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Abstract—TCP-targeted low-rate distributed denial-of-service
(LDDoS) attacks were first introduced by A. Kuzmanovic and
E. Knightly in 2003. The authors also proposed a simple model
to quantify TCP throughput under LDDoS attacks. Since then,
there have been many researchers attemping to estimate the
throughput, such as Luo et al. We agree with them upon the
sketch of TCP congestion window under a successful LDDoS
attack but we find out that there are more cases than what has
been specified. Moreover, the relative error of Luo’s estimation
method is still high. Our goal in this paper is to propose a simple
but more accurate method to estimate TCP throughput of a single
TCP flow under such DDoS attacks. Our estimation values in
various scenarios are compared with the results of simulations
performed with NS-2 simulator, so that the effectiveness of our
method is illustrated.

Index Terms—Low-rate DDoS attack, estimating TCP through-
put, TCP’s congestion control algorithm, DropTail.

I. INTRODUCTION

Estimation of TCP throughput under LDDoS attacks is
important because it relates directly to the evaluation of
the effectiveness of a LDDoS attack. One such estimation
appeared at the same time as the introduction of LDDoS
attacks. In the foundation paper of LDDoS attacks [1], the
authors built a scenario in which a single bottleneck queue is
shared by n long-lived TCP flows with heterogeneous round
trip time (RTT) and a single DoS flow. Suppose the round trip
times of the TCP flows are RTTi, i = 1, . . . , n and the DoS
flow is a square-wave DoS stream with period T . Then we
have the following result given in [1]:

ρ(T ) =

⌈
minRTO

T

⌉
T −minRTO⌈

minRTO
T

⌉
T

(1)

if the two following conditions are met:
(C1) l′ ≥ RTTi
(C2) minRTO > SRTTi + 4×RTTV ARi

where ρ(T ) is the normalized throughput of the aggregate TCP
flows and l′ is the outage1 length. In addition, equation (1) is
derived based on two assumption. The first one is that the TCP
flows utilize full bandwidth of the bottleneck link after the end
of each retransmission timeout. The second assumption is that
RTO = minRTO for T > minRTO although this is not
always true. So equation (1) is often used as an upper bound
in practice.

1Outage is the time period where attack burst makes all TCP packets loss.

Luo et al. [2] proposed a mathematical model to quantify
the TCP throughput, but the relative error of their estimation
method is still high (e.g., the average relative error in the cases
with a single TCP flow is 10.34%). Our goal in this paper is
to propose a simple but more accurate method to estimate
TCP throughput of a single TCP flow under LDDoS attacks.
Simulation results show, at least for some discrete cases
presented here, that our method outperforms Luo’s method
with the respect of the average relative error.

The rest of this paper is organized as follows. In Section
II, we present network and attack traffic models and various
assumptions about them and then briefly describe TCP’s
behavior under low-rate DDoS attacks. Section III presents our
theoretical estimation of TCP throughput of a single TCP flow
under low-rate DDoS attacks. Section IV presents simulation
results used to verify our theoretical estimation in Section III.
We coclude this paper in Section V.

II. MODELS AND ASSUMPTIONS

A. Network model

The network model we will consider in this study is shown
in Figure 1. In this network, there are Nc long-lived TCP
flows2 originating from TCP-1 to TCP-Nc and terminating at
Receiver. By a long-lived TCP flow, we mean a TCP flow
where the TCP sender always has data to send. We also
assume that each TCP flow has a maximum window size
that is large enough so that TCP’s congestion window size,
denoted by cwnd,3 never exceeds that value, therefore the
maximum window size is not an issue in our estimation. All
TCP flows transmit data that is encapsulated within packets
with a constant packet size of MTCP bytes. The version of
TCP is NewReno. Each time TCP receiver receives a TCP
packet with new data, it immediately sends an ACK packet
of size MACK bytes back to the sender with zero packet
processing delay. All link from the network have bandwidth
of nt bw Mbps (nt bw: network bandwidth) and one-way
propagation delay of nt dl ms (nt dl: network delay), except
the link between router R0 and router R1 that has bandwidth
of bn bw Mbps (bn bw: bottleneck bandwidth) and one-way
propagation delay of bn dl ms (bn dl: bottleneck delay).

2Although we only consider the case with Nc = 1 in this study, but we
still examine the network with Nc long-lived TCP flows for future use.

3cwnd is measured in units of packets rather than bytes for simplicity.



bn_bw Mbps

bn_dl ms

TCP-1

R0 R1

Receiver

nt_bw Mbps

nt_dl ms

TCP-Nc

UDP

nt_bw Mbps

nt_dl ms

Fig. 1: Network topology.

Because bn bw is set to be extremely smaller than nt bw, the
link between router R0 and router R1 become the congestion
point of the network. The queue of the congested link can
accomodate at most B packets. All links use DropTail queue
discipline.

B. Attack model

In our network, there is also one attack machine named
UDP (see Figure 1). The attack machine sends packets with
a constant packet size of MUDP bytes. In general, the attack
traffic pattern is as in Figure 2, where s is the starting time of
the attack, Ta is the attack cycle, Tb is the burst length and Rb

is the rate at which the attack sends packets into the network.
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Fig. 2: A low-rate DDoS flow.

The attack flow can be thought of as a representative of
a LDDoS attack in practice with a large number of attack
machines as you will see later when we conduct simulations to
validate our theoretical estimation. To be effective, the attack
flow should have burst length Tb large enough to cause a
TCP window’s worth of packets lost (Tb must be larger than
round trip time of every TCP packet but it needs to be as
small as possible to keep average attack rate small, thereby
the attack can bypass different statistical-measurement-based
DDoS attack detection mechanisms), rate Rb large enough to
keep the queue at the bottleneck link full to cause all packets
lost (Rb is usually greater than or equal to the bottleneck
link’s bandwidth), and the attack cycle Ta is at the scale
of minRTO. Without loss of generality, we assume that Rb

equals to nt bw, the bandwidth of the links connecting left-
most computers to the router R0 in Figure 1.

In our study, we only consider about LDDoS attacks with
an attack cycle Ta ≥ 1 second because performing the attack
with Ta < 1 second is an unnecessarily useless waste of attack
resources due to the existence of an attack with an attack

cycle not less than 1 second having the same attack efficiency
(according to [1] and using a simple derivation). An important
thing is that, in this study, we focus particularly on a subset
of the attack, successful low-rate DDoS attacks. By the name
describing and as defined in [2], a successful low-rate DDoS
attack must force every TCP flow fall into timeout state after
each outage. TCP flows then go to slow start phase RTO
seconds later (usually minRTO seconds) rather than going to
congestion avoidance phase.

Now let us define three parameters that is used throughout
this work. Suppose T is the two-way propagation delay of
TCP packets.4

T = (nt dl + bn dl + nt dl)× 2 (s) (2)

So that the round trip time5 of a data packet when the queue
at the bottleneck link is empty is:

T1 = T +
(MTCP + MACK)× 8

bn bw
+ 2× (MTCP + MACK)× 8

nt bw
(3)

Finally, suppose C is the bottleneck link’s bandwidth in units
of TCP packets per second. We then have:

C =
bn bw

MTCP × 8
(packets/s) (4)

C. TCP’s behavior under low-rate DDoS attacks

As mentioned above and according to TCP’s congestion
control mechanism (see [1], [3] for more details), under
successful LDDoS attacks, a TCP flow is forced to be timeout
and go to slow start phase. At that time, its congestion window
size reduces to one packet and one packet is sent. In slow start
phase, the window size will be increased by one packet each
time an ACK packet arrives at TCP sender. This is equivalent
to doubling the window size after each RTT period.

If the attack cycle Ta is large enough so that the window
size eventually increases to a value that is greater than a slow
start threshold, ssthresh, TCP then switches to congestion
avoidance phase. In this phase, the increase of the window size
is much more slowly than in the slow start phase. When an
ACK packet arrives at the sender, the window size is increased
by 1

cwnd
packets in which cwnd is the current congestion

window size (as compared to the increase of one packet in
the slow start phase). Thereby, the window size is increased
roughly by one packet per RTT. This phase is designed to
serve as a means to reduce the number of packets lost due to
the exponential increase of congestion window size in slow
start phase.

If the attack cycle Ta is further longer, TCP window size
can even reach the capacity of the path from sender to receiver

4This T symbol has a different meaning with T symbol from equation (1).
In equation (1) T is the attack cycle. In our study, the attack cycle is denoted
by Ta.

5The second term in the right hand side of equation 3 is the total
transmission time of a data packet and its corresponding ACK packet at the
bottleneck link, and the third term is the total transmission time of a data
packet and its corresponding ACK packet at the left-most and right-most
links.



(e.g., CT in our network) plus the size of the queue at the
bottleneck link (e.g., B in our network), at that time only one
packet is dropped because the increase of the window size
in congestion avoidance phase is one packet per RTT. If the
congestion window size is not less than four packets when a
packet is dropped, the packet loss is usually recovered through
the receipt of three duplicate ACK packets. By the reason, this
case is considered as a light congestion situation because only
one packet has been lost but other packets still get through the
network and reach their destination so that the ACK packets
can go back to the TCP sender. TCP then sets its ssthresh
threshold to one-half of the current cwnd and cwnd is set to
the new value of ssthresh plus three packets because there
are three data packets that have left the network and are being
in the buffer memory of the destination machine. After that,
TCP resends the seemingly lost packet and enters fast recovery
phase in which it waits for an acknowledgment of the resent
packet before returning to congestion avoidance phase. If the
resent packet has not been acknowledged, TCP enters slow
start phase with cwnd set to one packet.

RTT value of a TCP flow can be different at any instant
of time due to the oscillation of queue size at routers. In our
network, when the congestion window size of a TCP flow is
greater than CT (i.e. the number of TCP packets the pipe from
sender to receiver can accomodate, including ACK packets in
the reverse direction), the queue at the bottleneck link builds
up and the RTT increases. In other hand, when the window
size is smaller than CT , the RTT value is exactly equal to T1
because the queue is empty.

Although the window adjustment algorithm operates in
discrete manner as described above, we can approximate the
window process as a continous (or partial continuous) function
of time. This approximation can simplify our analysis so
much but still allow estimating TCP throughput under low-
rate DDoS attack with a small error.

III. A SINGLE TCP FLOW

In this section, we will estimate TCP throughput of a single
TCP flow under low-rate DDoS attacks by theoretical analysis.
We divide the problem into two sub-problems depending on
whether the attack cycle is long enough that the congestion
window size has been halved before timeout or not. We
first examine the sub-problem with the window size that has
not been halved before timeout and then the remaining sub-
problem. Each sub-problem is further divided into several
smaller cases depending on the value of CT compared to the

parameters ssthresh,
Wmax

2
(will be discussed later), and W .

A. TCP window size has not been halved before timeout

1) CT < ssthresh: Assume W is the final window size
TCP has before timeout and TCP is in the first congestion
avoidance period (i.e. the congestion window size has not
been halved since TCP enters congestion avoidance phase),

as depicted in Figure 3. This happens when (Ta − 1)
T1

is large

enough because when (Ta − 1)
T1

is small, the TCP throughput
is nearly zero.
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Fig. 3: Congestion window when CT < ssthresh.

We always have:

W ≤ B + bCT c + 2 (5)

Let Wmax = B + bCT c + 2. So the inequation means that
we always have W ≤Wmax. The reason of the inequation is
as follows. Assume that at an instant of time, the congestion
window size is the maximum possible number of packets
the pipe from sender to receiver can accommodate, that is,
B + bCT c (not including the fractional part), and an ACK
packet arrives at the sender that makes the window reach
B + bCT c + 1, TCP is in congestion avoidance phase6 and
there is no attack. Then TCP sends out two packets back to
back, one compensating for the leaving of the data packet
whose ACK packet has just arrived and one because of the
new value of the window. But the extra packet makes the
pipe overload, and when it arrives at router R0, it is dropped
because the queue is full. However, from the time the packet
was sent to the time the sender realizes that the packet has
been lost, a window’s worth of packets have been sent that
makes the window increase to about B + bCT c + 2 before
it is halved. This is a normal case with no attack, when the
attack happens the maximum value of the window size may
even be smaller. So the inequation holds in any circumstance.7

According to TCP’s congestion control mechanism,8 we also
have:

ssthresh =

⌊
W

2

⌋
(6)

The problem is that we don’t know the value of W , and thus
the value of ssthresh. We only have the known parameters
of the attack: Ta, Tb, Rb and the known parameters of the
network environment: T , C, B. We must find the value of

6TCP cannot be in slow start phase because it has learned the maximum
value before.

7The inequation does not hold when TCP is in slow start phase when it has
just started its transmission. In this case, the window size can reach to about
two times of the maximum window size Wmax. But after that and because
of a TCP packet that is dropped due to buffer overflow at the bottleneck link,
TCP learns that window size and sets its slow start threshold ssthresh to
one-half of the window size. This process (a packet drop, and then ssthresh
is set to one-half of the current window size) is repeated again and again until
ssthresh is smaller than Wmax and thereby when TCP reaches Wmax it is
definitely in congestion avoidance phase. So the inequation (5) holds as long
as we still assume that TCP is long-lived.

8Actually, we follow behavior of TCP in NS-2 simulation environment.



W from these known parameters and then estimate TCP
throughput accordingly.

In Figure 3, we choose the origin of time is the time at which
TCP’s congestion window size is one packet after a timeout.
Assume tA, tB , and tC is the time at which the window size
is CT , ssthresh, and W , respectively.

When 0 ≤ t ≤ tA, the window size is less than CT , so the
RTT of data packets is T1 because the queue at the bottleneck
link is empty. Furthermore, TCP is still in slow start phase,
so the window size is doubled every T1 seconds. Therefore,
we approximate the window process during this time period
by the following continuous function:

W (t) = 2
t
T1 , t ∈ [0, tA]

Replace t = tA into the equation and note that W (tA) = CT ,
we have:

CT = 2
tA
T1 ⇒ tA = T1 log2 CT (7)

When tA ≤ t ≤ tB , the window size is greater than CT ,
so the RTT is greater than T1 because the bottleneck link’s
queue has built up. This means that during this time period,
the bottleneck link transmits at its full rate of C TCP packets/s
and the TCP receiver returns ACK packets with the same rate
of C ACK packets/s. Using differential equation, we have:

dW

dt
=

dW

da

da

dt

in which a(t) is the number of ACK packets received by TCP
sender during the time period [0, t] and da/dt is the rate at
which TCP sender receives ACK packets. Because TCP is still
in slow start phase, we have:

dW

da
= 1

and because of TCP receiver returning ACK packets with the
rate of C packets/s, we have:

da

dt
= C

Equation above depends strictly on the fact that ACK packets
never encounter a queue on their way to the sender and any two
consecutive ACK packets arrive at the sender with a spacing
equal to the transmission time of a data packet at the bottleneck
link. If there is cross traffic in the reverse direction (e.g., traffic
in the Internet), the equation does not hold. Finally, we have:

dW

dt
=

dW

da

da

dt
= 1 · C = C ⇒ dW = C dt

Take integral of two sides of the above equation from tA to t
and note that W (tA) = CT , we have:

t∫
tA

dW =

t∫
tA

C dt ⇒ W (t) − CT = C (t − tA)

Replace t = tB into the above equation and note that
W (tB) = ssthresh, we have:

tB − tA =
ssthresh− CT

C
=
ssthresh

C
− T (8)

When tB ≤ t ≤ tC , because the window size is still greater
than CT, so the bottleneck link’s queue is not empty, but
TCP has been switched to congestion avoidance phase. In this
phase, every time an ACK packet is received at TCP sender,
the window size is increased by 1

cwnd
, so we have:

dW

dt
=

dW

da

da

dt
=

1

W
· C =

C

W
⇒ W dW = C dt

Take integral of two sides of equation (9) from tB to t and
note that W (tB) = ssthresh, we have:
t∫

tB

W dW =

t∫
tB

C dt ⇒ W 2(t)−(ssthresh)2 = 2C (t− tB)

Replace t = tC into the above equation and note that
W (tC) =W , we have:

tC − tB =
W 2 − (ssthresh)2

2C
(9)

From (7), (8), and (9) after adding left-side quantities and
right-side quatities separately, we have:

tC =
W 2 − (ssthresh)2

2C
+
ssthresh

C
+ T1 log2 CT − T

(10)
Solving this equation and note that tC = Ta − 1, we can get
the value of W if it exists, and thus the value of ssthresh.
To be valid, the value of W must satisfy the conditions CT <
ssthresh, and of course, W ≤ B + bCT c+ 2.

For estimating TCP throughput under the attack, we only
have to count the number of TCP packets sent in the period
[0, tA] because when the window size is greater than CT the
TCP throughput is C packets/s. For this purpose, we use the
concept of round. A round begins when TCP sender sends a
whole window of packets into the network in a back-to-back
manner and it finishes when an ACK packet whose data packet
is one of the packets in the window arrives at the sender, at
that time a new round begins.

Assume n is an integer satisfying that:

2n−1 < CT ≤ 2n, n = 1, 2, . . . (11)

We don’t consider the case with CT ≤ 1 because it is a
trivial case. In that case, TCP will utilize full bandwidth of
the bottleneck link after each timeout because the congestion
window size is not less than one packet at any time. So TCP
throughput under attack is very easy to compute.

Figure 4 shows the number of packets sent in each round
when the TCP flow ramps up after a timeout. Each packet is
denoted by a square. The number of packets sent is illustrated
directly by its value or indirectly by the number of the squares.
TCP starts from a window of only one packet, and in the next
rounds the window size is two, and then four packets and



so on until it reaches 2n−1 packets. Note that in this case,
every round has the same length of T1 seconds because the
congestion window size is always less than CT .

time0

2
n-1

min(ssthresh, 2 )
n

1T1 2T1 (n-1)T1 nT1

Fig. 4: Timeline of a TCP flow under a low-rate DDoS attack
provided that CT < ssthresh.

In the round at time nT1, TCP sends a window of ssthresh
or 2n packets depending on which value it reaches first.
Regardless of the value the window size will take, they are
both greater than or equal to CT . This observation is based
directly on TCP’s congestion control algorithm. Imagine that if
2n ≤ ssthresh, then min(ssthresh, 2n) = 2n, the window
size at time nT1 is exactly 2n because TCP is still in slow
start phase. If ssthresh < 2n, and thus min(ssthresh, 2n) =
ssthresh, the window size at time nT1 is ssthresh by the
following reason. Consider the moment at which the window
size has just reached the value ssthresh due to the arrival
of an ACK packet, named p1. It must happen at time nT1
because 2n−1 < CT < ssthresh < 2n. It means that p1
belong to the burst of ACK packets corresponding to a whole
window of data packets TCP sent at time (n − 1)T1. When
congestion window size reaches ssthresh, TCP automatically
switches to congestion avoidance phase. The next ACK packet
received makes the window size increase to the value:

ssthresh+
1

ssthresh

and the next ACK packet received makes the window size
increase to:(

ssthresh+
1

ssthresh

)
+

1

ssthresh+ 1
ssthresh

and so on. In the increment regime of congestion avoidance
phase, the window size is increased roughly by one packet
every RTT after the sender receives the burst of ACK packets.9

But in this case, at least one ACK packet, that is, p1, is used
to increase the window size from 2n−1 packets of the previous
round to ssthresh packets, so that there is not enough ACK
packet to increase the window size to the value of ssthresh+
1. The number of data packets actually sent in this round is
the floor of the window size and will be ssthresh.

From above analysis, we only consider about the time period
[0, nT1] because after the time nT1, the window size is greater
than CT so that the TCP throughput is C packets/s. The
number of TCP packets sent in the period [0, nT1] is:

1 + 2 + 4 + · · · + 2n−1

The TCP throughput under LDDoS attack is calculated by:

1 + 2 + 4 + · · · + 2n−1 + (tC − nT1)C − bW c
Ta

(12)

9The value of the increase is exactly less than one packet as described in
[4].

because a successful LDDoS attack must force the TCP flow
lose a whole window of data packets.

2) ssthresh < CT < W: This case is depicted in Figure
5.

wind. size
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Fig. 5: Congestion window when ssthresh < CT < W.

Assume m is an integer satisfying that:

2m−1 < ssthresh ≤ 2m, m = 1, 2, . . . (13)

We can assume as such because the slow start threshold,
ssthresh, is not permitted to be less than two packets as
specified in [5]. Apply the concept of round again and consider
Figure 6.

time0

2
m-1

ssthresh

1T1 2T1 (m-1)T1 mT1

tA

Fig. 6: Timeline of a TCP flow under a low-rate DDoS attack
provided that ssthresh < CT < W.

From the figure, we can easily see that:

tA = mT1 = T1 dlog2 ssthreshe (14)

Note that at the time t = tA = mT1, the window size is
ssthresh rather than 2m as expected because of the TCP’s
congestion control algorithm. The analysis is similar as the
previous case.

When tA ≤ t ≤ tB , because TCP has been switched to
congestion avoidance phase and the rate of the ACK packets
returning to the source equals to the sending rate, so we have:

dW

dt
=

dW

da

da

dt
=

1

W

W

T1
=

1

T1
⇒ dW =

1

T1
dt

Take integral of two sides of the above equation from tA to t
and note that W (tA) = ssthresh, we have:

t∫
tA

dW =

t∫
tA

1

T1
dt ⇒ W (t)− ssthresh =

1

T1
(t − tA)

Replace t = tB into the equation and note that W (tB) = CT ,
we have:

tB − tA = T1 (CT − ssthresh) (15)

When tB ≤ t ≤ tC , TCP is still in the congestion avoidance
phase as well as the window size is greater than CT , so we
have:

dW

dt
=

dW

da

da

dt
=

1

W
· C ⇒ W dW = C dt



t∫
tB

W dW =

t∫
tB

C dt ⇒ W 2(t)− (CT )2 = 2C (t − tB)

Replace t = tC into the above equation and note that
W (tC) =W , we have:

tC − tB =
W 2 − (CT )2

2C
(16)

From (14), (15), and (16), we have:

tC = T1 dlog2 ssthreshe + T1 (CT − ssthresh)+

+
W 2 − (CT )2

2C
(17)

After solving this equation, if there exists a value of W
satisfying, we must validate it using the condition ssthresh <
CT < W . If the condition is satisfied, we then go to step two
of estimating TCP throughput. The number of TCP packets
sent in the period [0, tA] is:

nA = 1 + 2 + 4 + · · · + 2m−1

Assume R(t) is the instantaneous TCP throughput of the TCP
flow at time t. The number of packets sent in the period
[tA, tB ] is related to R(t) as follows:

nB =

tB∫
tA

R(t) dt =

tB∫
tA

W (t)

T1
dt =

(CT )2 − (ssthresh)2

2

The number of TCP packets sent in the period [tB , tC ] is:

nC = (tC − tB)C =
W 2 − (CT )2

2
because in this period, the window size is greater than CT , so
the bottleneck link transmits at a full rate of C TCP packets/s.
The total number of TCP packets that can get through the
bottleneck link in the period [0, tC ] is:∑

= 1 + 2 + 4 + · · · + 2m−1 − bW c +

+
W 2 − (ssthresh)2

2
(18)

and the TCP throughput under attack is calculated by
∑/

Ta.
3) W < CT: This case is depicted in Figure 7.
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Fig. 7: Congestion window when W < CT.

In this case, we have:

tB = T1 dlog2 ssthreshe+ T1 (W − ssthresh) (19)

and the TCP throughput under attack is completely similar to
the previous case.

B. TCP window size has been halved one or more times before
timeout

Three previous cases happen when TCP congestion window
has not been halved before timeout or in other words, TCP is
only in the first congestion avoidance period. If the window
has been halved one or more times until timeout, we have
four following cases. We will explore the case with CT <
ssthresh first.

1) CT < ssthresh: This case is depicted in Figure 8.

wind. size

W

ssthresh

CT

time0 tAtB

1s

Wmax

tC tD

1s

Wmax
1

2

tE

Fig. 8: Congestion window when it has been halved once
before timeout and CT < ssthresh.

In Figure 8, we only show the case with just one halving of
the window before timeout. When TCP detects a packet loss
through the receipt of three duplicate ACK packets at time tC ,

the window size is halved from Wmax down to
Wmax

2
, the

lost packet is resent and TCP switches to fast recovery phase.
In this phase, TCP sender maintains and does not increase the
window size until time tD when it receives the ACK packet
which informs about the receipt of the lost packet. From that
time, TCP re-enters the congestion avoidance phase and the
window size continues to increase until it reaches W . Talking
again about the resending of the lost packet, when the packet
arrives at the bottleneck link, it encounters a queue with (B−
1) packets before it. This is because just before the time the
packet is resent, TCP still transmits packets with a window
size that makes the queue full. So that the RTT of the packet
is T1 plus (B − 1) times of the transmission time of a data
packet at the bottleneck link. Denote Tpause is the time needed
by TCP to recover one single lost packet in such a way. So
we have:

Tpause = T1 + (B − 1)
MTCP × 8

bn bw
(s) (20)

In this case, we have:

tE =
W 2 − (ssthresh)2

2C
+
ssthresh

C
+

+ T1 log2 CT − T + N × α1 (21)

in which tE = Ta − 1 and N is the number of times the
congestion window has been halved before timeout and

α1 =
3W 2

max

8C
+ Tpause (22)



We must solve equation (21) with N from 1 to
⌊
tE
α1

⌋
to find

W . If existed, the value of W must satisfy the conditions
CT < ssthresh and W ≤ B + bCT c+ 2.

The TCP throughput is calculated the same as in equation
(12), except that in this case tC is replaced by tE because

we always have CT < ssthresh ≤
Wmax

2
. If congestion

window has been halved N times before timeout, we only
have to replace tC by Ta − 1 because after time tC TCP
repeats itself in congestion avoidance phase and the window
size shows the sawtooths pattern as described in [6], thereby
the window size is always greater than CT and the bottleneck
link always transmits at its full rate.

2) ssthresh < CT <
Wmax

2
: This case is depicted in

Figure 9.
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time0 tAtB
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tC tD

1s
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Wmax
1

2

tE

Fig. 9: Congestion window when it has been halved once

before timeout and ssthresh < CT <
Wmax

2
.

In this case, we have:

tE = T1 dlog2 ssthreshe + T1 (CT − ssthresh)+

+
W 2 − (CT )2

2C
+ N × α1 (23)

in which α1 is the same as in equation (22). We must solve

equation (23) with N from 1 to
⌊
tE
α1

⌋
.

The total number of TCP packets that can get through the
bottleneck link in the attack period is:∑

= 1 + 2 + 4 + · · · + 2m−1 − bW c +

+
W 2 − (ssthresh)2

2
+ N × 3

8
W 2

max (24)

in which m is an integer satisfying the condition 2m−1 <
ssthresh ≤ 2m, m = 1, 2, . . . The TCP throughput under
attack is calculated accordingly by

∑/
Ta.

3)
Wmax

2
< CT < W: This case is depicted in Figure 10.

In this case, we have:

tF = T1 dlog2 ssthreshe + T1 (CT − ssthresh)+

+
W 2 − (CT )2

2C
+ N × α2 (25)
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Fig. 10: Congestion window when it has been halved once

before timeout and
Wmax

2
< CT < W.

in which tF = Ta − 1 and

α2 =
W 2

max − (CT )2

2C
+ T1 (CT −

1

2
Wmax) + Tpause

(26)

We must solve equation (25) with N from 1 to
⌊
tF
α2

⌋
. The

TCP thoughput is calculated the same as the previous case.
4) CT > W: This case is depicted in Figure 11.
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Fig. 11: Congestion window when it has been halved once
before timeout and W < CT.

In this case, we must have:

tE = T1 dlog2 ssthreshe + T1 (W − ssthresh) + N × α2

(27)

in which tE = Ta − 1 and α2 is still computed by (26).

We must solve equation (27) with N from 1 to
⌊
tE
α2

⌋
. The

TCP throughput under attack is calculated the same as the two
previous cases.

IV. SIMULATION RESULTS

In this section, we will verify our theoretical estimation
through conducting NS-2 simulations with platform taken
from the address of [7]. We perform 4 attack scenarios with
network topology in Figure 1 in which Nc = 1. This means
that in all simulations, there is only one long-lived TCP



flow. The TCP flow originates from TCP-1 and terminates
at Receiver and has a maximum window size of 400 packets
such that its congestion window size does not ever exceed this
upper bound throughout this experiment. The flow transmits
packets of constant size of MTCP = 1040 bytes (already
including 40 bytes of header). The returning ACK packets are
40 bytes each. The parameters we will vary in this experiment
is the network delay nt dl and the attack cycle Ta. Low-
rate DDoS attacks are created with 20 attackers (not shown
in Figure 1 but can be found in our previous papers [3], [8]).
We divided the attack sources into 20 groups, each group has
only one source. Each attack group transmits attack packets of
MUDP = 50 bytes with the burst length Tb = 200 ms. If there
are more than one attack flows in each attack group, the attack
flows are synchronized to start and stop trasmitting packets at
the same time in every burst. The aggregate burst rate of the
attack is Rb and is the total burst rate of all attack flows in
each attack group (note that in this experiment, there is only
one attack flow in each attack group). The attack cycle Ta is
the gap between the starting times of two consecutive attack
groups. Attack scenario 1 has the network delay nt dl = 22
ms, attack scenario 2 has nt dl = 2 ms, and attack scenario
3 has nt dl = 7 ms. All three attack scenarios has the same
attack cycle Ta = 2 s. Attack scenario 4 has the network
delay nt dl = 2 ms but with the attack cycle Ta = 5 s. In our
experiment, we set nt bw = 100 Mbps, bn bw = 5 Mbps,
bn dl = 6 ms, the queue size at the bottleneck link B = 50
packets. All simulations start at time 0 and end at time 240
in which the TCP flow starts at time 20 and stops at time 240
while LDDoS attacks start at time 120 and stop at time 220 (in
units of seconds). With each attack scenario, we record TCP
throughput in the time period from time 160 to time 180. This
time period is fully within the attack period (from time 120 to
time 220) because we aim at considering TCP throughput in
steady state rather than average TCP throughput over the attack
period, so we have omitted the transient fluctuation of TCP
throughput in the beginning of the attacks. We then compare
the simulation results to our theoretical estimation in each
attack scenario and as in [2], we also use relative error as
a means to quantify the accuracy of our method. The relative
error is calculated by:

Relative Error =
|Theoretical Result − Experimental Result |

Experimental Result

The comparison results of TCP throughput in each scenario
are shown in Figure 12. From the figure, we can see that the
relative errors are smaller than 10% for all attack scenarios (the
average relative error of the 4 attack scenarios is 3.7%, much
smaller than 10.34% of Luo’s method). Specially, the relative
error is very small when the two-way propagation delay T is
quite small compared to Ta−1, or if the attack cyle Ta is large.
This confirms that our estimation method is more accurate than
Luo’s method in some specific cases. Aside from, it is simpler
as well because to find the value of W , we only have to solve
one equation with one variable instead of solving a system of
two equations with two variables as in [2]. Although we have
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Fig. 12: Comparison results with one TCP flow.

just investigated only a few scenarios above, we believe that
the accuracy of our estimation method still remains high when
more experiments are conducted in the future.

V. CONCLUSION

In this paper, we have proposed a method for estimation of
TCP throughput of a single TCP flow under low-rate DDoS
attacks. Our estimation is quite simple but it can estimate TCP
throughput with high accuracy. We have conducted somes
NS-2 simulations with a specific network topology and the
simulation results show that the relative error of our method
is small under a wide diversity of round trip time of the TCP
flow as well as under a change of the attack cycle Ta. We plan
to conduct more experiments with this case and then explore
the cases with homogeneous and heterogeneous TCP flows in
the future.
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