
An Efficient Algorithm to Extract
Control Flow-based Features for IoT

Malware Detection
tran nghi phu1, nguyen dai tho2, le huy hoang1,

nguyen ngoc toan1 and nguyen ngoc binh3

1People’s Security Academy (PSA), Hanoi, Vietnam
2VNU University of Engineering and Technology, Hanoi, Vietnam

3The Kyoto College of Graduate Studies for Informatics (KCGI), Kyoto, Japan

Email: tnphvan@gmail.com

Control flow-based feature extraction method has the ability to detect malicious
code with higher accuracy than traditional text-based methods. Unfortunately,
this method has been encountering with the NP-hard problem, which is infeasible
for the large-sized and high-complexity programs. To tackle this, we propose
a control flow-based features extraction dynamic programming algorithm (CFD)
for fast extraction of control flow-based features with polynomial time O(N2),
where N is the number of basic blocks in decompiled executable codes. From
the experimental results, it is demonstrated that the proposed algorithm is more
efficient and effective in detecting malware than the existing ones. Applying our
algorithm to an IoT dataset gives better results on 3 measures: Accuracy (AC)
= 99.05%, False Positive Rate (FPR) = 1.31% and False Negative Rate (FNR) =

0.66%.

Keywords: IoT malware detection; Control flow-based features; Dynamic programming; CFD;
Embedded malware

Received 18 October 2019; revised 20 December 2019

1. INTRODUCTION

Internet of Things (IoT) devices are increasingly tar-
geted by adversaries due to their unique characteris-
tics such as constant online connection, lack of protec-
tion, and full integration in people’s daily life. IoT de-
vices such as routers, cameras, TVs, and VoIP phones
are now everywhere. As the number of IoT devices
increases exponentially every year, IoT malware also
grows accordingly in number and diversity. IoT bot-
nets generated more than 750,000 spam emails per day.4

Especially in October 2016, the malware Mirai infected
and controlled more than 100,000 IoT devices world-
wide and created the largest DoS attacks in history with
a capacity exceeding 1.5 Tbps [1].

IoT devices use hardware components with small
to medium-size software drivers and applications to
enable a limited interface to those components [2].
One of the most challenging problems in designing
IoT malware detector is that the extracted features
should be compact and accurate, and the detection
algorithm should be light-weight and energy-efficient to
be deployed locally [3].

4Kaiser T. (2014) Hackers Use Refrigerator. Other Devices to
Send 750,000 Spam Emails. http://www.dailytech.com/

There have been many results of IoT malware
detection recently [3, 4, 5, 6]. In [4], 46 pieces of
active mobile malware were identified and classified
by payload behaviors. Pa et al. [5] constructed a
sandbox environment for dynamic analysis of malware
attacks against Telnet-based IoT devices running on
different CPU architectures. Alhanahnah et al. [3]
proposed a novel signature generation method for cross-
architecture IoT malware. Novom et al. [6] utilized the
fuzzy and fast fuzzy pattern tree methods to detect and
categorize malware of IoT edge nodes after transmuting
executable’s OpCodes into a vector.

Malware detection and classification can be imple-
mented using a static approach [7], in which the pieces
of the malware are analyzed and examined for reason
about their behavior without actually running them.
There have been many static malware detection meth-
ods such as header information, Control Flow Graphs,
OpCodes, API call graphs, etc. Davidson et al. [8] em-
ployed symbolic execution to automatically detect vul-
nerabilities and malware in the firmware of embedded
devices. Nguyen et al. [9] proposed another static anal-
ysis method to detect botnet malware in IoT devices,
based on convolution neural networks with Printable

The Computer Journal, Vol. ??, No. ??, ????



2 t.n. phu et al.

Strings Information (PSI) extracted from malware sam-
ples. Angr [10] is a typical binary analysis open-source
toolkit 5, with the capability to perform many state-of-
the-art static analysis techniques such as control flow
recovery, flow modeling, data modeling, concrete ex-
ecution and symbolic execution. Kruegel et al. [11]
used several techniques including Control Flow Graph
(CFG), Data Flow Graph (DFG), Symbolic Execution
(SE) to analyze every single file found in firmware and
identify malware characteristics such as bytecode, head-
ers, system calls or PSI.

According to our experiments, Table 1 shows IoT
malware rarely used packing techniques. There are only
less than 7.0% number of samples were packed, and
most of them used the simple packer UPX 6. The reason
may be limited resources and weak secure policies of
the packaged environment of embedded devices. Static
malware analysis can ensure complete code coverage
and reveal all possible actions that a malware may carry
out. Therefore, it is an efficient method for IoT malware
analysis when obfuscation techniques are not commonly
used by this malware.

An operation code (opcode) is a part of a machine
instruction that specifies the operation to be performed.
It is a common type of features extracted by static
analysis and widely used for malware detection.
The opcode sequences extracted from disassembled
executable files represent the essential behaviors of a
program and can be obtained by static analysis. It was
firstly proposed by Bilar [12], and then developed by
Robert et al. [13], Santos et al. [14] and Ding et al.
[15].

Santos et al. [14] suggested the Idea method to
detect variants of known malware families based on
the appearance frequency of opcode sequences. They
developed a vector representation of executable files
for machine-learning algorithms to detect unknown
malware variants [16]. Ding et al. [15] claimed that
above opcode-based extraction methods, called text-
based methods, only show of file information but not the
structures or behaviors of the program. Therefore, they
proposed a new feature extraction method based on
combining opcode and CFG, namely Control flow-based
opcode features extraction method, which achieved
higher accuracy than the text-based methods due to
extracting more features of the decompiled executable
codes through CFG’s structure.

Traditional computing environments mainly based
on X86 and/or X64 architecture are of Complex
Instruction Set Computer (CISC). In heterogeneous
IoT networks, IoT devices use embedded processors
such as ARM, MIPS, X86-64, PowerPC, SPARC, etc
[17], which are of Reduced Instructions Set Computer
(RISC). CISC has more instructions than RISC, for
example, in our experiments there are 340 Intel 80386

5Https://angr.io
6Packer UPX - https://upx.github.io

instructions but only 140 MIPS ones. Besides, each
instruction of CISC contains more functions than that
of RISC. Therefore, with the same function, an Intel
executable file has more opcodes than a MIPS one.
Our experiments also show that the average number
of vertices, edges and opcodes per one basic block of
the CFGs extracted from Intel samples is less than
from MIPS ones. There are only 13.8% of CFGs of
Intel malware samples consisting of more than 11,000
vertices, while for MIPS malware samples, more than a
quarter of the CFGs having this characteristic. It means
that the CFGs of MIPS executable files tend to be more
complex than the CFGs of Intel executable files.

Ding et al.’s problem was solved by listing all
execution paths from a root vertex to leaf vertices in the
CFG of an executable [15]. The root vertex is the entry
point of the executable and leaf vertices are endpoints
of the executable. The graph has one root, many leafs
and a large number of paths from the root to leafs.
The Depth First Search(DFS) is used to enumerate all
paths, but a large memory is needed to store these
paths. However, the DFS-based solution is not efficient
due to the repeated calculations. A complete graph
with N vertices has N ! paths, thus finding all paths of
this graph by DFS is an NP-hard problem. Besides,
the Ding et al.’s experiment used only a small-sized
dataset of 650 benign executable files and 650 malicious
executable files of the MS Windows PE format. As the
experiment on a larger-sized IoT dataset, with CFG has
11,000 vertices, it takes 40 seconds to find only one path,
and sometimes no path can be found. It is possible
that, Ding et al.’s method might be too slow to apply to
larger-size available Intel datasets, especially for MIPS
ones, which is one of the most popular IoT samples set
[17]. Thus, Ding et al.’s method can only be applied
to a simple CFG of decompiled executable file, which
has few vertices and edges. In case of many vertices,
it cannot find all the paths, even it is impossible to
find any path within the specified time, which leads to
the lack of information about CFG and low detection
capacity.

Costin et al. [18] reported that among the embedded
operating systems in the investigated dataset Linux
suffered the most, accounting for more than three
quarters of 32,000 analyzed firmware images. Pa et
al. [5] proposed IoTPOT, a honeypot collecting about
4,000 IoT malware samples such as Tsunami, Mirai,
Bashlite etc. Another IoT malware database is Detux
[19] with more than 9,000 samples. Beside IoT malware
samples, it is also crucial to collect benign files to be able
to implement detection algorithms. Azmoodeh et al.
[20] has collected 1,078 benign and 128 malware samples
for ARM-based IoT applications. Alhanahnah et al.
[3] stated that the IoT malware dataset provided by
IoTPOT was the largest IoT malware dataset available
at that time. In their experiments, only a set of 130
benign IoT samples is collected, which is insufficient to
a learning-based malware detector.

The Computer Journal, Vol. ??, No. ??, ????



an efficient algorithm to extract control flow-based features for iot malware detection 3

In this paper, we further design efficient heuristic
algorithms, which could extract control flow-based
features by a complexity of O(N2), improve the
NP-hard algorithm of Ding et al.’s method, and
we call it as control flow-based features extraction
dynamic programming algorithm (CFD). The proposed
algorithm is based on dynamic programming to build
the weighted graph, whose each vertex’s label having
a number of execution paths passing over. From the
vertices’ label, control flow-based features are extracted.
This study contains the following contributions:

• We propose the CFD for extracting control flow-
based features within O(N2) time, where N is the
number of basic blocks in decompiled executable
codes from the considered program. CFD allows to
process large files without large memory to extract
more feature information at a reasonable amount
of time and achieves high accuracy.

• We build a huge dataset consisting of IoT sam-
ples and PC samples to compare our method
with previous approaches. Supporting the re-
search activities, we publish our dataset at address
https://gitlab.com/Nghiphu/c500iotdataset with
registered access.

2. RELATED WORK

The directed graph is related to many related fields such
as language processing [21], online social networks [22],
and malware detection [15]. One of the main problems
is identifying, recognizing and removing the presence of
cycles. It is necessary to have a principle technique
to reduce a directed graph into a directed acyclic
graph (DAG), which only includes acyclic relationships
[21]. However, finding an automatic solution for this
problem has been challenging. Existing approaches
for this problem fall into the following categories: the
simple DFS or the Breadth First Search (BFS) based
heuristics [15, 23, 24] to eliminate and remove cycles;
theoretical solutions that model the problem as variants
of minimum-feedback arc set problem [25] or other NP-
hard optimization problems; complex domain-specific
algorithms [26, 27] that eliminate cycles based on many
criteria, including redundancy and confidence of sources
asserting the relations. Depending on the optimal
purpose, heuristic algorithms have been proposed to
construct DAGs. Sun et al. [21] proposed techniques to
remove the cycles while preserving the logical structure
(hierarchy) of a directed graph as much as possible to
break cycles in noisy hierarchies. Canh et al. [22]
proposed the maximizing misinformation restriction
problem with the purpose of finding a set of nodes whose
removal from a social network maximizes the influence
reduction from a source of misinformation within time
and budget constraints.

Angr [10] is an open source tool and binary analysis
framework that integrates many of the state-of-the-
art binary analysis techniques. . The framework

has been encouraging the development of next-
generation binary analysis techniques by implementing,
effective techniques from current research efforts in
an accessible and reusable methodology, so that
they can be easily compared with each other.
Angr provides building blocks for various analysis
methods including both static and dynamic ones,
so that proposed research approaches can be easily
implemented and their effectiveness can be compared
to each other. Additionally, the building blocks
enable the composition of different analysers to leverage
their different strengths. Angr supports two CFG
extraction methods as CFGFast and CFGEmulated.
The CFGFast, based on using symbol and heuristics to
determine file functions, has the same CFG extraction
algorithm as IDA7.Besides, while CFGEmulated uses
force execution to add basic blocks, backward slicing,
and symbolic back-traversal, CFGFast employs light-
weight analysis to calculate indirect jump commands
[10]. Angr’s CFGFast (or IDA) is as good as
CFGEmulated if the binary file is well structured. The
CFGEmulated provides a step-by-step simulation of the
execution of a file and traces all the states, thus it can
give the most accurate CFG which is constructed from
the basic blocks.

The Ding et al.’s method extracted control flow-based
features of a decompiled executable by calculating n-
gram frequency of all execution paths on its CFG.
Firstly, it constructed a CFG from a program, traversed
the CFG to obtain all possible execution paths, and
then concatenated them together. Cycles in CFG
were detected and deleted by the DFS method when
enumerating execution paths. From that, the CFG is
converted into a tree, which is called an execution tree.
In fact, each vertex of the execution tree is a basic block,
which consists of an opcode sequence. Secondly, each
vertex in an execution path is replaced with another
opcode sequence, so that an opcode stream is generated
from the execution path. Finally, a feature vector is
calculated by counting n-gram opcode frequency of the
opcode stream.

As an example, in Figure 1, a control flow graph
is represented as the directed graph G, which has 5
vertices. The root is vertex 0 and there is only one
leaf which is vertex 5. By Ding et al.’s method,
control flow-based feature vectors are constructed by
calculating n-gram frequency vectors from all found
paths. Firstly, it searches on this graph to find
possible paths. The results are three paths, namely:

(0, 2, 5), (0, 1, 4, 5), and (0, 1, 3, 4, 5)
Secondly, all the found paths will be concate-

nated together to become a stream, such as:
(0, 2, 5, 0, 1, 4, 5, 0, 1, 3, 4,5 )

Thirdly, each vertex in the stream is replaced with an
opcode sequence, such as:

7Hex-Rays SA. IDA pro Introduction http://www.hex-
rays.com/products.shtml/

The Computer Journal, Vol. ??, No. ??, ????



4 t.n. phu et al.

FIGURE 1. A Control Flow Graph - G

FIGURE 2. The acyclic control flow graph - ACFG

0 → ”push add jcxz”,
1 → ”push add”,
2 → ”call pop pop jbe”,
3 → ”add jcxz push jcxz”,
4 → ”mov inc add jbe”,
5 → ”mov inc mov push”.
This results in the opcode graph in Figure 4 and the
opcode stream:

push add jcxz call pop pop jbe mov inc mov push push
add jcxz push add mov inc add jbe mov inc mov push
push add jcxz push add add jcxz push jcxz mov inc add

jbe mov inc mov push

3. OUR METHOD

3.1. Preliminaries

Definition 1 (Control Flow Graph - CFG): A CFG of
a decompiled executable program is a directed graph G
= (V, E, r, L), where:

• V is a set of vertices, each vertex is a basic block
in the decompiled executable program;

• E is a set of directed edges, which are used
to represent jumps/calls/rets opcode between two

basic blocks in the decompiled executable program.
With a directed edge (u,v), u is the head and v is
the tail. When traversing graph, u is v’s parent
node, and v is u’s child node.

• r is the root vertex of in-degree 0 which contains
the entry point of a decompiled executable
program;

• L is a set of leaf vertices of out-degree 0,
which contains the end points of the decompiled
executable program.

Definition 2 (Acyclic Control Flow Graph - ACFG):
A ACFG denoted by GA = (V, A, r, L) is a directed
graph without any cycle built from the control flow
graph G = (V, E, r, L) after removing some edges,
where A ⊂ E.

Definition 3 (Execution path): An execution path
on ACFG GA = (V, E, r, L) is a path P(v) =
{r, v1, v2, ..., v}, where vi ∈ V, v ∈ L.

Definition 4 (Execution Directed Acyclic Graph -
EDAG): An EDAG denoted by GC = (V, A, r, L, C, D)
is a labeled directed acyclic graph built from a ACFG
GA = (V, A, r, L), where:

• C denotes the label set of vertices. C[u], u ∈ V,
is the number of execution paths on GA visiting
vertex u;

• D denotes the weight set of edges. D [u,v ], {u, v} ∈
E, is the number of execution paths on GA
traversing edge (u,v).

3.2. The main CFD algorithm

Algorithm 1 CFD algorithm

Input: Decompiled executable: exeFile
Output: Control flow-based features with n-gram:

feature vector

1: graph = GetCfgFromFile (exeFile)
2: acfg = ConstructDag(graph)
3: edag = ConstrucEdag(acfg)
4: feature vector = ExtractControlFlowBasedFea-

ture(edag)

Return: feature vector

We propose CFD, a dynamic programming algorithm
for building an EDAG. The main flow of CFD is
described in Algorithm 1 with the following three sub-
algorithms. Firstly, a ACFG is constructed from the
CFG of a decompiled executable program by Algorithm
2. Secondly, an EDAG is built from the ACFG by
Algorithm 3. In constructing the EDAG, the current
number of paths is calculated based on the previous
results, therefore it performs more quickly than Ding
et al.’s method. Finally, control flow-based features are
extracted from the EDAG by Algorithm 4.

The Computer Journal, Vol. ??, No. ??, ????



an efficient algorithm to extract control flow-based features for iot malware detection 5

FIGURE 3. EDAG of G

3.3. Algorithm for constructing a ACFG

Algorithm 2 is based on the idea of DFS to build
ACFG. Starting from the root vertex, it visits other
ones, selects non back-edges to build a ACFG. When
traversing to vertex u, it checks all of edges starting
from u. If u doesn’t belong to any path from the root
to the edge’s tail vertex, this edge will be updated to
the ACFG and its tail vertex will be pushed to a stack
(line numbers 9, 10). In each loop, the visited edge will
be removed from G (line number 14). When the stack
is empty, it means all edges are traversed, and these
edges don’t belong to any cycle that is added to ACFG.
In addition, this algorithm can choose all vertices
connected to the root, removes all unconnected vertices
and guarantees connected component starting from the
root. In Algorithm 2, function getChildOfNodeList(u)
finds all vertices which are the child nodes of vertex u
in graph G.

Algorithm 2 Constructing ACFG

Input: CFG G = {V’, E’, r, L’}
Output: ACFG G’= {V, E, r, L}

1: allVertexBefore[i] = {i} ∀i ∈ V’
2: E = �
3: V = {r}
4: stack.push(r)
5: while Not stack.IsEmpty() do
6: u = stack.pop
7: for v in getChildOfNodeList(u) do
8: if not v ∈ allVertexBefore[u] then
9: E = E ∪ u,v

10: stack.push(v)
11: V = V ∪ v
12: allVertexBefore[v] = allVertexBefore[v] ∪

allVertexBefore[u]
13: end if
14: E’ = E’ \ {u,v}
15: end for
16: end while
17: L = L’ ∩ V

Return: G’

3.4. Algorithm for constructing an EDAG

Algorithm 3 Constructing EDAG from the ACFG

Input: ACFG GA = (V, A, r, L)
Output: EDAG GC = (V, A, r, L, C, D)

1: #backward
2: D = 0 #initialize 0 to all elements of matrix D
3: P = 0 #initialize 0 to all elements of matrix P
4: for u in V do
5: outDegree[u] = getOutDegree(u)
6: if outDegree[u] = 0 then
7: P[u] = 1
8: Stack.push(u)
9: end if

10: end for
11: while Not Stack.Empty() do
12: currentNode = Stack.pop()
13: for u in getParentOfNodeList(currentNode) do
14: P[u] = P[u] + P[currentNode]
15: D[currentNode,u] = P[currentNode]
16: end for
17: outDegree[u] = outDegree[u] - 1
18: if outDegree[u] = 0 then
19: Stack.push(u)
20: end if
21: end while
22: #forward
23: C = 0 #initialize 0 to all elements of matrix C
24: for u in V do
25: inDegree[u] = getInDegree(u)
26: if inDegree[u] = 0 then
27: Stack.push(u)
28: end if
29: end for
30: C[r] = P[r]
31: while Not Stack.Empty() do
32: u = Stack.pop()
33: temp = C[u] / P[u]
34: for v in getChildOfNodeList(u) do
35: C[v] = C[v] + temp * D[v,u]
36: D[u,v] = D[v,u] * temp
37: inDegree[v] = inDegree[v] - 1
38: if inDegree[u] = 0 then
39: Stack.push(u)
40: end if
41: end for
42: end while

An EDAG has a matrix D that contains the weights
of edges. If (u,v) is an edge, D [u,v ] is the number of
execution paths containing the edge (u,v), called the
weight of the edge (u,v), and D [v,u] is the number of
backward paths from leaves to the root containing the
edge (u,v). Algorithm 3 for constructing an EDAG of
an executable program has two phases: the backward
phase computes the number of backward execution
paths from leaves back the root and the toward phase

The Computer Journal, Vol. ??, No. ??, ????



6 t.n. phu et al.

computes weight of edges. In Algorithm 3, the
function getOutDegree(u) counts the number of edges
incoming to vertex u of the ACFG GA. The function
getParentOfNodeList(u) returns all vertices which are
parent vertices of vertex u. The function getInDegree(u)
counts the number of edges outcoming to the vertex
u. And the function getChildOfNodeList(u) returns all
vertices which are child vertices of vertex u.

The EDAG in Figure 3 is the result of constructing
EDAG from the ACFG in Figure 2. For the above
directed acyclic graph DAG G in Figure 2, D and C
are determined as follows:
{C [0] = 3, C [1] = 2, C [2] = 1, C [3] = 1, C [4] = 2,

C [5] = 3}
{D [0,1] = 2; D [0,2] =1; D [1,3] = 1; D [1,4] = 1; D [3,4]

= 1; D [4,5] = 2; D [2,5] =1 }

3.5. Algorithm for extracting control flow-
based features from an EDAG

FIGURE 4. ACFG with opcode

A control flow-based feature vector is extracted from
an EDAG with the n-gram method by Algorithm 4.
Each n-gram is composed of n sequential opcodes.
Control flow-based feature vectors can be extracted
with different lengths of opcode n-grams, and the
common length of n-gram is 2, 3, and 4 [16]. A length-
fixed sliding window moves from the beginning to the
end of an opcode stream to extract its n-grams. When
extracting n-grams from the EDAG, the frequency of n-
grams is determined by the weights of the edges and the
vertices. Figure 5 shows an example of 3-gram features
from vertices 4, 5 of the EDAG in Figure 3 and the
ACFG with the opcode in Figure 4, the length of the
sliding window in this example is three.

In Algorithm 4, function getNgramConnect(u,v)
computes an n-gram opcode frequency vector of the
opcode sequence that includes (n-1) opcodes at the end

FIGURE 5. 3-gram opcode sequence from EDAG

of the vertex u and (n-1) opcodes at the beginning
of the vertex v, where n is the length of n-gram.
Function getNgramOfVertex (u) calculates an n-gram
opcode frequency vector of the opcode sequence of the
vertex u.

Algorithm 4 Extracting control flow-based features
with n-gram from EDAG

Input: EDAG GC = (V, A, r, L, C, D)
n: the length of n-gram

Output: A control flow-based features with n-
gram vector

1: feature = 0
2: for u in V do
3: sumU = 0
4: for v in getChildNodesOf(u) do
5: sumU = sumU + D[u,v]
6: feature = feature + D[u,v] *getNgramCon-

nect(u,v)
7: end for
8: feature = feature + getNgramOfVertex(u) *

sumU
9: end for

3.6. Complexity analysis

The input of CFD is a graph G = (V, E, r, L) obtained
from a decompiled executable program, where N is the
number of basic blocks in the program or the number
of vertices in V ; M is the number of edges in E. The
complexity of the constructing ACFG (Algorithm 2) is
O(M ), because each edge in E is traversed only once
and this algorithm stops when it traverses all edges.

The complexity of the constructing EDAG (Algo-
rithm 3) is O(N2). At the backward phase, there are
two main loops at the 11th line and the 13th line. Each
loop has the maximum complexity of O(N ). Therefore,
the complexity of this step is O(N2). Similarly to the
forward phase, the two main loops are in the 31th and
34th lines, and the complexity of this step is also O(N2).

Extracting control flow-based features from Algo-

The Computer Journal, Vol. ??, No. ??, ????



an efficient algorithm to extract control flow-based features for iot malware detection 7

rithm 3 with n-gram is also O(N2), because it is de-
termined by the number of for loops at line 2 and line
4 in Algorithm 4.

In summary, the complexity of CFD algorithm is
O(M) + O(N2) + O(N2). M is less than N2 in a
directed graph, so its complexity is O(N2).

4. EXPERIMENTAL SETTINGS AND RE-
SULT ANALYSIS

4.1. Measures

There are many methods to evaluate a machine learning
model. Our paper focuses on improving Ding et al.’s
algorithm, thus the experiments use the same measures.
In addition, we also use an integrated measure F1-Score,
based on Precision and Recall as the basic measure of
the detection model.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

where:
- TP: The number of malware samples truly predicted

to be malicious applications.
- FP: The number of benign samples truly predicted

to be malicious applications.
- FN: The number of malware samples truly predicted

to be non-malicious applications.
- TN: The number of benign samples truly predicted

to be non-malicious applications.
In order to assess the relationship between Precision

and Recall, F1-score, which is defined as follows, is
commonly employed:

F1 = 2× Precision×Recall

Precision + Recall
(3)

According to the traditional assessment, Accuracy
(AC), False Positive Rate (FPR) and False Negative
Rate (FNR) are used:

AC =
TP + TN

TP + TN + FP + FN
(4)

FPR =
FP

TN + FP
(5)

FNR =
FN

TP + FN
(6)

4.2. Experiment Setup

Our experiments were run on a 64-bits Ubuntu
16.04.3 system, with 2x12-core CPUs, Intel Xeon
E5-1600 family, and 64GB RAM. We extracted the
CFGs of decompiled executable files by using Angr’s
CFGEmulated method. A Suport Vector Machine

(SVM) machine learning model [28] was installed on
the Scikit-learn Python library 0.19.2.

Comparing to the other machine learning models,
SVM is highly efficient in binary classification and SVM
is also used by Ding et al.. We employed SVM with
Sigmoid kernel function in our experiments. Ding et al.
suggested to fix C=100 and gamma=0.05 for Sigmoid
kernel function. With these parameters, the proposed
CFD algorithm is shown better than Ding et al.’s
method in our experiments. But expecting more fairly,
all parameters in the experiments are determined by the
grid search method to choose the optimal values: C is
selected in the range [1-100,000], the gamma is selected
in the range [0.0000001-100]. In the experiments, we use
the 5-folk cross-validation method [29] with the selected
parameter set in training and evaluating steps. Data are
divided into five different sections, four of them are used
as training data and the remaining is used as testing
data for each experiment. AC, FPR, FNR, and F1 are
calculated as the average of results from five times of
running experiments.

4.3. Dataset and test scripts

MIPS architecture is one of the most popular
architectures in embedded systems, while Intel 80386
architecture is prevalent in PC, sometimes in embedded
systems [17]. Embedded Linux is known to be the most
widely used operating system of IoT devices [18, 30].
Samples of Intel 80386 and MIPS architectures are
representative for two popular platforms: PCs and
IoT devices; therefore, we focused on Executable and
Linkable Format (ELF) files of Linux operating system.

The malicious MIPS samples were collected from
IoTPoT [5], Detux [19], and Virus Share 8.The benign
MIPS samples were extracted from more than 23,000
firmwares [31] such as Asus, Belkin, Tenvis, D-Link,
TP Link, LinkSys, Trendnet, CenturyLink, Zyxel,
OpenWrt, etc. The Intel 80386 benign samples were
collected from a new Ubuntu Operating System setup
on a PC with several common applications installed.
The malicious Intel 80386 samples were collected from
Virus Share and IoTPoT. After collecting, we filtered
to keep only the executable ELF files and double-
checked in Virus Total9 to ensure the right labels. The
dataset consists of 5,476 MIPS (1,896 benign and 3,580
malicious) samples and 6,560 Intel 80386 (1,428 benign
and 5,132 malicious) ones. About 6.9% of samples are
found being packed by Detect it Easy tool10, in which
most of them use UPX pack. The number of packed
samples is presented in the Packed row of Table 1.

After unpacking, we extract CFGs from the samples,
there are about 20% samples getting ’No Path Found’
error. The number of packed samples is presented in the
CFG column of Table 1. Most of the extracted CFGs

8https://virusshare.com/
9http://virustotal.com

10https://github.com/horsicq/Detect-It-Easy

The Computer Journal, Vol. ??, No. ??, ????



8 t.n. phu et al.

TABLE 1. Statistical analysis of the dataset
Number MIPS Intel 80386
of sample Mal Benign Mal Benign

Total 3,580 1,896 5,132 1,428

Packed 250 1,363

CFG 2,780 1,720 4,056 1,367

T1 (Max: 40s) 1,996 1,128 3,308 1,017

T2 (CFD) 2,725 1,714 4,028 1,360

TABLE 2. Comparison between MIPS and Intel 80386
decompiled executable samples in term of the number of
vertices in their CFGs

MIPS Intel

Average of opcode per a block 6.6 5.5

Average of edges 14,107 9,442

Average of vertices 8,310 5,578

Less than 5,000 vertices (%) 17.7 53.9

Less than 11,000 vertices (%) 73.7 86.2

More than 11,000 vertices (%) 26.3 13.8

have the number of vertices from 300 to 14,000.
With the collected CFGs, our method has the average

time to calculate the control flow-based features of a
CFG with 10 seconds, while the longest amount of
time is 40 seconds. The CFD algorithm calculated
successfully control flow-based features of all CFGs.
Ding et al.’s method failed to find the final result for
all CFGs within 40 seconds, even within 60 minutes
for CFGs having more than 11,000 vertices. Thus,
the experimental case with the threshold of 40 seconds
as the slowest time to compute the number of paths.
When 40 seconds were over, Ding et al.’s algorithm
stopped looking for paths, and then gave the number
of discovered paths.

We compared the ability to detect malware of two
methods based on set T1, which is the set of samples as
results after 40 seconds by both methods. Because our
method extracted features successfully with all of the
samples, it is also assessed the ability to detect malware
on the all set, called T2. The number of samples in T1
and T2 of each architecture is presented in the T1 (Max:
40s), T2 (CFD) rows of Table 1 respectively.

With the same reason that we mentioned in our
previous research [32], our experiment was carried
out to reduce the dimension by Chi-Square [33], with
feature numbers after decreasing respectively K = 50,
100, 150, 200, 250, 300 and 350.

4.4. Performance comparison of Ding et al.’s
method and CFD

We compare Ding et al.’s method and our method on
set T1 with both 2-gram and 3-gram. The comparison
of Ding et al.’s method and CFD method in terms of
Accuracy and False Positive Rate are shown in Figures 6
and 7. In the two figures, the dotted line shows accuracy

TABLE 3. Comparing between CFD and Ding et al.’s
method

Ding et al.’s CFD
method

Complexity of algorithm NP-hard O(N2)

RAM consuming 6.0 GB 0.4 GB

Average of found paths 104 10303

Rate of extracted features 86.2% 100%

of Ding et al.’s method, the solid line shows accuracy
of CFD method, the dotted bars show FPR of Ding et
al.’s method, the solid bars show FPR of CFD method,
the horizontal axis represents K - the feature number
after reducing by Chi-Square, and the left/right vertical
axis represent the accuracy/FPR.

Figure 6 shows the accuracy and FPR of the two
methods with 2-gram. Figure 7 shows their accuracy
and FPR with 3-gram. From Figures 6 and 7, we can
draw the following results: the accuracy of CFD method
is higher and its FPR is lower than Ding et al.’s method
at almost value of K. In Figure 6, the highest accuracy
of CFD method is 99.38% while the number for Ding et
al.’s method is 99.29%. The lowest FPR belongs to our
method. Figure 7 also demonstrates the same result as
Figure 6. In summary, experiment results show that
AC and FPR of our method are better than Ding et
al.’s method with both 2-gram and 3-gram.

FIGURE 6. Comparing Ding et al.’s method and CFD
based on 2-gram in term of accuracy and FPR

Table 3 gives comparison of CFD with Ding et
al.’s method on the complexities of algorithms, RAM
consuming, average of found paths and rate of extracted
features. The average of found paths row shows that
the CFD could get more and more the number of
paths compare with Ding et al.’s method. The average
number of paths found by Ding et al.’s method is of 104,

The Computer Journal, Vol. ??, No. ??, ????



an efficient algorithm to extract control flow-based features for iot malware detection 9

FIGURE 7. Comparing Ding et al.’s method and CFD
based on 3-gram in term of accuracy and FPR

while the average number of paths found by our method
is of 10303. It means that CFD will extract a lot of
features from CFG than the old method. There are 24%
of CFGs could not extract any paths by Ding et al.’s
method in 40 seconds. It means that it is impossible to
detect these samples by Ding et al.’s method. Average
of RAM consuming for extracting a feature vector from
a CFG of the decompiled file, CFD only used 0.4 GB,
but Ding et al.’s method consumed 6.0 GB, which is 15
times higher than ours.

4.5. Experimental evaluation of CFD algo-
rithm

We evaluate the CFD method on set T2 of MIPS and
Intel with both 2-gram and 3-gram. The comparison
of 2-gram and 3-gram based CFD method in terms of
Accuracy and False Positive Rate are shown in Figures
8 and 9. Figure 8 shows comparison on T2 of the Intel
dataset, and Figure 8 shows results on the T2 of MIPS
dataset. In Figure 8, the highest accuracy of 99.0%
belongs to 2-gram based CFD at K = 200, going with
low FPR of 2.25%. The accuracy of CFD method is
higher than the accuracy of Ding et al.’s method at
every value of K, and its FPR is lower for most of K
values. In Figure 9, there are 5 values of K that 2-
gram based CFD achieved higher accuracy and lower
FPR than the one based on 3-gram. The lowest FPR
belongs to 2-gram based CFD, but the highest accuracy
of 99.0% going with low FPR of 1.53% belongs to 3-
gram based CFD at K = 200. In summary, 2-gram
based CFD is better than 3-gram based CFD on the
Intel dataset, and still gives good results on the MIPS
dataset although not reaching the highest accuracy.

Tables 4 and 5 give performance evaluation of 2-
gram based CFD on MIPS and Intel samples of T2

FIGURE 8. Comparing CFD base on 2-gram and 3-gram
on the Intel dataset

FIGURE 9. Comparing CFD base on 2-gram and 3-gram
on the MIPS dataset

respectively. Figure 10 displays the comparison between
2-gram based CFD on MIPS and Intel samples of T2 in
term of the average of measures. Results on the MIPS
dataset are better than on the Intel dataset with higher
accuracy, higher F1 and lower FPR, except slightly
higher FNR.

5. CONCLUSIONS AND FUTURE WORK

Ding et al. proposed the control flow-based opcode
feature extraction method to extract n-gram from
an opcode stream concatenating all execution paths
on the CFGs of executable. This method achieved
higher accuracy compared with the former text-based
feature extraction method. However, one of the main
limitations of their algorithm is the use of the DFS
strategy to find all paths in the execution tree of the
program, which is an NP-hard problem. Hence, it can

The Computer Journal, Vol. ??, No. ??, ????



10 t.n. phu et al.

TABLE 4. Evaluation CFD on the MIPS dataset
FPR FNR AC F1

50 0.99 0.73 99.05 99.27

100 1.04 0.91 99.02 99.15

150 1.34 0.64 99.06 99.19

200 1.53 0.60 99.02 99.15

250 1.40 0.57 99.09 99.20

300 1.40 0.60 99.06 99.19

350 1.46 0.60 99.04 99.17

Avg 1.31 0.66 99.05 99.19

TABLE 5. Evaluation CFD on the Intel dataset
FPR FNR AC F1

50 2.38 0.72 98.74 98.97

100 3.03 0.55 98.83 99.06

150 2.79 0.65 98.82 99.04

200 2.25 0.52 99.00 99.19

250 2.24 0.56 98.91 99.10

300 2.15 0.70 98.82 99.07

350 2.77 0.58 98.80 99.02

Avg 2.52 0.61 98.85 99.06

not be applied to large and complex files, especially for
executable running on RISC architecture such as MIPS,
which is used popular in IoT devices, that its CFG
trends to more complex than CFG of CISC architecture
such as Intel. To overcome this, we proposed CFD
algorithm based on the idea of dynamic programming.
The proposed algorithm can extract control flow-based
features within O(N2) time, where N is the number of
basic blocks of decompiled executable codes.

Our experimental results demonstrated that the
CFD algorithm successfully extracted control flow-
based features of all the samples, while Ding et al.’s
method was able to work with less than 75% of them
and gives less information in the same time limit. The
CFD has a higher speed, a less consuming memory
and can find more paths than the old one many times.
Therefore, it has a better ability to extract information
from CFGs and capable of good grade more between
malware and benign codes. In addition, it is also
clarified that our proposed CFD algorithm can detect
IoT malware better than PCs malware. We provided
the IoT dataset used in our experiments to researchers
for academic purposes.

Our future work will focus on (1) improving
the efficiency of extracting CFGs from decompiled
executable codes; and (2) eliminating cycles in graphs
more efficiently.

REFERENCES

[1] Roger Hallman, Josiah Bryan, Geancarlo Palavicini,
Joseph Divita, and Jose Romero-Mariona. (2017)
IoDDoS - The Internet of Distributed Denial of Sevice
Attacks. Proceedings of 2nd International Conference
on Internet of Things, Big Data and Security, Porto,

FIGURE 10. Comparing CFD on Intel and MIPS dataset

Portugal, 24-26 April, pp. 47-58, SCITEPRESS.

[2] Ralf Huuck. (2015) IoT: The internet of threats and
static program analysis defense. Proceedings of Embed-
ded World, Exibition & Conferences, Nuernberg, Ger-
many, 15-17 Feb, pp. 493-495.

[3] Alhanahnah, Mohannad, Qicheng Lin, Qiben Yan,
Ninh Zhang, and Zhenxiang Chen. (2018) Efficient Sig-
nature Generation for Classifying Cross-Architecture
IoT Malware. Proceedings of Conference on Commu-
nications and Network Security (CNS), Beijing, China,
30 May-1 June, pp. 1-9, IEEE .

[4] Adrienne Porter Felt, Matthew Finifter, Erika Chin,
Steve Hanna, and David Wagner. (2011) A Survey
of Mobile Malware in the Wild. Proceedings of the
1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, Chicago Illinois
USA, October, pp. 3-14, ACM, New York, USA.

[5] Pa Yin Minn Pa, Shogo Suzuki, Katsunari Yoshioka,
Tsutomu Matsumoto, Takahiro Kasama, and Christian
Rossow. (2016) IoTPOT: A Novel Honeypot for
Revealing Current IoT Threats. Journal of Information
Processing, 24, 522-533.

[6] Ensieh Modiri Dovom, Amin Azmoodeh, Ali Dehghan-
tanha, David Ellis Newton, Reza M. Parizi, and Hadis
Karimipour. (2019) Fuzzy Pattern Tree for Edge Mal-
ware Detection and Categorization in IoT. Journal of
Systems Architecture, 97, 1-7.

[7] Mohsen Damshenas, Ali Dehghantanha Ali, and
Ramlan Mahmod. (2013) A Survey on Malware
Propagation, Analysis, and Detection. International
Journal of Cyber-Security and Digital Forensics, 2, 10-
29.

[8] Drew Davidson, Benjamin Moench, Somesh Jha, and
Thomas Ristenpart. (2013) FIE on Firmware: Finding
Vulnerabilities in Embedded Systems Using Symbolic
Execution. Proceedings of the 22nd USENIX conference
on Security, August, pp. 463-478, USENIX Association
2560 Ninth St. Suite 215 Berkeley, CA, United States.

[9] Huy Trung Nguyen, Quoc Dung Ngo, and Van Hoang
Le. (2018) IoT Botnet Detection Approach Based on
PSI Graph and DGCNN Classifier. Proceedings of In-

The Computer Journal, Vol. ??, No. ??, ????



an efficient algorithm to extract control flow-based features for iot malware detection 11

ternational Conference on Information Communication
and Signal Processing (ICICSP), Singapore, 28-30 Sept,
pp. 118-122, IEEE.

[10] Yan Shoshitaishvili et al. (2016) State of The Art
of War: Offensive Techniques in Binary Analysis.
Symposium on Security and Privacy (SP), San Jose,
CA, USA, 22-26 May, pp. 138-157, IEEE.

[11] Christopher Kruegel and Yan Shoshitaishvili. (2015)
Using static binary analysis to find vulnerabilities and
backdoors in firmware. Black Hat USA, New York, NY,
USA, 5-6 August.

[12] Daniel Bilar. (2007) Opcodes as Predictor for Malware.
International Journal of Electronic Security and Digital
Forensics, 1, 156-168.

[13] Robert Moskovitch, Clint Feher, Nir Tzachar, Eugene
Berger, Marina Gitelman, Shlomi Dolev, and Yuval
Elovici. (2008) Unknown Malcode Detection Using OP-
CODE Representation. Proceedings of First European
Conference on Intelligence and Security Informatics,
Esbjerg, Denmark, 3-5 Dec, pp. 204-215, Springer,
Berlin, Heidelberg.

[14] Igor Santos, Felix Brezo, Javier Nieves, Yoseba K.
Penya, Borja Sanz, Carlos Laorden, and Pablo Garcia
Bringas. (2010) Idea: Opcode-Sequence-Based Malware
Detection. In Engineering Secure Software and Systems,
Second International Symposium, Pisa, Italy, 3-4 Feb,
pp. 35-43, Springer, Berlin, Heidelberg.

[15] Yuxin Ding, Wei Dai, Shengli Yan, and Yumei Zhang.
(2014) Control Flow-Based Opcode Behavior Analysis
for Malware Detection. Computers & Security, 44, 65-
74.

[16] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and
Pablo Garcia Bringas. (2013) Opcode Sequences as
Representation of Executables for Data-Mining-Based
Unknown Malware Detection. Information Sciences,
231, 64-82.

[17] Daming Dominic Chen, Manuel Egele, Maverick Woo,
and David Brumley. (2015) Towards Automated Dy-
namic Analysis for Linux-based Embedded Firmware.
The Network and Distributed System Security Sym-
posium, California, USA, 21-24 Feb, pp. 1-16, EURE-
COM.

[18] Andrei Costin, Jonas Zaddach, Aurelien Francillon, and
Davide Balzarotti. (2014)A large-scale analysis of the
security of embedded firmwares. In Proceedings of the
23rd USENIX Security Symposium, San Diego, USA,
20-22 August, pp. 95-110, USENIX.

[19] Detux [Online].
Code Available at https://github.com/detuxsandbox/detux
(accessed 23 Feb 2019).
Instance of Detux and collected samples at
http://detux.org (accessed 23 May 2018).

[20] Amin Azmoodeh, Ali Dehghantanha, and Kim-Kwang
Raymond Choo. (2018) Robust Malware Detection
for Internet of (Battlefield) Things Devices Using
Deep Eigenspace Learning. IEEE Transactions on
Sustainable Computing, 4, 88-95.

[21] Jiankai Sun, Deepak Ajwani, Patrick K. Nicholson,
Alessandra Sala, and Srinivasan Parthasarathy. (2017)
Breaking Cycles In Noisy Hierarchies. Proceedings of
The 9th International ACM Web Science Conference,
New York, USA, 25-28 June, pp. 151-160, ACM.

[22] Pham Canh Van, Thai Tra My, Duong Van Hieu, Bui
Quy Bao, and Hoang Xuan Huan. (2018) Maximizing
Misinformation Restriction within Time and Budget
Constraints. Journal of Combinatorial Optimization,
35, 1202-1240.

[23] Marco Fossati, Dimitris Kontokostas, and Jens
Lehmann. (2015) Unsupervised Learning of an Exten-
sive and Usable Taxonomy for DBpedia. Proceedings
of the 11th International Conference on Semantic Sys-
tems (SEMANTICS’ 15), Vienna Austria, 16-17 Sep,
pp. 177-184, ACM.

[24] Osma Suominen and Christian Mader. (2014) Assessing
and Improving the ability of SKOS Vocabularies.
Journal on Data Semantics, 3, 47-73.

[25] Karp Richard Manning (1972) Reducibility among
Combinatorial Problems. In: Miller R.E., Thatcher
J.W., Bohlinger J.D. (eds) Complexity of Computer
Computations. The IBM Research Symposia Series,
Springer, Boston, MA.

[26] Bodenreider Olivier Mougin Fleur. (2005) Approaches
to Eliminating Cycles in the UMLS Metathesaurus:
Nave vs. Formal. American Medical Informatics Asso-
ciation Annual Symposium Proceedings, Washington,
DC, USA, 22-26 Oct, pp. 550-554, American Medical
Informatics Association (AMIA).

[27] Bodenreider Olivier. (2001) Circular Hierarchical
Relationships in the UMLS: Etiology, Diagnosis,
Treatment, Complications and Prevention. Proceedings
of the American Medical Informatics Association
Symposium, Washington, DC, USA, 3-7 Nov, pp. 57-
61, AMIA.

[28] Shunichi Amari and Si Wu. (1999) Improving support
vector machine classifiers by modifying kernel func-
tions. Neural Network, 12, 783-789.

[29] Ron Kohavi. (1995) A study of cross-validation and
bootstrap for accuracy estimation and model selection.
Proceedings of the 14th international joint conference
on Artificial intelligence, Montreal, Quebec, Canada,
August, pp. 1137-1143, ACM.

[30] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka,
Tsutomu Matsumoto, Takahiro Kasama, and Christian
Rossow. (2015) IoTPOT: Analysing the Rise of IoT
Compromises. In Proceedings of the 9th USENIX
Conference on Offensive Technologies, Washington,
USA, 12-14 August, pp. 9-19, USENIX.

[31] Tran Nghi Phu, Nguyen Ngoc Binh, Ngo Quoc Dung,
and Le Van Hoang. (2017) Towards Malware Detection
in Routers with C500-Toolkit. 5th International Confer-
ence on Information and Communication Technology
(ICoIC7), Malacca City, Malaysia, 17-19 May, pp. 1-5,
IEEE.

[32] Tran Nghi Phu, Kien Hoang Dang, Dung Ngo
Quoc, Nguyen Tho Dai, and Nguyen Ngoc Binh.
(2019). A Novel Framework to Classify Malware in
MIPS Architecture-Based IoT Devices. Security and
Communication Networks, 2019, 13 pages.

[33] Hiroshi Ogura, Hiromi Amano, and Masato Kondo.
(2009) Feature Selection with a Measure of Deviations
from Poisson in Text Categorization. Expert Systems
with Applications, 36, 6826-6832.

The Computer Journal, Vol. ??, No. ??, ????


