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Abstract—An early fire detection in indoor environ-
ment is essential for people’s safety. During the past
few years, many approaches using image processing
and computer vision techniques were proposed. How-
ever, it is still a challenging task for application of
video smoke detection in indoor environment, because
the limitations of data for training and lack of efficient
algorithms. The purpose of this paper is to present
a new smoke detection method by using surveillance
cameras. The proposed method is composed of two
stages. In the first stage, motion regions between
consecutive frames are located by using optical flow. In
the second stage, a deep convolutional neural network
is used to detect smoke in motion regions. To overcome
the problem of lacking data, simulated smoke images
are used to enrich the dataset. The proposed method
is tested on our data set and real video sequences.
Experiments show that the new method is successfully
applied to various indoor smoke videos and significant
for improving the accuracy of fire smoke detection.
Source code and the dataset have been made available
online.

Index Terms—Deep convolutional neural networks,
Smoke detection, Simulated smoke image

I. INTRODUCTION

Smoke detection is necessary and important for
public safety. Among different approaches, the use
of visible-range video captured by surveillance cam-
eras are particularly convenient for smoke detection,
as they can be deployed and operated in a cost-
effective manner. As smoke spreads faster and in
most cases will occur much faster than flame in the
field of view of the cameras [1], smoke detection
provides earlier fire alarms than flame detection.
Image smoke recognition is a fundamental problem
for visual smoke detection since a video is composed
of sequential images.

According to object detection, visual smoke de-
tection can be roughly categorized into traditional
and deep learning-based methods. The traditional
methods mainly focus on features extraction for
smoke recognition. The typical features used for

detection are hand-crafted features, including color,
texture, motion orientation, etc. The traditional
methods detect smoke in an image by judging
whether the number of features extracted as smoke
surpasses a threshold. Chen [2] proposed a method
using wavelet transformation to distinguish smoke.
Yu [3] used optical flow computation to calculate the
motion feature of smoke. Those proposals tend to be
less effective in different images dataset because of
the poor robustness of the algorithm. In recent years,
deep learning has garnered tremendous success in
a variety of application domains. Experimental re-
sults show state-of-the-art performance using deep
learning on computer vision tasks, including image
classification and object detection. Deep learning
methods, especially Convolutional neural networks
(CNNSs) can learn complex characteristics from large
amounts of images dataset and avoid hand-crafted
design features in contrast to traditional methods.
Recently, many approaches use CNNs for smoke
detection. Frizzi [4] trained a convolutional neural
network for wildfire smoke recognition, which ap-
plied a sliding window to select region and used
CNNss to detect the fire and smoke in a frame video.
Sharma [5] proposed a model consisting of a full
image CNNs and local patch classifier for forest fire
detection, both of which share the same deep neural
networks. In summary, the proposed methods above
have sliding windows or region proposals to generate
region of interests (ROIs) first and after that focus
on image classification.

This paper proposes a two-stage approach for
video smoke detection in indoor environment. In
indoor environment, the task of detecting small
smoke is fundamental in early fire detection systems.
It means the smoke located on a few small parts of
an image. To avoid the difficulty in using sliding
windows to generate ROIs, our method uses optical
flow to detect motion and locate regions that can



be smoke. Because an image is in high-dimensional
space, coming with various sizes or resolutions,
visual information of small objects is less than
medium or big objects, so it is hard to exploit
these information for detecting small objects. We
perform our evaluation on the current state-of-the-
art approaches based on Deep Learning as Faster R-
CNN [6] and SSD [7] models then show how well-
performed the detection models are when applying
them to detect smoke in ROIs from large images.

Meanwhile, available smoke images for training
are obtained generally from internet and experi-
ments, which are limited in scale and diversity for
training model. Because the image gathering of
smoke and fire is complex and there are many safety
concerns in indoor environment, the lack of data
is a difficult problem for training model. We solve
this problem by using synthetic smoke images to
extend the training set. Similar work is described in
[8], which focused on synthesizing wildfire smoke
images. In my approaches, the benefit of synthetic
smoke in indoor environment is to increase accuracy
of the deep learning model trained on them.

This paper is organized as follows. In section II,
we present ours proposed for video smoke detection
in details. Section III describes the synthesizing
method of indoor smoke datasets. Experimental re-
sults are given in Section IV. At last, we conclude
the paper in Section V.

II. PROPOSED VIDEO SMOKE DETECTION
METHOD

Smoke objects normally have single color and
grow with undefined shapes. Based on smoke defini-
tion, the proposed method includes two steps. Fig. 1
presents the flow chart of the proposed method.
Firstly, we apply optical flow to detect motion
between consecutive frames and locate regions of
interest. Secondly, we use deep learning model to
detect smoke in the detected regions.

A. Detect motion regions

Optical flow estimation is still one of the key
problems in computer vision. Optical flow is a
widely used method for measurement of target ve-
locity in video by computing difference of frame
sequence. Some researches utilized optical flow for
motion estimation in dynamic texture. From the
original approaches of Horn and Schunck [9] as
well as Lucas and Kanade [10], researchers devel-
oped many new approaches for dealing with short-
comings of previous models. In smoke detection
problem, the dynamic characteristics of the smoke
has significant changes in the optical flow field

when smoke breaks out. In general, optical flow
algorithms can be roughly classified into the follow-
ing categories: “gradient” methods, “phase” meth-
ods, “region-based matching” methods and “feature-
based” methods. Consider a pixel I(z,y,t), which
is the intensity of a pixel at location (z,y) and time
t , it moves by distance (dz, dy) in next frame taken
after dt time. Since those pixels are the same and
intensity does not change, it leads to the equation:

I(x,y,t) = I(x +dx,y + dy, t +dt) (1)

Then take taylor series approximation of right-
hand side, remove common terms and divide by dt
to get the following equation:
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where:
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Above equation is called optical flow equation. In
it, we can find f, and f,, they are image gradients.
Similarly f; is the gradient along time. But (u,v) is
unknown. We cannot solve (2) with two unknown
variables. So several methods are provided to solve
this problem and one of them is Lucas-Kanade’s
method [10] or Gunner Farneback’s method [11].
Since smoke flow has many different shapes, densi-
ties and is smooth, sparse optical flow is infeasible in
this case. To address this problem, we apply dense
optical flow to locate region of interest. In fig 2,
we illustrate the optical flow result tested on sample
videos. In the first row, we show the result from
Gunner Farneback’s algorithm and in the second is
from Lucas-Kanade’s method.
To locate regions of interest, the frame is divided
into a grid, each sub-region size is 16x16 pixels.
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Fig. 1: Flow chart of the proposed method



From the optical flow map, if the number of changed
pixels in a sub-region is higher than a threshold,
the sub-region is a motion region. After that, we
locate the regions on interest by detect all connected
components of the motion sub-region. In fig 2, we
show the motion regions which were detected form
the optical flow map.

Fig. 2: Optical flow in smoke videos

B. Smoke Detection With Neural Networks

The convolutional neural network was first intro-
duced in 1980 by Fukushima [12]. In object detec-
tion, current state-of-the-art object detectors consist
of one-stage detectors and two-stage detectors [13].
In two-stage detectors, the first stage generates a
set of candidate regions, which may contain objects,
while filtering out the majority of negative locations,
and in the second stage the classifier determines
objects in the proposed regions. Recent two-stage
detectors are mainly based on region proposal net-
work, suck as Faster R-CNN [6], R-FCN [14]. In
one-stage detectors, after using a feature extractor,
the model performs object proposal with multiple
convolutional layers instead of region proposal net-
work to ease the inconsistency between the sizes of
objects and receptive fields, and run faster. Recently,
SSD [7] and YOLO [15] are current state-of-the-art
models in one-stage detectors. In this paper, we use
two state-of-the-art such as Faster R-CNN and SSD
that have achieved one of the lowest errors in object
detection tasks.

In Faster R-CNN and SSD, they use a convo-
lutional neural network as a feature extractor. In
convolutional neural network, kernels are used to see

where particular features are present in an image by
convolution with the image. The size of the kernels
gives rise to locally connected structure which are
each convolved with the image to produce feature
maps. In this paper, we use two state-of-the-art
convolutional neural network such as VGG16 [16]
and Resnet-50 [17] as feature extractors:

e VGGI16: The main purpose of the paper was
to investigate the effect of depth in CNN mod-
els. The 19 layer architecture (VGG-19) won
the ImageNet challenge in 2014, but the 16
layer architecture, VGG16 achieved an accu-
racy which was very close to VGG19. Both the
models are simple and sequential. The 3 x 3
convolution filters are used in the VGG models
which is the smallest size and thus captures
local features. The 1 x 1 convolutions can
be viewed as linear transformations and can
also be used for dimensionality reduction. We
choose the VGG16 over the VGG19 because
it takes less time to train and the classification
task in hand is not as complex as ImageNet
challenge.

o Resnet50: This model was created by Microsoft
Research, they introduced residual learning.
Residual learning involves learning residual
functions. If a few stacked layers can approx-
imate a complex function, F'(x) where, z is
the input to the first layer, then they can also
approximate the residual function F'(z) — .
So, instead the stacked layers approximate the
residual function G(x) = F(z) — x, where
the original function becomes G(x) + . Even
though both can capable of approximating the
desired function, the ease of training with resid-
ual functions is better. These residual functions
are forwarded across layers in the network
using identity mapping shortcut connections.
The Resnet architectures consist of networks
of various depths: 18 layers, 34 layers, 50
layers, 101 layers and 152 layers. We choose
the architecture with intermediate depth, i.e. 50
layers.

Fig. 3 show the original VGG16 and Resnet-
50 architectures respectively. In our approaches, we
train those model as features extraction networks
with smoke datasets, including real smoke images
and simulated smoke images. Faster R-CNN and
SSD have different architectures:

e SSD uses a single feed-forward convolutional
network to directly predict categories and an-
chor offsets without requiring a second stage
per-proposal classification operation. SSD adds



convolutional feature layers to the end of the
base network. These layers decrease in size pro-
gressively and allow predictions of detections
at multiple scales. Based on the multi-scale
feature layers, convolutional predictors produce
detection predictions using a set of convolu-
tional filters. All the predictions produced by
each detection branch will be integrated to-
gether for sampling.

o Faster R-CNN is one of a pioneer which is
open for the trend of object detection based on
Deep Leaning. In this work, the authors showed
the progress to create hypotheses before taking
them into classifiers is a crucial step in de-
tection and it takes most of the time of data
processing of the entire progress. The authors
indicate that this is a bottleneck so they have
proposed a new method called Region Proposal
Network (RPN) that shares convolutional fea-
tures of the whole image with the network used
for detection, hence it enables mostly cost-free
region proposals. By using the RPN, Faster R-
CNN is speeded up.

It is very hard to have a fair comparison between
SSD and Faster R-CNN. Sample architecture of
those networks are showed in Fig. 4.

(b) Resnet50 Architecture

Fig. 3: The original VGG16 and Resnet-50 architec-
tures
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Fig. 4: Faster R-CNN and SSD architectures

ITII. SYNTHESIZING METHOD OF SMOKE
DATA

Since it is difficult to collect many smoke images
in indoor environment, using smoke images from the
simulator in order to train and validate the smoke
detection systems appears as a feasible alternative.
In general, the two major contexts related to the
simulation of smoke frame sequences are the compu-
tational fluid dynamics and computer graphics. All
of the methods appertaining to these areas are based
on the equations of the fluid flow. The Navier—Stokes
equations [18] describe the physical model used
in fluid dynamics by considering the flow of a
compressible and viscous fluid in terms of a velocity
vector field:

0
a(pv)—i—v-(pv@v) =-V-pI+V-t+pg 4

where p is the fluid density, v is the flow velocity,
V is the divergence operator, p is the pressure, t
is time, I is an identity matrix, T is Cauchy stress
tensor, g represents body accelerations acting on the
continuum, and ® is the outer product. There are
many discrete methods to solve the Navier-Stokes
equation. We can use a classic method to solve the
Navier-Stokes equation and generate a huge number
of pure smoke images with RGBA channels by adopt
volume rendering methods. Each pure smoke image
has four channels, the RGB channels for a smoke
color and an alpha channel for smoke density a.

To overcome the problem of generating a vari-
ety of smoke with different shapes, densities and
colors, we use a third-party free 3D modeling soft-
ware, Blender [19], to simulate and visualize smoke.
Blender allows users to freely add wind, motion
and gravity to greatly vary smoke appearance. We
use high-resolution 3D grids to generate high-quality
smoke images. To speed up the process, we use GPU
computing to accelerate rendering process. Since
each simulated smoke image contains RGB channels
(s) and an alpha channel (&), we can use flowing
equation to blend a pure smoke image (s and «)
and a background image (b):

I(z) = b(x)(1 — a(x)) + s(x)a(x) 5)

The above equation is just the linear color com-
position formula. To blending with background im-
ages, we apply (5) to red, green and blue channels,
respectively.



IV. EXPERIMENTAL RESULTS
A. The Dataset

We created our own dataset by collecting images
from the internet and rendering images. There are
two parts in my dataset. The first part is a dataset
for training backbone networks, such as VGG16 and
Resnet-50. This part consists of more than 3000
image in total: 1700 smoke images and 1600 non-
smoke images and is divided into training and testing
sets. There are 1200 smoke images and 1200 non
smoke images in training set. To avoid overfitting,
we also use data augment techniques, such as affine
transformation and gamma correction. The second
part is a dataset for training smoke detection model.
We use the method in Section III to synthesize about
1000 smoke images with RGBA channels, and the
background images were randomly collected from
the internet to suit indoor conditions. In total, the
number of images in the second part is about 5000
images. We also used data augment techniques to
avoid overfitting. Fig. 5 shows the simulated smoke
patterns and the blended images. To test the solution
with surveillance cameras, we recorded 5 videos in
indoor environment in different conditions, including
natural light, artificial light, dense smoke, sparse
smoke.

B. Result

In this section, we present results that we achieved
through experiments. We perform all experiments on
a personal computer with CPU Intel Xeon (R) CPU
E5-2620 v4 @ 2.10GHz, GPU GEFORCE GTX
2080ti, 8Gb of RAM and a embedded system which
is named NVIDIA Jetson TX2 with CPU Dual-core
Denver 2 64-bit CPU and quad-core ARM A57 com-
plex, GPU 256-core NVIDIA Pascal architecture,
8Gb of RAM.

Table. I gives the video processing speed of the
proposed methods, where subscripts 1 and 2 corre-
spond to Gunner Farneback’s optical flow algorithm

Fig. 5: Example of simulated images and blended
images.

and Lucas Kanade’s optical flow algorithm respec-
tively, S and F' correspond to deep Convolution
Neural Network models, SSD and Faster R-CNN
respectively. When tested on PC, the highest speed
is 95 frames per second and the lowest speed is 16
frames per second. SSD is faster than Faster R-CNN
in same test cases. From Table. I, we find the method
are able to reach real-time performance when tested
on PC. When tested on the embedded system, the
method get lower performance, especially the high-
est speed is 16 frames per second. Table II shows
the accuracy of different models, including Faster
R-CNN and SSD with different backbone networks.
The point is that the the deep models achieve testing
accuracy greater than 90%. Examples of the testing
result are shown in Fig. 6. In conclusion, Faster R-
CNN is more accurate than SSD when tested on the
same dataset.

To quantitatively evaluate the experimental results
of our method when tested on videos, we used three
evaluation metrics: DR (detection rate), FAR (false
alarm rate) and ER (error rate). The three metrics
are defined separately as follows:

TP
DR =~ x 100% (6)
P
FP
FAR = —— x 100% 7)
N
FN + FP

where TP, FP, FN, P and N are the num-
bers of positive frames detected correctly, negative
frames detected incorrectly, positive frames detected
incorrectly, total positive frames and total negative
frames , respectively. Table. III gives the result of
the proposed method when tested on the 5 recorded
videos. For all smoke videos, the detection rate is
more than 97%. In all test, the false alarm rate and
error rate is less than 2%. False alarm may occur in
complicated environment, such as low light, com-
plex motion. Experiments show that the proposed
method reach high accuracy when tested in indoor
environment.

Overall, the proposed method performs well on
our dataset. Results show that the proposed method
achieves low false alarm rates while keeping the
detection rate high. Experiments show that the pro-
posed method has good discriminative ability for
smoke detection in indoor environment.



TABLE I: Video processing speed of the proposed method (frames/s)

Video Resolution PC Embedded system
S,01 S5,02 F,01 F,O02 [ 5501 5,02 F,01 F,0O2
1280x720 82 48 19 16 5 3 1 0.8
640x480 90 65 20 18 7 5 2 0.5
320x240 95 82 24 22 8 6 2 0.5

TABLE II: Comparison between deep CNN models

Trainin Testin

Model Accuracy(g%) Accuracyg(%)
Faster R-CNN VGG16 97.20 95.40
Faster R-CNN Resnet50 98.50 95.50
SSD VGG16 94.50 91.50
SSD Resnet50 95.30 92.50

TABLE III: Smoke detection result in video

Video sequences | DR(%) | FAR(%) | ER(%)
1 97.7 1.55 1.71
2 97.3 1.40 1.68
3 97.8 1.27 1.50
4 98.3 0.98 1.33
5 97.6 1.43 1.63

V. CONCLUSIONS AND FUTURE WORKS

In this work, we have proposed a new approach
to detect smoke in indoor environment by using
surveillance cameras. We test the proposed method
on our dataset which is made specifically to replicate
real world environment. The results prove the feasi-
bility of this solution. Our future work will focus
on finding the rationale in false-positive images
to further improve the detection performance and
optimize the algorithm for real-time performance
within a low computational hardware platform.
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