t4, its membrane potential exceeds the threshold, an
output spike is fired, and the membrane potential resets

Mathematically, the membrane potential V l
j of a LIF neuron

j in layer l at a time-step t is described as:

V l
j (t) = V l

j (t− 1) +
∑
i

wij
∗xl−1

i (t− 1)− λ (1)

where wij is the synaptic weight from neuron i to j, λ is the
leak and xl−1

i is pre-synaptic spike from previous layer l − 1.
When the integration of input spikes is completed, the value

of V l
j at a time-step, is compared with the threshold value θ.

If it exceeds, a spike is released and the neuron resets. This
is mathematically expressed as:{

1, if Vj
l > θ

0, otherwise
(2)

5) STDP Block: At the learn state of the SNPC control unit,
the control unit of the STDP block, LB control is activated,
and manages the learning process as a finite state machine in
five states; Idle, Accl, Before, After, and Done. At the Idle
state, the STDP block does nothing, and in the absence of a
post-synaptic spike, jumps to Done state. In the event of a
post-synaptic spike, 16 time steps and 16 pre-synaptc spikes
are considered (8 before and 8 after the post synaptic spike).

After every 16 time steps, the synaptic weights between 16
pre-synaptic neurons and the post synaptic neuron are updated.
The LB control moves to the Accl state, and spikes from
the 16 pre-synaptic neurons are loaded from Pre-Synp SRAM.
The memory address of their synaptic weights with the post-
synaptic neuron is determined and the weights are fetched. At
the Before state, the weights of the synapse between the 8 pre-
synaptic neurons that fired before the post-synaptic neuron, are
incremented. The After state on the other hand, decrements the
weights of the synapse between the 8 pre-synaptic neurons that
fired after and the post-synaptic neuron. At the Done state,
a signal is sent to SNPC control unit and all the registers
are cleared. A design of the STDP block is shown in Fig. 9,
illustrating its method of weight update.

III. EVALUATION

A. Evaluation methodology

In this section, we implement and evaluate the hardware
complexity in terms of power and area of the SNPC without
the STDP block , and its performance on MNIST dataset [28]
inference accuracy. The SNPC was implemented in hardware,
and the design was described using Verilog-HDL. The simu-
lation and synthesis was carried out, using Cadence tools.

The SNN used to evaluate the performance of the imple-
mented SNPC on MNIST dataset inference is a three layer
fully connected SNN with 784 LIF neurons in the first layer,
225 in the second layer, and 10 in the third layer. The training
approach adopted was to train an ANN, and then port the
parameters of the pre-trained ANN to an equivalent SNN.
Each 784 neuron in the first layer takes in 784 inputs, a
28×28 pixel grey scale image. Each image is first rescaled by
dividing each pixel by 255 to keep the pixel range between 0
and 1, and then converted to spikes using poisson distribution
[29]. Because the network is fully connected, each LIF neuron
in the second and third layers receives 784 and 225 inputs
respectively.The MNIST dataset [28] contains 60K training
and 10K testing images, which are digits from 1 to 9. With this,
we demonstrate the performance of the SNPC, and compare
with existing works.

B. Evaluation result

In this section, we show the result of the hardware com-
plexity and performance evaluation.

1) Hardware Complexity: The hardware complexity in
terms of power and chip area of the SNPC design is given
in TABLE I. The power report given is a sum of the leakage
power, and the estimated dynamic power. In Table II, the chip
area of several implementations is compared. Merolla [30]
uses the highest hardware resource compared to other imple-
mentations. However, our implementation uses the smallest
hardware resource. The SNPC layout is also shown ig Fig 10.

TABLE II presents a comparison of hardware complexity
and performance on MNIST dataset.Yin [31] achieves the high-
est accuracy among the compared implementations followed
by Chen [33], thanks to the size of their network. Merolla [30],



Fig. 8. Spiking Neural Network Architecture. The classified MNIST 28 × 28 gray scale images were first rescaled by dividing the value of each pixel by
255, and then encoded into spike arrays using poisson distribution.

Fig. 9. STDP Block Architecture.

Fig. 10. SNPC Design Layout.

TABLE I
SNPC HARDWARE COMPLEXITY REPORT

System SNPC
Power Estimation(mW) 493.5018

Area(mm2) 0.12

SNPC and Mostafa [32] implements a smaller sized network.
Nevertheless, SNPC achieves higher accuracy.

2) Performance: Using an SNN that was trained offchip,
the SNPC was able to achieve inference accuracy of 97.55%.

Fig. 11. Performance Comparison Over Various Learning Algorithms.

IV. DISCUSSION

In previous sections, we demonstrated SNPC, a processing
element for our 3D-NoC SNN processor, and evaluated it for
hardware complexity and performance. The target in general as
stated previously is to design in hardware a neuromorphic chip
with low power consumption, efficient neurocoding scheme,
light weight on chip learning and fault tolerance. The imple-
mentation of the SNPC, is a step closer to this goal. Although
a small sized network was used to evaluate the performance
of the SNPC on MNIST image dataset classification, a larger
network size can be used when it is integrated into the 3D-
NoC SNN processor. This SNPC implementation houses 256
neurons and 64K synapses, but a point to note is that since
the SNPC will be integrated into a 3D-NoC interconnect, each
SNPC may not need to embed large number of neurons, but
this depends on the requirement of the application.



TABLE II
SUMMARY OF AREA AND ACCURACY COMPARISON.

Parameters/Systems Merolla et al [30] Mostafa et al [32] Chen et al [33] Yin et al [31] This Work
Core Area (mm2) 4.2 - 1.72 1.65 0.12

Accuracy on MNIST (%) 94 96.08 97.9 98.7 97.55
Network Topology 2 Layers 3 Layers (FC) 4 Layers (FC) 3 Layers (FC) 3 Layers (FC)
Number of neurons 740 1394 2330 1306 1019

Implementation Digital Digital Digital Digital Digital
Technology 45nm FPGA 10nm FinFET 28nm 45nm

Learning RBM Backprop (off-chip) Formal BNN (off-chip) Backprop (off-chip) (off-chip)

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a digital implementation and
evaluation of spiking neuron processing core (SNPC) for 3D-
NoC SNN processor. A hardware complexity evaluation (for
area and power), and a performance evaluation (accuracy on
MNIST image dataset classification) was done. When com-
pared with previously proposed implementation,the evaluation
results show that SNPC provides a good trade-off between
area and accuracy. Future work will explore learning approach
on the SNPC, and its integration into the 3D-NoC SNN
processor. The hardware complexity of the overall system will
be evaluated, and for performance, several other applications
that will take advantage of the 3D-NoC interconnect will also
be explored. Other neuron models and learning algorithms
could also be considered, depending on the application.
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