
Computers and Operations Research 124 (2020) 105085
Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier .com/locate /caor
A new constraint programming model and a linear programming-based
adaptive large neighborhood search for the vehicle routing problem with
synchronization constraints
https://doi.org/10.1016/j.cor.2020.105085
0305-0548/Crown Copyright � 2020 Published by Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: hoang.haminh@phenikaa-uni.edu.vn (M.H. Hà).
Minh Hoàng Hà a,⇑, Tat Dat Nguyen b, Thinh Nguyen Duy c, Hoang Giang Pham c, Thuy Do c,
Louis-Martin Rousseau d

aORLab, Faculty of Computer Science, Phenikaa University, Hanoi, Viet Nam
bORLab, Faculty of Information Technology, VNU University of Engineering and Technology, Hanoi, Viet Nam
cDepartment of Computer Science, FPT University, Hanoi, Viet Nam
d École Polytechnique de Montréal and CIRRELT, Montréal, Canada
a r t i c l e i n f o

Article history:
Received 18 October 2019
Revised 9 August 2020
Accepted 9 August 2020
Available online 18 August 2020

Keywords:
Vehicle routing problem
Time window
Synchronization constraint
Constraint programming
Adaptive large neighborhood search
a b s t r a c t

We consider a vehicle routing problem which seeks to minimize cost subject to time window and syn-
chronization constraints. In this problem, the fleet of vehicles is categorized into regular and special vehi-
cles. Some customers require both vehicles’ services, whose service start times at the customer are
synchronized. Despite its important real-world application, this problem has rarely been studied in the
literature. To solve the problem, we propose a Constraint Programming (CP) model and an Adaptive
Large Neighborhood Search (ALNS) in which the design of insertion operators is based on solving linear
programming (LP) models to check the insertion feasibility. A number of acceleration techniques is also
proposed to significantly reduce the computational time. The computational experiments show that our
new CP model finds better solutions than an existing CP-based ALNS, when used on small instances with
25 customers and with a much shorter running time. Our LP-based ALNS dominates the CP-based ALNS,
in terms of solution quality, when it provides solutions with better objective values, on average, for all
instance classes. This demonstrates the advantage of using linear programming instead of constraint pro-
gramming when dealing with a variant of vehicle routing problems with relatively tight constraints,
which is often considered to be more favorable for CP-based methods. We also adapt our algorithm to
solve a well-studied variant of the problem, and the obtained results show that the algorithm provides
good solutions as state-of-the-art approaches and improves four best known solutions.

Crown Copyright � 2020 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Most of the requirements related to our daily routines are made
by a service provider coming to our premises. These types of ser-
vices can be home care delivery, maintenance operations, public
utilities, etc. In such services, efficient delivery and timely service
play important roles. This is why the class of the Vehicle Routing
Problem, coupled with the Scheduling Problem, comprises a large
class of problems with many variations and applications. The main
focus of this research is to study the Vehicle Routing Problem with
Synchronization Constraints (VRPSC), where both time window
and synchronization constraints are present. In the latter
constraints, some customers may require the service of two
vehicles whose service start times at the customer must be
synchronized.

In a recent industrial project with an Internet Service Provider
(ISP) in Vietnam, the authorswitnessed several contextswhere syn-
chronization constraints arose. The ISP company has to perform
installation services for new subscribers and maintenance services
for subscribed clients. Both services are performed by technicians
who mainly use motorbikes for travelling. In many cases, a cus-
tomer asks for services by two technicians belonging to two differ-
ent teams: one being the ‘‘physical” team, which takes charge of the
hardware (cable wire, modem, etc.); while the other teammanages
the signal. To further illustrate the problem, when a customer
requires a service from the physical team, two technicians must
be mobilized as one helps the other with equipment set-up, such
as installing a ladder and other protective gear. In addition, an intern
technician, who is in a probationary period, needs to be coupled

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2020.105085&domain=pdf
https://doi.org/10.1016/j.cor.2020.105085
mailto:hoang.haminh@phenikaa-uni.edu.vn
https://doi.org/10.1016/j.cor.2020.105085
http://www.sciencedirect.com/science/journal/03050548
http://www.elsevier.com/locate/caor

2 M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085
with an experienced technician at customer locations.When servic-
ing a customer, the company requires that the service start time of
both technicians be as close as possible in order to reduce theirwait-
ing time and to limit the disruption to the customer. In the case of
our ISP partner, a delay of no more than 15 min is permitted. The
problem was initially introduced in Hojabri et al. (2018) and can
be used to model other real world applications such as home care
delivery, aircraft fleet assignment, groundhandling, and forest oper-
ations (see Rousseau et al., 2013 for more information).

Hojabri et al. (2018) proposed a constraint programming-based
Adaptive Large Neighborhood Search (cp-ALNS) with insertion
operators exploiting constraint propagation capabilities to guaran-
tee the feasibility of a new generated solution. Different from the
popular ALNS proposed in Pisinger and Ropke (2007) to solve VRPs,
the cp-ALNS does not try to add all unserved requests one by one
but, rather, adds all of them at once to create a new complete solu-
tion. Several removal operators were specifically designed for the
problem. Numerical results are reported on instances derived from
Vehicle Routing Problem with Time Window (VRPTW) benchmark
instances, with up to 200 customers and 100 synchronizations.

A dynamic version of the problem was introduced in Rousseau
et al. (2013) where customer requests were not foreseen, but
arrived one-by-one in real time. The problem was modeled as a
CP program from which a metaheuristic was designed. We note
that the methods proposed in Rousseau et al. (2013) and Hojabri
et al. (2018) were based on the same CP model which uses vari-
ables representing the successor of a node, AllDifferent and subtour
elimination constraints introduced in Pesant et al. (1998). How-
ever, no result of the pure CP model has been reported.

Dohn et al. (2011) consider synchronization constraints defined
in the same way as in the VRPSC. Their problem is called the vehi-
cle routing problem with time windows and temporal dependen-
cies (VRPTWTD). Unlike the VRPSC, there is only one type of
vehicle in the VRPTWTD. Two compact formulations of the prob-
lem are proposed and the Dantzig–Wolfe decomposition of these
formulations are used to develop a column generation-based solu-
tion approach. Four different master problem formulations are pro-
posed and a tailored time window branching is used to force
feasibility of the relaxed master problems. A computational exper-
iment is performed to quantitatively access strengths and weak-
nesses of the proposed formulations.

Several VRPSC variants in which a customer can require services
from more than two vehicles are also studied in the literature.
Labadie et al. (2014) study a VRPSC variant with simultaneous syn-
chronization constraints where a service center (the depot) offers
several types of services and customers may demand more than
one service to be provided simultaneously. To solve this problem,
a mixed integer programming model and a local search-based
metaheuristic are developed. In the local search procedure, the ser-
vice start time at the customers requiring synchronized visits is
fixed to the values in the input solution.

Several articles Bredström and Rönnqvist (2008), Rasmussen
et al. (2012), Afifi et al. (2016), Liu et al. (2019) and Parragh and
Doerner (2018) study a different variant of the VRPSC in which
the synchronized customers must be serviced at exactly the same
time and the fleet of vehicles is homogeneous (only one type of
vehicles). In the following, we call this variant as the VRP with time
windows and synchronized visits (VRPTWSyn). Bredström and
Rönnqvist (2008) consider the problem arising in the context of
home care crew scheduling. The problem is first formulated as a
mixed integer programming (MIP) model that sets pairwise syn-
chronization and pairwise temporal precedence between customer
visits. It is then solved through a MIP-based heuristic. Rasmussen
et al. (2012) solve a similar problem with an exact branch-and-
price algorithm. Due to the application context, there is no capacity
constraint and specific issues about home care crews are taken into
account, in addition to the synchronization requirements, like care
giver preferences, customer priority, and the ability of a particular
care giver to serve a given customer. Also, not all customers must
be serviced because visits can be rescheduled or canceled.

Based on the special requirement that synchronized customers
must be serviced at exactly the same time, several authors design
metaheuristics with efficient components to tackle the problem.
To handle this special version of the synchronization constraint,
they prohibit cross-synchronization, e.g. visiting u then v by a vehi-
cle, visiting i then j by another vehicle, and finally realizing that u
and j are the same customer as well as v and i. Afifi et al. (2016) pro-
pose a simulated annealing algorithmwith dedicated local searches
(SA-ILS). They use a reduced solution that contains only the syn-
chronization visits to filter out cross synchronizations from the
set of possible positions for insertions during solution construction
and local search phases. Based on a similar idea, Liu et al. (2019)
propose an ALNS and use a square matrix to record the visit
sequence among each pair of visited special customers. Applying
the cross-synchronization idea to the VRPSC to handle itsmore gen-
eral synchronization constraint can remove feasible good neighbor-
hoods, decreasing the performance of our metaheuristics. Thus, the
adaptation of the metaheuristics proposed in Afifi et al. (2016) and
Liu et al. (2019) for the VRPSC problem would not be efficient.
Recently, Parragh and Doerner (2018) evaluate several different
ways to deal with pairwise synchronization constraints in the con-
text of two problems: the VRPTW with pairwise synchronization,
and the service technician routing and scheduling problem. They
propose three ways to address the synchronization requirement:
individual synchronized timing optimization; global synchronized
timing optimization; and adaptive time window. The idea of the
first two approaches is to keep the ALNS untouched, while the last
one makes some modifications to the insertion scheme in order to
identify good service start times for synchronized visits.

In Fink et al. (2019), a new variant arising in the context of air-
port ground handling, named abstract vehicle routing problemwith
worker and vehicle synchronization (AVRPWVS), is studied. The
AVRPWVS deals with routing workers to ground handling jobs such
as unloading baggage or refuelling an aircraft. Each job has a time
window and can be performed by a variable number of workers.
A worker can use vehicles to travel between locations or can be
moved with other workers by a driver. Two mathematical multi-
commodity flow formulations based on time–space networks are
proposed to model synchronization constraints including move-
ment and load synchronization. Moreover, the authors develop a
branch-and-price heuristic that employs both conventional vari-
able branching and a novel variable fixing strategy. More recently,
Sarasola and Doerner (2020) consider a variant of the VRPwith syn-
chronization constraints in which multiple depots are considered
and a customer can require more than two deliveries. The problem
requires that the allowed amount of non-service time between the
first and last delivery to a customer does not exceed a given value.
This synchronization constraint can be seen to be more general
than the one considered in the VRPSC because a customer can
request the service of more than two vehicles. However, there is
no time window associated with either customers or deliveries.

Pillac et al. (2018) introduce a Dynamic Technician Routing and
Scheduling Problem (D-TRSP) which deals with a limited crew of
technicians serving a set of requests. In the D-TRSP, each technician
has a set of skills, tools and spare parts required by each request. In
addition to designing a route at the beginning of each day, two
types of decisions must be managed in real time. First, whenever
a new request appears, we must decide whether it is accepted or
not. And second, whenever a technician finishes serving a request,
we need to find the next request to serve. For a survey on further
synchronization issues in the context of vehicle routing problems,
we refer the readers to Drexl (2012).

M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085 3
Our main contributions are as follows: we propose a new CP
model to address the VRP with time windows and synchronization
constraints, as well as a linear programming-based ALNS. Different
from the CP model in the literature, our CP uses sequence and inter-
val variables of IBM ILOG CP Optimizer (IBM Software, 2015) to for-
mulate the problem. The most notable feature of our metaheuristic
is that we use linear programming and a number of acceleration
techniques to quickly check the feasibility of insertion operations
integrated in the popular ALNS (Pisinger and Ropke, 2007). This
is the first time LP models are used instead of CP to design the
ALNS algorithm for the VRP with synchronization constraints.
The computational experiments carried on the benchmark data
show the good performance of our methods. More precisely, our
CP model can provide better solutions on small-size instances than
the cp-ALNS of Hojabri et al. (2018) in a much shorter running
time. Our lp-ALNS dominates the cp-ALNS in terms of solution
quality, as it improves 620 out of 681 best known solutions. When
being adapted to solve the VRPTWSyn, it is competitive to state-of-
the-art metaheuristics in terms of solution quality and find four
new best known solutions.

The remainder of the paper is organized as follows: Section 2
introduces the problem definition and our new CP model; the
detailed description of lp-ALNS is provided in Section 4; experi-
mental results are reported in Section 5; and finally, we conclude
our work in Section 6.
2. Problem definition and a mixed integer programming model

The problem may be formally defined as follows. We have a
directed graph G ¼ V ;Að Þ, where V ¼ v0f g [Vs [V is the set of ver-
tices representing customer locations and A is the set of arcs. The
vertex v0 is the depot where a set of vehicles K is located. Vehicles
in set K are again divided into two sub-sets: regular vehicles (set
Kr) and special vehicles (set Ks). All regular vehicles have capacity
Q. V is the set of regular customers which are visited by regular
vehicles only while Vs is the set of special customers, where each
requires the visits of both types of vehicle. Let Vc

s be the set of ver-
tices that are copies of special customers Vs. Let Vr be defined as
Vr ¼ V [Vc

s , which is the set of customer vertices that must be vis-
ited by regular vehicles. Each vertex i in Vs is associated with a
demand qi. Let vb

0 and ve
0 be the vertices where the vehicle starts

and ends its route. Note that these two vertices have the same
location as v0. Additionally, we define Vþ

r ¼ Vr [vb
0

� � [ve
0

� �
the

set of vertices appearing on routes of regular vehicles; and
Vþ

s ¼ Vs [vb
0

� � [ve
0

� �
the set of vertices visited by special vehi-

cles. A service time hl
i is associated with vertex i 2 Vþ

l ; l 2 r; sf g.
Note that the service times at the depot and its copies are set to
0. A time window [oi;ui] is imposed on each vertex i 2 Vþ

r n vb
0

� �
.

Finally, each arc i; jð Þ 2 A is associated with non-negative values
clij and tlij representing the travel cost, which can be estimated by
distance or all moving expenses, and travel time from vertex i to
vertex j for a vehicle of type l.

The problem then consists in constructing routes for the fleet of
vehicles such that the total travel cost incurred by the fleet of vehi-
cles is minimized and the following constraints are satisfied:

� Each vehicle must begin its route at the depot, deliver services
to customers and finally return to the depot.

� Each regular customer is served by exactly one regular vehicle.
� Each special customer is served by exactly one regular vehicle
and one special vehicle.

� The total demand serviced by a regular vehicle must not exceed
its capacity Q.

� A regular vehicle must start its service at a vertex i 2 Vþ
r n vb

0

� �
within the time window oi;ui½ �.
� The service start time at a special customer i 2 Vs visited by a
special vehicle must be within a time window
tmi

� ai; tmi
þ bi

� �
. Here, ai and bi are given parameters repre-

senting a possible delay between regular and special services
at customer i, while tmi

is the service start time at vertex mi

(mirror of i in the regular vehicle route).

Several mixed integer programs have been proposed for vari-
ants of the VRPSC in Bredström and Rönnqvist (2008), Afifi et al.
(2016) and Parragh and Doerner (2018). However, we have not
seen any MIP formulation for the VRPSC itself. In the following,
we introduce a MIP that can be used to solve small-size VRPSC
instances to optimality. There are two types of variables in our for-
mulation as follows:

� xkij: binary variables equal to 1 if vehicle k 2 Kl travels from ver-

tex i 2 Vþ
l to vertex j 2 Vþ

l ; l 2 r; sf g; equal to 0 otherwise.
� yi: service start time at which vertex i 2 Vþ

r [Vþ
s is serviced.

The VRPSC can be stated as:

Minimize
X
l2 r;sf g

X
k2Kl

X
i2Vþ

l

X
j2Vþ

l
:j–i

clijx
k
ij ð1Þ

Subject to
X
k2Kl

X
j2Vþ

l

xkij ¼1 8l 2 r; sf g; i 2 Vþ
l : i– j ð2Þ

X
j2Vþ

l
:j–vb

0

xkvb
0
j ¼1 8l 2 r; sf g; k 2 Kl ð3Þ

X
i2Vþ

l
:i–ve

0

xkive
0
¼1 8l 2 r; sf g; k 2 Kl ð4Þ

X
j2Vþ

l
:j–i

xkij ¼
X

j2Vþ
l
:j–i

xkji 8l 2 r; sf g; k 2 Kl; i 2 Vþ
l ð5Þ

X
i2Vr

X
j2Vþ

r :j–i

qix
k
ij 6Q 8k 2 Kr ð6Þ

yi þ hl
i þ tlij

� �
xkij �M 1� xkij

� �
6 yj

8l 2 r; sf g; k 2 Kl; i 2 Vþ
l ; j 2 Vþ

l : i– j ð7Þ
oi 6 yi 6ui 8i 2 Vþ

r n vb
0

� � ð8Þ
ymi

� ai 6yi 8i 2 Vs ð9Þ
yi 6ymi

þ bi 8i 2 Vs ð10Þ
xkij 2 0;1f g 8k 2 Kl; l 2 r; sf g; i 2 Vþ

l ; j 2 Vþ
l : i– j ð11Þ

yi P0 8i 2 Vþ
r [Vþ

s ð12Þ

The objective function (1) minimizes the total travel cost. Con-
straints (2) ensure that each vertex is visited by exactly one vehi-
cle. Constraints (3) and (4) force vehicles to begin and end their
route at the depot. The flow conservation is satisfied by Constraints
(5) while the capacity requirement of each regular vehicle is found
in (6). Constraints (7) represent the relationship between variables
y and x. More precisely, they compute the service start time at ver-
tex j based on vertex i if the vehicle travels from i to j. Here, M is a
very large number, and can set to M ¼ uve0 . Constraints (8) are time
window constraints. Synchronization requirements are respected
by Constraints (9) and (10). Finally, Constraints (11) and (12)
define the variables’ domains.
3. A new constraint programming model

We now present the new CP model for the problem. First, it is
worth mentioning that unlike MIP formulations, there is no stan-
dard in CP formulation because it strongly depends on each CP

4 M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085
package. In this study, we formulate the model using generic key-
words and syntaxes of IBM ILOG CP Optimizer (IBM Software,
2015) adapted from the CP formulations proposed in Philippe
(2009), Ghedira (2013), Vikas et al. (2015) and Ham (2018). Our
model uses the following variables:

Itv l
i interval variable that represents the time interval of size

hl
i for the visit of vertex i 2 Vþ

l ; l 2 r; sf g;
ItvAltlik optional interval variable that represents the time

interval for the visit of vehicle k 2 Kl at vertex
i 2 Vþ

l ; l 2 r; sf g;
Seql

k sequence variable that represents all working time inter-
vals of vehicle k 2 Kl; l 2 r; sf g;

An interval variable represents the interval of time during
which a task can occur. It contains a starting point, an end point,
a size, and it can be optional. A decision variable is used to rep-
resent whether or not an interval is present. If an interval is
marked as optional, it may be absent in the solution. Sequence
is a type of variable in IBM ILOG OPL which can be empty or
can contain a subset of variables. A sequence represents all inter-
vals that are present in the solution. The constraints in our model
are as follows:

1. Function to link each interval to a location.
type function h Seql
k; ItvAlt

l
ik

� �
¼ i 8i 2 Vþ

l ;k 2 Kl; l 2 r; sf g
ð13Þ

A non-negative integer value h is defined for each pair

(Seql
k; ItvAlt

l
ik), l 2 r; sf g, to indicate the type of the interval

variable in a sequence. This value will be used in noOverlap
constraints as shown below.

2. Each customer must be served by one vehicle of the corre-
sponding type.
alternative Itv l
i; ItvAlt

l
ik : k 2 Kl

� �
8i 2 Vþ

l ; l 2 r; sf g
ð14Þ

The alternative function ensures that exactly one set of intervals

ItvAltlik is present in the solution; and interval variable starts and

ends together with the interval variable Itv l
i.

3. Travel time between two customers must be taken into

account. In the following, Tl 2 tlij
n o

is the matrix representing

travel times between two vertices i and j in the set Vþ
l .
noOverlap Seql
k; Tl

� �
8k 2 Kl; l 2 r; sf g ð15Þ

The noOverlap constraint on sequence variable Seql
k states that

the sequence defines a chain of non-overlapping intervals, and
any interval in the chain is constrained to end before the start
of the next interval in the chain. For each noOverlap constraint,
a transition matrix Tl is used to define the minimal non-negative
distance separating consecutive intervals in a sequence. For

example, if interval ItvAltlik appears before interval ItvAltljk in

the sequence Seql
k, a minimal distance tlhihj must be respected

between the end of ItvAltlik and the start of ItvAltljk, where hi

and hj denote the types of ItvAltlik and ItvAltljk in the sequence

Seql
k.

4. All vehicles start their route at the starting depot.
first Seql
k; ItvAlt

l
vb
0
k

� �
8k 2 Kl; l 2 r; sf g ð16Þ
first p; jð Þ function states that if interval j is present, it will be the
first interval in the sequence p. These constraints force each
vehicle to start it route at vertex vb

0.
5. All vehicles finish their routes at the corresponding ending

depot.
last Seql
k; ItvAlt

l
ve
0k

� �
8k 2 Kl; l 2 r; sf g ð17Þ

Similar to first(p; j) function, last(p; j) function states that if
interval j is present, it will be the last interval in the sequence
p. These constraints are to force each vehicle to finish its route
at ending depot ve

0.
6. Time window constraints.
oi 6 startOf Itv r
i

� 	
6 ui 8i 2 Vþ

r n vb
0

� � ð18Þ
startOf jð Þ represents the start of interval jwhenever the interval
variable j is present.

7. Capacity constraints.
X
i2Vr

qi:presenceOf ItvAltrik
� 	

6 Q 8k 2 Kr ð19Þ

presenceOf jð Þ is equal to 1 if interval variable j is present in the
solution, 0 otherwise.

8. Synchronization constraints.
startOf Itv r
mi

� �
� ai 6 startOf Itv s

i

� 	 8i 2 Vs ð20Þ

startOf Itv s
i

� 	
6 startOf Itv r

mi

� �
þ bi 8i 2 Vs ð21Þ

We compute the total cost traveled by a vehicle of type l 2 r; sf g
as follows:

Costlk ¼
X
i2Vþ

l

clij 8k 2 Kl where j ¼ typeOfNext Seql
k; ItvAlt

l
ik; i; i

� �

Then the objective function can be written as:

Minimize
X
l¼ r;sf g

X
k2Kl

Costlk ð22Þ
4. Linear programming-based adaptive large neighborhood
search algorithm

To tackle the VRPSC problem, we designed an Adaptive Large
Neighborhood Search (ALNS) heuristic, which is based on the Large
Neighborhood Search (LNS) introduced by Paul (1998). At each
iteration, LNS explores a large neighborhood, which can rearrange
a large part of the current solution, therefore allowing the search to
move to other promising regions of the search space.

More precisely, LNS decomposes the original problem by unfix-
ing some decision variables, leading to a partial solution. The
unfixed decision variables define a neighborhood of solutions that
can be explored by a specific procedure via, possibly, a heuristic or
a Mixed Integer Programming (MIP) solver. If the procedure finds
an improved solution, it becomes the new current solution and a
new large neighborhood is defined around it. This process is
repeated until a stopping criterion is reached.

A first key point is the selection of fixed variables to create a
partial solution. In fact, the number of fixed variables impacts
the size of the neighborhood (the more fixed variables, the nar-
rower the neighborhood). A common strategy is to dynamically
vary the number of removed variables. A second key point lies in
the selection of fixed/removed variables which can be based on a
random choice or a more sophisticated strategy to guide the
search. Finally, the procedure that explores the neighborhood

M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085 5
should provide good quality solutions in a short amount of time.
Adaptive Large Neighborhood Search is an extension of LNS with
a number of different insertion and removal operators. In compar-
ison with LNS, a component that adaptively chooses among a set of
removal and insertion operators is added to the algorithm. The
pseudo-code of a ALNS to solve problems with minimizing objec-
tive function is shown in Algorithm 1. At each iteration, a randomly
selected pair of operators (with procedures SelectDestruction and
SelectRepair, lines 5 and 6) is applied to the current solution (line
7), with probabilities premove; pinsert for the set of removal and inser-
tion operator, respectively. These probabilities are updated by a
learning process (line 12). The more an operator i has contributed
to the solution quality, the larger its probability pi of being chosen.
4.1. Insertion operators

4.1.1. Cheapest insertion heuristic
The purpose of the insertion operation is to reinsert unserviced

requests into the solution. For this task, one can use the cheapest
insertion heuristic which inserts the customer into a route at a fea-
sible position making the objective value increase the least. The
process is repeated until all customers are serviced or no more cus-
tomers can be inserted. Note that the customers are considered in
the order determined by their cheapest insertion position. The
insertion cost of a regular customer j into a regular route posi-
tioned between two consecutive vertices i and iþ 1 (denoted by
ICr

k) is computed as:

ICr
j ¼ crij þ crj iþ1ð Þ � cri iþ1ð Þ ð23Þ
Whenever a special customer is considered for insertion, it will

be added to two positions: one on a regular route and another on a
special route. This must be incorporated when computing the
insertion cost of special customers. The average value is used to
compute the insertion cost of a special customer j at positions
between vertices i and iþ 1 on a regular route and between ver-
tices i0 and i0 þ 1 on a special route as follows:

ICs
j ¼

crimj
þ crmj iþ1ð Þ � cri iþ1ð Þ

� �
þ csi0 j þ cs

j i0þ1ð Þ � cs
i0 i0þ1ð Þ

 �

2
ð24Þ

It is worth noting that, using the pure summation to compute
ICs

j could make the insertion cost of the special customers higher
than that of the regular customers. Therefore, we use the average
value to avoid the situation where the regular customers are
always added before the special ones.
4.1.2. Regret heuristics
As in Pisinger and Ropke (2007), we also use regret-k heuristics

as repair operators. Instead of selecting the customer with the least
insertion cost in each construction step, the regret heuristics select
the customer with the highest regret-k value, computed as follows:
we denote f i;j the insertion cost when inserting customer i at its
best position in route j. If this insertion is infeasible w.r.t time win-
dow and synchronization constraints, the insertion cost is set to
infinity, i.e. f i;j ¼ 1. Let rik be the route where vertex i has the
k-th lowest insertion cost. The regret-k value RVi of customer i is
then calculated as:

RVi ¼
Xk

j¼1

f i;rijð Þ � f i;ri1ð Þ
� �

ð25Þ

The regret-k heuristics chooses the unvisited customer i with
the highest regret-k value RVi and insert it into the feasible
position leading the least insertion cost. Ties are broken by
selecting customers with the lowest insertion cost f i;ri1ð Þ. Infor-
mally speaking, we choose the customer that leads to the lar-
gest regret, if it is not inserted right now. If it happens that
some vertices can be feasibly inserted in less than k routes in
the current solution, then the vertex with the fewest number
of feasible routes is selected. This ensures that the vertex which
does not have many insertion options in the current solution
will be considered first.

It can be observed that the cheapest insertion heuristic, which
we mentioned earlier, is a special case of the regret heuristic with
k ¼ 1 due to the tie-breaking rule. For any k > 1, the regret heuris-
tic looks further into future solutions to decide the choice of inser-
tion. In this research, we use the regret heuristics with k 2 2;3f g to
design insertion operators for our ALNS.
4.1.3. Checking insertion feasibility of regular customers
When inserting a vertex into a position of the current partial

solution, it is required to verify if the insertion satisfies the capac-
ity, time window and synchronization constraints. As the insertion
operation is repeated multiple times during the search, designing a
quick verification procedure is critical to speed up the overall algo-
rithm. As the capacity constraint is easily checked in O 1ð Þ, we focus
on the time window and synchronization constraints only. Verify-
ing the feasibility of an insertion operation w.r.t these constraints
are more complex because they delay subsequent visits leading
to other violations. As proposed in Kindervater and Savelsbergh
(1997), the time window constraint can be checked in O 1ð Þ by
pre-computing the maximum delay (push forward) that is allowed
at each arc of the current solution, without violating time win-
dows. In this research, we also reuse this idea to handle both time
window and synchronization constraints when inserting regular
vertices.

Given a partial solution, in order to consider all possible posi-
tions to insert an unserved regular customer i into the routes of a
partial solution, we calculate the maximum duration of time (also
called maximum delay) that can be spared after a vehicle finishes
serving vertex j� 1 and before it starts to serve next vertex j with-
out violating any constraints at the following vertices. This value is
denoted da, where a ¼ j� 1; jð Þ represents the arc from j� 1 to j.
We calculate the maximum delays at all the arcs of the current
solution using the following linear programming model:

Let Vr and Vs be the set of all vertices visited by regular and spe-
cial vehicles in current solution sol, respectively. Denote A ¼ Ar [As

the set of arcs forming the routes in sol;Ar and As are the sets of arcs
on regular and special routes, respectively. We use two types of
variables: si is the service start time at vertex i and da is the max-
imum delay on arc a ¼ j� 1; jð Þ.

6 M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085
F1ð Þ Maximize da ð26Þ
Subject to oi 6 si 6 ui 8i 2 Vr ð27Þ

�ai 6 si � smi
6 bi 8i 2 Vs ð28Þ

si�1 þ hl
i�1 þ tl i�1;ið Þ 6 si 8 i� 1; ið Þ 2 Al n af g; l 2 r; sf g ð29Þ

sj�1 þ hr
j�1 þ tr j�1;jð Þ þ d j�1;jð Þ 6 sj ð30Þ

si P 0 8i 2 Vr [Vs ð31Þ
da P 0 ð32Þ

Objective (26) is to maximize the maximum delay on arc a. Con-
straints (27) and (28) respectively ensure time window and syn-
chronization constraints at all vertices of the current solution.
Constraints (29) represent the relationship between the starting
times at vertices i� 1ð Þ and i when a vehicle travels from i� 1ð Þ
to i. Constraint (30) has the same meaning as constraints (29)
but is written for arc a. Finally, constraints (31) and (32) define
the domain of variables.

After all the maximum delays are available, we check if an
unserved regular vertex i can be inserted at the position between
vertex j� 1 and vertex j by computing the earliest arrival time (ar-
rivalTime) and the waiting time (waitTime) at i as follows:

arrivalTimei ¼ sj�1 þ hr
j�1 þ tr j�1ð Þi

waitTimei ¼ max oi � arrivalTimei;0ð Þ
Finally, we check if feasibility of the insertion satisfies the fol-

lowing constraints:

tr j�1ð Þi þ trij � tr j�1ð Þj þwaitTimei þ hr
i 6 d j�1;jð Þ ð33Þ

arrivalTimei 6 ui ð34Þ
Constraint (33) ensures that the insertion does not lead to a vio-

lation of time window and synchronization constraints at all the
following customers in the current solution. Constraint (34) veri-
fies the time window constraint of vertex i.

Although it is fast to solve a LP model of type (F1), the running
time of the insertion operators is still expensive due to the large
quantity of LP models solved during the search. Through observa-
tion, we note that constructing the model to find the maximum
delay on each arc takes more computational time than solving it.
Thus, we propose the following model to reduce the running time
of the insertion operators:

F2ð Þ Maximize
X
a2A

-ada ð35Þ

Subject to 27ð Þ; 28ð Þ; 31ð Þ
si�1 þ hl

i�1 þ tl i�1;ið Þ þ d i�1;ið Þ 6 si 8 i� 1; ið Þ 2 Al; l 2 r; sf g ð36Þ

da P 0 8a 2 A ð37Þ
Objective (35) is to maximize the weighted maximum delay at

all arcs of the solution. Here, -a is a given binary coefficient repre-
senting the weight of arc a 2 A. Constraints (36) indicate the rela-
tionship between variables d and s. To find the maximum delay on
an arc a, we just need to set its weight-a to 1 and weights of other
arcs to 0. The proposed model (F2) allows us to save a lot of time by
constructing a model once and then creating a new one by chang-
ing two coefficients in the objective function only. As a result, we
can avoid constructing multiple models from scratch. A prelimi-
nary experiment shows that using this method helps reduce the
running time of the overall algorithm by at least 30%. After each
model calculates the maximum delay of arc (j� 1; j), the value of
variables sj�1; sj, and d j�1;jð Þ are also saved for checking insertion
feasibility of special customers, as described in the following
section.

4.1.4. Checking insertion feasibility of special customers
Whenever a special customer is selected to be added into the

current solution, it will be inserted in two positions: one in regular
route and the other in a special route. Multiple insertion operations
make it impossible to use the maximum delay for feasibility veri-
fication purposes. However, we can still utilize the computed max-
imum delays to quickly filter out infeasible insertions as follows.

As mentioned above, after solving each model to obtain the
maximum delay on an arc (j� 1; j), the service start times of ver-
tices j� 1 and j or, in other words, the values of sj�1 and sj are
saved. sj�1 can be seen as the earliest time vertex j� 1 can be ser-
viced while sj can be seen as the latest time vertex j can be ser-
viced. To avoid misunderstanding these notations, we denote sj�1

as etj�1 and sj as ltj. Using these saved values, we can quickly check
if special vertex i and its mirror mi cannot be inserted on arc
as ¼ js � 1; jsð Þ of a special route and arc ar ¼ jr � 1; jrð Þ of a regular
route, respectively. First, the lower bound (denoted by lb) and
upper bound (denoted by ub) of arrival times at mi when being
inserted on arc ar and iwhen being inserted on arc as are computed
as follows:

lbmi
¼ etjr�1 þ hr

jr�1 þ trjr�1;mi

ubmi
¼ ltjr � hr

mi
� trmi ;jr

lbi ¼ eti þ hs
js�1 þ tsjs�1;i

ubi ¼ ltjs � hs
i � tsi;js

It can be seen that the synchronization constraints will be vio-
lated in the following two cases:

lbi � ubmi
> bi or ubi � lbmi

< �ai ð38Þ
The insertions of i and mi also need to satisfy the time window

constraint at vertex mi and the maximum delays computed from
the model (F2). Thus, we can utilize this property to rapidly verify
the feasibility of insertions. Unlike regular vertices, possible wait-
ing times at i and mi are created not only by time window con-
straints, but also by synchronization constraints. The lower
bounds of waiting times created by time window (waitTimetwj)

and synchronization (waitTimesyncj) at a vertex j can be computed
as follows:

waitTimetwmi
¼ max 0; omi

� lbmi

� 	
waitTimetwi ¼ 0
waitTimesyncmi

¼ max 0; lbi � bi � lbmi

� 	
waitTimesynci ¼ max 0; lbmi

� ai � lbi
� 	

Fig. 1 illustrates the computation of waiting times when a ¼ 0
and b ¼ 10. In Fig. 1a, the vehicle arrives at the customer location
before the time window and has to wait 30 min before starting
delivery. In Fig. 1b, the special vehicle arrives before the regular
vehicle, but it has to wait until the regular vehicle starts to service
the customer because the value of a is zero. Thus, the waiting time
due to the synchronization constraint, in this case, is 45 min.

Hence, we can calculate the lower bounds of waiting times at
vertex j by taking the maximum value between waitTimetwj and

waitTimesyncj :

waitTimemi
¼ max waitTimetwmi

;waitTimesyncmi

� �

waitTimei ¼ max waitTimetwi ;waitTimesynci

� �

After all the values above are calculated, we can skip the inser-
tions which violate one of the following constraints:

trjr�1ð Þmi
þ trmijr

� trjr�1ð Þjr þwaitTimemi
þ hr

mi
6 d jr�1;jrð Þ ð39Þ

tsjs�1ð Þi þ tsijs � tsjs�1ð Þjs þwaitTimei þ hs
i 6 d js�1;jsð Þ ð40Þ

lbmi
6 umi

ð41Þ

Fig. 1. Computing waiting times due to time window and synchronization constraints.

M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085 7
Constraints (39) and (40) verify if the insertions satisfy the max-
imum delays while constraint (41) checks the time window at the
regular vertex mi. In addition, based on the characteristic of the k-
regret heuristics, we can only consider the insertions if their cost is
smaller than the current k-th best insertion cost.

It is worth mentioning that validation procedures (38)–(41),
which run in O 1ð Þ if the values of the variables of each program
(F2) are available, can detect plenty of infeasible insertions, thus
saving a lot of run time of the algorithm. A preliminary experiment
on instances with 50 customers and 25 synchronizations shows
that our fast validation procedures help to increase the algorithm’s
speed by up to 20 times. This ratio increases on larger instances
with more synchronizations. However, if the insertion passes all
the validations, we cannot ensure that the insertion is indeed fea-
sible w.r.t the time windows and synchronization constraints. As a
consequence, whenever the insertion of a special request passes
the checks above, we must still examine if it does not make the
solution infeasible. The following LP model (F3), which does not
have any objective function, is used to check if a special vertex i
can be added in arc ar ¼ jr � 1; jrð Þ on a regular route and arc
as ¼ js � 1; jsð Þ on a special route:

F3ð Þ Subjectto op 6 sp 6 up 8p 2 Vr [mif g ð42Þ
�ap 6 sp � smp 6 bp 8p 2 Vs [if g ð43Þ

sp�1 þ hl
p�1 þ tl p�1;pð Þ 6 sp 8 p� 1; pð Þ 2 Al n alf g; l 2 r; sf g ð44Þ

sjr�1 þ hr
jr�1 þ trjr�1;mið Þ 6 smi

ð45Þ
smi

þ hr
mi

þ trmi ;jrð Þ 6 sjr ð46Þ
sjs�1 þ hs

js�1 þ tsjs�1;ið Þ 6 si ð47Þ
si þ hs

i þ tsi;jsð Þ 6 sjs ð48Þ
sp P 0 8p 2 Vr [Vs [i;mif g ð49Þ
The meaning of variables s, other parameters, and constraints
(42)–(44) can be derived from (F1) and (F2). Constraints (45)–
(48) are similar to (44), but written for 4 new arcs that are added
by the insertion of vertices i and its mirror mi: (jr � 1;mi), (mi; jr),
(js � 1; i), and (i; js).
4.2. Removal operators

The destroy operators remove a fraction of vertices from a com-
plete solution based on different criteria, each guiding the algo-
rithm to another search space. The input of the operators is a
complete solution sol and their outputs are nbrm vertices that have
been removed from sol. We use three destroy operators originally
proposed by Pisinger and Ropke (2007): random removal, related
removal and worst removal.
4.2.1. Random removal
This is the simplest removal operator. It randomly selects nbrm

vertices in the solution and removes them. Other vertices remain
unchanged. This obviously helps the algorithm diversify the search.
4.2.2. Related removal
The idea of the related removal, as its name indicates, is to

remove similar vertices with the expectation that they could inter-
change their positions to create a better solution. More specifically,
to measure the similarity between two vertices i and j, we use the
relatedness Rij which is calculated as follows:

Rij ¼ k1
jsi � sjj
maxTime

þ k2
dij

maxDis
þ k3

jqi � qjj
maxDem

þ k4jtypei � typejj
ð50Þ

8 M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085
To calculate the relatedness of two vertices, we take into
account the differences of four characteristics: their service start
times (s); the distance between them (dij); their demand size;
and their type. Note that the value of s is obtained from solving
a program of type (F3) whenever a new complete solution is found;
and typei is set to 1 if vertex i is special, and to 0 if it is regular. The
difference is normalized such that it only takes values from the
interval [0, 1]. In this formula, maxTime;maxDis, and maxDem indi-
cate the largest service start time, the largest distance, and the lar-
gest demand of all vertices in the solution, respectively. In addition,
each characteristic i is associated with a weight ki to measure its
importance.
4.2.3. Worst removal
The worst removal operator removes the vertices that are very

expensive, with the expectation that these vertices might be
located in wrong places. Given a request i served by some vehicle
in a solution sol, we define the cost of the vertex Di as the differ-
ence between the cost of sol and the cost of the new solution when
vertex i is removed from sol. The worst removal heuristic repeat-
edly chooses a vertex i with the largest cost Di until nbrm vertices
have been removed.

In order to add more diversification to our algorithm, the
related and worst removal operators will not always remove the
most related (or expensive) request. Instead, they are randomized
by removing the bypr jRjc-th most related (or expensive) request
where R is the set of vertices in the solution and y is a random
number in [0, 1], and parameter pr is used to control the random-
ization. If pr is small, the most related (in the case of related
removal) or expensive (in the case of worst removal) vertex is
selected, while less related (or expensive) vertices may be chosen
for larger values of pr with a probability that decreases with the
cost Di. The values of pr are taken from Pisinger and Ropke (2007).

Finally, our lp-ALNS also uses acceptance criteria embedded in a
simulated annealing framework, adaptive score adjustment to
select operators in a dynamic fashion, and adding noise to insertion
cost to increase diversification. All these components and their
parameter settings are taken from Pisinger and Ropke (2007) with-
out any change.
5. Computational results

This section aims to 1) compare the effectiveness of the
approaches: MIP model, CP model, lp-ALNS, and cp-ALNS on
small-instances, 2) compare the performance of lp-ALNS and cp-
ALNS on all available instances, and 3) assess the quality of lp-
ALNS when it is adapted to solve the VRPTWSyn. For the first
and second experiments, we test the methods on the instances
proposed in Hojabri et al. (2018) with the number of customer
jV j ¼ 25, 50, 100, and 200. These instances were generated from
the VRPTW instances of Solomon (1987), Homberger and Gehring
(1999) and are of three types, depending on the customers’ distri-
bution. The customers are randomly located in the instances of
type R, clustered in type C, and both randomly located and clus-
tered in type RC. The instances are also categorized into two classes
based on the capacity of vehicles. The first class (which includes
C1, R1, RC1) consists of instances with a relatively small capacity
Q compared to the total customer demand, while in the second
class (C2, R2, RC2), the capacity is relatively large. Note that in
the instances of types R and RC, the vertices are identically dis-
tributed in classes 1 and 2, while this is not true for type C. The tra-
vel time and travel cost between two vertices are set to the
Euclidean distance. The original VRPTW instances are transformed
into VRPSC instances as follows: the number of special customers
jVsj is set to dns:jV je where ns is the percentage of special cus-
tomers. There are three values for ns: 5%, 25%, and 50%. More pre-
cisely, the first customer in the VRPTW instances is considered a
special customer and the next special customers are selected using
a constant interval defined by 1

ns
. In the case of the synchronization

constraint, the values of ai and bi are set to 0 and 10 for every spe-
cial customer i 2 Vs, respectively. Finally, we found out from pri-
vate contact that inexact results were reported in Hojabri et al.
(2018) for three instances C101, C105 and C106 with 25 customers
and 2 synchronizations, so we removed these instances from our
experiments.

For the third experiment, we use the standard instances in
Bredström and Rönnqvist (2008). The benchmark which is gener-
ated to simulate the scheduling problem in home care services,
includes 10 data sets. The number of customers is selected from
three values: 20, 50, and 80. There are five types of time windows
of increasing sizes: fixed to a single value (F), small (S), medium
(M), large (L) and no (arbitrarily large) time windows (A) where
a larger time window covers a smaller one. In each instance, about
10% of the customers need to be pairwise synchronized.

The MIP and CP models are coded in IBM OPL 12.8.0 while the
lp-ALNS is implemented in C++ using CPLEX 12.8.0 for the solution
of the linear programs. All the methods were run on a 2.10 GHz
Intel E5-2683. Note that the cp-ALNS in Hojabri et al. (2018) which
is used to provide comparison with our algorithm was run on a
3.07 GHz Xeon(R) X5675, which is similar to our processor. Since
different CPU speed conversion techniques can provide very differ-
ent results, we decided to present the raw running times, letting
the readers choose their preferred approach. The parameter setting
of lp-ALNS is chosen empirically. We have tested many settings
and the following setting gives the best performance, in terms of
both quality and computational time for our algorithm. The num-
ber of removed vertices in the removal operators nbrm is a random
integer between 4 and min 40; b0:4 � jV jcð Þ. In related removal
operator, the values of k1; k2; k3, and k4 are set to 4, 2, 1, and 4,
respectively. The lp-ALNS stops after 25 000 iterations. All the
detailed results can be found inhttp://www.orlab.com.vn/
home/download.
5.1. Comparison of CP model, MIP model, lp-ALNS, and cp-ALNS on the
small-size instances

In the first experiment, we compare the results obtained by our
MIP model, CP model and lp-ALNS with those of cp-ALNS, as
reported in Hojabri et al. (2018). Because our CP and MIP models
cannot handle the large instances, we only consider instances with
25 customers in this case. The limited running time of the CP
approach for each instance is set to 5 min and 3 h. The first value
aims to verify the capability of finding good solutions in a short
running time while the second value aims to investigate if the
method can solve these instances to optimality. Table 1 shows
the number of times each one of our methods finds a better solu-
tion (Columns ‘‘Better”), an equal solution (Columns ‘‘Equal”), or
a worse solution (Columns ‘‘Worse”) compared to cp-ALNS. The
columns ‘‘Gap” report the average gaps (in percentage) between
the solution costs of our methods and those of cp-ALNS. The nega-
tive values in these columns indicate that our methods provide
better solutions in terms of objective function values. The results
obtained show that although our CP model-based algorithms can-
not solve any instance to optimality in 3 h, they do provide quite
good solutions. Remarkably, the CP model performs better than
cp-ALNS on 56 instances in a much shorter running time (5 min
vs a couple of hours of cp-ALNS). It can be observed that CP models
work better on the instances of the first class (C1, R1, and RC1) and
worse on the instances of second class. The instances with shorter
routes tend to be easier for our CP model. The results clearly show

http://www.orlab.com.vn/home/download
http://www.orlab.com.vn/home/download

Table 1
CP and lp-ALNS vs cp-ALNS on 25-customer instances.

Data Sync lp-ALNS CP (5 min) CP (3 h)

Better Equal Worse Gap Better Equal Worse Gap Better Equal Worse Gap

R1 2 12 0 0 �3.22 9 0 3 �0.82 11 0 1 �2.30
R2 11 0 0 �2.49 1 0 10 10.18 1 0 10 9.69
C1 6 0 0 �2.16 6 0 0 �1.45 5 0 1 �1.33
C2 2 6 0 �0.83 1 3 4 2.72 1 3 4 2.72
RC1 7 1 0 �0.79 3 0 5 5.24 5 0 3 1.05
RC2 4 3 1 0.12 0 0 8 9.77 0 0 8 10.92

R1 7 12 0 0 �4.59 7 0 5 6.36 11 0 1 �2.37
R2 8 0 3 �1.98 0 0 11 13.41 0 0 11 9.57
C1 6 3 0 �2.25 5 0 4 �1.68 5 0 4 �1.95
C2 3 5 0 �0.49 2 3 3 4.00 2 3 3 4.00
RC1 8 0 0 �2.80 5 0 3 3.53 6 0 2 �0.95
RC2 7 0 1 �2.93 1 0 7 9.93 0 0 8 8.95

R1 13 12 0 0 �3.82 6 0 6 7.10 8 0 4 �1.02
R2 9 1 1 �2.74 0 0 11 12.14 0 0 11 8.60
C1 5 3 1 �1.78 3 0 6 1.42 4 0 5 �0.48
C2 2 6 0 �1.84 4 0 4 3.23 4 0 4 2.84
RC1 8 0 0 �1.72 3 0 5 4.58 4 0 4 3.35
RC2 6 2 0 �2.25 0 0 8 15.03 0 0 8 14.60

M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085 9
that our lp-ALNS is the most efficient. It is the most efficient
method in terms of solution quality, as it provides 128 better solu-
tions compared to cp-ALNS and is worse on only 7 out of 165
instances. Moreover, the gaps, on average, are negative on all
instance classes (except RC2). Our lp-ALNS can improve the objec-
tive values on average by up to 4.59% (class R1).

We now compare the solutions of lp-ALNS with those of the
exact MIP-based method. The running time of the exact method
for each instance is set to 3 h and the default settings of CPLEX
are used. Table 2 shows, for each class of instances, the number
of instances successfully solved to optimality (Column ‘‘#opt”),
the average running time in seconds (Column ‘‘Time”), and the
average gap returned by CPLEX (Column ‘‘Gap”) of the MIP method.
The next columns report the number of times lp-ALNS finds a bet-
ter solution (Column ‘‘Better”), an equal solution (Column ‘‘Equal”),
or a worse solution (Column ‘‘Worse”) compared to cp-ALNS. The
last column ‘‘Gap” shows the average gaps (in percentage) between
the solution costs of lp-ALNS and those of MIP. The negative values
in these columns indicate that lp-ALNS provides better solutions
than MIP in terms of objective function values.

We observe that the MIP model can solve 63 out of 168
instances to optimality. The gap values in the last column of Table 2
Table 2
MIP vs lp-ALNS on 25-customer instances.

Data Sync MIP

#opt Time (s) Gap

R1 2 3 4,877 13.38
R2 3 8,333 8.54
C1 6 5,074 5.09
C2 6 3,585 3.24
RC1 3 7,823 21.47
RC2 3 7,517 22.32

R1 7 3 7,105 11.30
R2 2 8,072 9.52
C1 5 4,347 7.81
C2 5 4,303 4.78
RC1 3 7,999 20.53
RC2 2 7,607 22.62

R1 13 3 6,832 15.05
R2 2 9,099 18.01
C1 5 4,736 13.52
C2 6 4,503 6.15
RC1 2 8,412 33.62
RC2 1 9,314 35.09
are never positive, showing the good performance with regard to
solution quality of lp-ALNS compared with the MIP method. More
precisely, lp-ALNS provides 67 better solutions and 93 equal solu-
tions while the MIP model performs better on only 8 instances.
5.2. Comparison of lp-ALNS and cp-ALNS on all the instances of Hojabri
et al. (2018)

In the second experiment, we investigate the performance of lp-
ALNS on all instances. The computational results are summarized
in Figs. 2 and 3, and Table 4 in the Appendix. Fig. 2 shows that
our algorithm clearly dominates cp-ALNS in terms of solution qual-
ity. It provides better average results on all instance classes. Fig. 3
reports the number of new best-known solutions found by lp-ALNS
for each class of instances. A total of 620 best-known solutions
have been found with our lp-ALNS.

Moreover, Table 4 in the Appendix shows that the improvement
on the objective value obtained by lp-ALNS when comparing the
initial and final solutions is significant, especially on large
instances (up to 16.75 %). The relatively high gap between the final
and initial solutions shows the efficiency of construction and
deconstruction operators. However, similar to cp-ALNS, the
lp-ALNS

Better Equal Worse Gap

8 4 0 �2.17
4 6 1 �0.94
0 9 0 0.00
0 8 0 0.00
1 7 0 �0.03
2 5 1 �0.57

9 3 0 �2.33
5 3 3 �0.75
2 7 0 �1.33
2 6 0 �1.70
2 6 0 �0.33
3 4 1 �0.65

8 3 1 �1.81
7 3 1 �3.43
4 5 0 �2.58
1 7 0 �1.25
3 5 0 �0.56
6 2 0 �3.98

Fig. 2. Comparison between lp-ALNS and cp-ALNS in terms of objective values on average.

Fig. 3. Number of new best-known solutions found by lp-ALNS.

10 M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085
computation time of our algorithm is still high. It depends heavily
on the number of customers jV j and the number of special cus-
tomers jVsj. More specifically, in these cases, the number of vari-
ables and constraints in the LP models increase rapidly, leading
to larger programs which are harder to solve.

5.3. Comparison of lp-ALNS with the state-of-the-art approaches for
the VRPTWSyn

Finally, we have also adapted our lp-ALNS to available bench-
mark instances of the VRPTWSyn from the literature (Bredström
and Rönnqvist, 2008) with the number of customers ranging from
20 to 80. Because LP models are flexible to modify or incorporate
constraints, the adaptation is simple and does not take much effort
in implementation. Also, the algorithm is executed without any
modification in settings and parameters. We compare our heuristic
method to the current best existing heuristics proposed in
Bredström and Rönnqvist (2008) (BR08), Afifi et al. (2016)
(ADM16), Parragh and Doerner (2018) (PD18), and Liu et al.
(2019) (LTX19). These results are reported in Table 3. It contains
the following information for each instance: the number of cus-
tomers (n), the gaps in percentage between the best solutions pro-
duced by each method and those of lp-ALNS as well as the gaps in
percentage between the best known solutions over all methods
(column BKS) and those of lp-ALNS. A positive gap means that
our method provides a better solution than the other, and vice
versa. The results as well as the running time in seconds of our
method are reported in columns ‘‘Obj.” and ‘‘Time (s), respectively.

Table 3
Comparison of lp-ALNS with other metaheuristics proposed for the VRPTWSyn.

Instance n BR08 ADM16 PD18 LTX19 BKS lp-ALNS

Obj. Time (s)

1F 20 0.00 – 0.00 – 0.00 5.13 1,337
1S 20 0.00 0.00 0.00 0.00 0.00 3.55 1,366
1M 20 0.00 0.00 0.00 0.00 0.00 3.55 1,295
1L 20 0.00 0.00 0.00 0.00 0.00 3.39 1,332
1A 20 7.12 – 0.00 – 0.00 2.95 1,290
2F 20 0.00 - 0.00 - 0.00 4.98 1,575
2S 20 0.00 0.00 0.00 0.00 0.00 4.27 1,632
2M 20 0.00 0.00 0.00 0.00 0.00 3.58 1,365
2L 20 0.00 0.00 0.00 0.00 0.00 3.42 1,627
2A 20 15.97 – 0.00 – 0.00 2.88 1,443
3F 20 0.00 – 0.00 – 0.00 5.19 1,503
3S 20 0.00 0.00 0.00 0.00 0.00 3.63 1,371
3M 20 0.00 0.00 0.00 0.00 0.00 3.33 1,401
3L 20 0.00 0.00 0.00 0.00 0.00 3.29 1,407
3A 20 13.14 – 0.00 – 0.00 2.74 1,540
4F 20 0.00 – 0.00 – 0.00 7.21 1,357
4S 20 0.00 0.00 0.00 0.00 0.00 6.14 1,455
4M 20 1.41 0.00 0.00 0.00 0.00 5.67 1,481
4L 20 3.31 0.00 0.00 0.00 0.00 5.13 1,422
4A 20 14.45 – 0.00 – 0.00 4.29 1,311
5F 20 0.00 – 0.00 – 0.00 5.37 1,433
5S 20 0.00 0.00 0.00 0.00 0.00 3.93 1,586
5M 20 0.00 0.00 0.00 0.00 0.00 3.53 1,696
5L 20 0.00 0.00 0.00 0.00 0.00 3.34 1,494
5A 20 16.01 – 0.00 – 0.00 2.81 1,583
6F 50 – – 0.00 – �0.07 14.46 9,168
6S 50 68.18 0.00 0.00 0.00 0.00 8.14 9,909
6M 50 66.23 0.00 0.13 0.00 0.00 7.70 9,637
6L 50 66.25 0.00 0.00 0.00 0.00 7.14 9,149
6A 50 104.83 – 2.59 – 2.59 5.80 9,313
7F 50 – – 0.00 – 0.00 13.02 9,213
7S 50 79.50 0.00 0.00 0.00 0.00 8.39 11,110
7M 50 79.81 0.00 0.00 0.00 0.00 7.48 10,723
7L 50 67.44 0.00 0.00 0.00 0.00 6.88 9,594
7A 50 117.34 – 0.00 – 0.00 5.71 9,186
8F 50 – – – – – – –
8S 50 – �0.42 �0.42 �0.42 �0.42 9.58 9,889
8M 50 – 0.00 0.00 0.00 0.00 8.54 9,841
8L 50 89.03 �0.25 0.12 0.00 �0.25 8.02 9,958
8A 50 99.85 – 0.15 – 0.15 6.51 6,413
9F 80 – – – – – – –
9S 80 – �0.17 1.00 0.00 �0.17 11.95 38,787
9M 80 – �0.36 0.00 �0.36 �0.36 10.96 32,461
9L 80 95.09 �1.04 �0.47 �1.60 �1.60 10.60 36,283
9A 80 172.50 – 1.31 – 1.31 8.40 33,710
10F 80 – – 0.50 – 0.00 12.08 30,825
10S 80 88.62 �0.12 �0.70 �0.81 �0.81 8.61 30,296
10M 80 99.87 �0.65 0.00 �0.52 �0.65 7.67 35,538
10L 80 138.62 5.01 0.00 �0.27 �0.27 7.38 32,791
10A 80 179.21 – 0.16 – 0.16 6.30 33,667

Average 41.07 0.07 0.09 �0.13 �0.01

M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085 11
In several cases, no results are reported in the literature for some
methods on some instances. These cases are indicated by a ‘‘—”.
New best known solutions found by lp-ALNS are marked in bold.

Despite the fact that lp-ALNS is designed mainly to solve the
VRPSC and not the VRPTWSyn, our method still provides good
solutions for the VRPTWSyn. It dominates three approaches:
BR08, ADM16, and PD18 with regard to the average gap. It provides
slightly worse solutions than LTX19 and BKS. However, the average
gaps are quite small (�0.13 and �0.01, respectively). In particular,
our method provides four new best results for instances 6A, 8A, 9A,
and 10A. On the other hand, our method is quite slow as it takes
about 10 h to solve the instances with 80 customers.

6. Conclusion

In this research, we study an important variant of the vehicle
routing problem with synchronization constraints, which has
numerous real-world applications. We propose a new CP model
and an ALNS algorithm. The most remarkable feature of our ALNS
is that we use linear programming to check the feasibility of inser-
tions. A number of acceleration techniques have been proposed to
significantly reduce the computation time of the algorithm. The
obtained results on benchmark instances from the literature show
the good performance of our method. Our CP model can even pro-
vide better solutions than a CP-based ALNS for small instances in
much shorter running times. Our lp-ALNS dominates cp-ALNS in
terms of solution quality, by producing 620 new best-known solu-
tions out of 681 instances, with improvement gaps that are rela-
tively high. We also apply the method to solve the VRPTWSyn, a
problem that is well studied in the literature. The tests on bench-
mark instances show that our metaheuristic provides good solu-
tions as state-of-the-art algorithms. We also improve four best
known solutions.

The research perspectives are numerous. First, although our CP
model provides very good solutions on small instances, it cannot
prove any of them optimal. This observation, combined with the

Table 4
Comparison between lp-ALNS and cp-ALNS.

Data cp-ALNS lp-ALNS gap (%)

Size Class Sync FinalObj RunTime InitialObj FinalObj RunTime Imp%

25 R1 2 544.2487 8406.7 667.7745 526.9739 1347.8 20.86% �3.22%
R2 458.2109 9978.2 594.1048 446.6154 1319.3 24.42% �2.49%
C1 246.9088 9255.3 371.2795 241.5390 1292.7 32.26% �2.16%
C2 286.4098 7643.6 342.2520 283.9314 1415.9 16.63% �0.83%
RC1 520.1329 6805.4 584.4385 515.7725 1480.5 11.23% �0.79%
RC2 485.1764 7672.3 624.6635 485.7430 1650.5 21.82% 0.12%

25 R1 7 692.9658 7846.3 888.4291 661.7204 2697.3 25.68% �4.59%
R2 587.3948 10289.6 753.2626 575.4996 3011.7 22.83% �1.98%
C1 318.3507 8304.2 485.0793 311.0783 2489.7 34.81% �2.25%
C2 325.0070 7308.5 411.1374 323.3936 2090.1 20.95% �0.49%
RC1 623.5873 6388.2 900.0518 605.3236 2707.9 31.69% �2.80%
RC2 573.4323 8828.2 796.9595 556.5850 2987.9 29.59% �2.93%

25 R1 13 821.1631 7683.6 1113.333 790.7901 3989.3 28.71% �3.82%
R2 701.3905 10194.9 930.8132 681.8161 4523.5 26.21% �2.74%
C1 356.2599 6594.2 585.0626 349.7486 3481.7 39.33% �1.78%
C2 384.0774 6977.4 461.5924 376.7076 3511.1 17.86% �1.84%
RC1 657.5279 5892.3 1009.331 644.6960 3844.1 35.93% �1.72%
RC2 600.0163 8504.3 905.7041 586.7275 4460.4 33.84% �2.25%

50 R1 3 909.5803 19518.2 1143.763 860.4969 4508.1 24.75% �5.69%
R2 747.6849 23888.9 999.7746 710.4967 4496.9 28.77% �5.03%
C1 460.1213 39268.2 554.8499 445.4759 4532.7 19.14% �3.13%
C2 476.6964 35246.2 633.3015 466.1748 4804.5 25.20% �2.02%
RC1 959.1396 17810.0 1165.249 932.1801 4539.8 19.44% �2.98%
RC2 788.3569 20046.5 1201.248 775.9619 4857.4 35.07% �1.65%

50 R1 13 1178.034 19893.2 1508.424 1103.480 10834.1 26.81% �6.57%
R2 991.7101 23972.1 1352.777 931.9242 13253.3 30.88% �6.03%
C1 625.0501 18575.3 951.2536 607.6679 9646.9 35.13% �2.70%
C2 610.4964 22449.2 907.3918 603.0134 13477.1 31.94% �1.20%
RC1 1231.836 17850.4 1664.564 1167.640 11213.3 29.66% �5.15%
RC2 1014.296 22600.4 1629.658 975.5894 12489.1 39.79% �3.96%

50 R1 25 1354.380 19456.9 1786.241 1259.770 18880.4 29.63% �7.15%
R2 1134.506 24311.6 1580.263 1057.765 26470.6 32.82% �6.96%
C1 689.7339 16392.7 1100.512 674.8498 18270.7 38.23% �2.09%
C2 697.0899 20694.2 1069.437 668.8730 23789.4 35.90% �3.85%
RC1 1331.455 17536.3 2064.870 1270.645 18259.1 38.31% �4.30%
RC2 1087.594 23088.4 1858.651 1041.364 21808.5 43.37% �4.50%

100 R1 5 1429.048 82716.3 1847.463 1349.893 18128.8 26.94% �5.87%
R2 1114.927 107910.0 1587.720 1038.766 19082.2 34.41% �6.98%
C1 1017.524 41401.6 1493.110 1005.144 21153.7 32.45% �1.20%
C2 841.6708 75868.3 1156.707 792.8305 20527.3 30.57% �5.74%
RC1 1637.621 73411.3 2187.973 1575.960 19985.8 27.97% �3.86%
RC2 1286.366 97137.4 1983.771 1219.061 20101.6 38.63% �5.47%

100 R1 25 1789.477 80930.0 2353.730 1667.065 39167.0 29.28% �7.01%
R2 1407.660 106302.7 2108.117 1303.016 55645.6 37.91% �7.66%
C1 1441.884 74134.6 2335.434 1396.531 38251.0 39.86% �3.13%
C2 1087.373 70059.3 1670.794 1004.834 39562.4 38.45% �7.24%
RC1 2146.339 71074.1 2985.869 2045.495 40795.9 31.44% �4.73%
RC2 1709.736 99529.7 2594.230 1610.915 51314.6 37.95% �6.06%

100 R1 50 2092.569 72804.5 2831.534 1931.541 59256.5 32.07% �7.91%
R2 1693.735 104309.4 2526.176 1513.136 89195.5 40.16% �10.91%
C1 1609.269 72829.5 2911.811 1545.038 57106.8 46.57% �3.91%
C2 1180.336 54500.8 1927.523 1078.205 69467.0 41.82% �8.42%
RC1 2522.189 67991.7 3650.564 2361.475 60008.8 35.39% �6.45%
RC2 1945.313 95459.4 3173.071 1817.931 63274.9 42.44% �6.83%

200 R1 10 4144.381 126805.8 5674.585 3893.875 37843.3 31.74% �6.55%
R2 3713.917 161933.9 5317.305 3320.119 37547.4 37.72% �11.05%
C1 3391.796 100174.6 5108.380 3299.623 39677.3 34.62% �2.67%
C2 2578.896 145855.5 3861.907 2364.314 36008.3 38.13% �8.26%
RC1 4088.110 138911.3 5642.754 3884.939 38358.8 31.03% �4.95%
RC2 3303.763 149639.7 4898.392 2917.336 39697.6 40.55% �11.91%

200 R1 50 5074.646 136440.0 7240.237 4724.183 74670.6 35.08% �7.46%
R2 4769.591 163572.0 6608.872 4074.128 93781.0 38.47% �14.99%
C1 4238.077 120709.5 7290.512 4126.756 74785.5 43.11% �2.65%
C2 3254.876 161222.8 5851.064 3008.252 81829.4 48.25% �7.49%
RC1 4944.824 144934.9 7017.894 4573.909 78424.0 34.65% �7.50%
RC2 4039.977 155597.6 6108.987 3539.513 92402.6 41.75% �12.49%

200 R1 100 6139.267 137336.0 8718.394 5704.425 116804.2 34.72% �7.55%
R2 5616.638 157111.4 7993.287 4699.330 154303.7 41.40% �16.75%

12 M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085

Table 4 (continued)

Data cp-ALNS lp-ALNS gap (%)

Size Class Sync FinalObj RunTime InitialObj FinalObj RunTime Imp%

C1 4964.759 111991.6 9117.560 4757.915 112905.5 47.57% �4.16%
C2 3646.121 132923.9 6969.890 3374.519 146172.7 50.71% �7.31%
RC1 5836.127 148733.9 8265.386 5395.134 122680.9 34.72% �7.58%
RC2 4882.749 159016.6 7138.363 4204.200 153580.6 41.12% �13.99%

M.H. Hà et al. / Computers and Operations Research 124 (2020) 105085 13
fact that there is no efficient exact method so far to solve the VRP
with synchronization constraint, indicates that this class of prob-
lems is hard to solve. The development of an efficient exact method
is still an open question. Second, we believe that our lp-ALNS can
be a used as a general framework, since it is easy to incorporate
other constraints into the LP models. Thus, applying our method
to solve other hard variants of VRPs could be an interesting
research direction. Finally, our lp-ALNS is still quite time-
consuming. Other acceleration techniques exploiting the special
structures of the LP programs that validate insertion feasibility
are required to obtain an efficient general solver for VRPs with rich
attributes.

CRediT authorship contribution statement

Minh Hoàng Hà: Conceptualization, Methodology, Software,
Investigation, Supervision, Validation, Writing - original draft. Tat
Dat Nguyen: Software, Validation, Methodology, Writing - original
draft. Thinh Nguyen Duy: Software, Writing - original draft. Hoang
Giang Pham: Software, Validation, Data curation. Thuy Do: Soft-
ware, Writing - original draft. Louis-Martin Rousseau: Conceptu-
alization, Methodology, Validation, Writing - review & editing,
Resources.

Acknowledgment

This work was supported by Phenikaa University and the
Canada Research Chair in Analytics and Logistics. We thank Ngan
Ha Duong (ORLab, VNU University of Engineering and Technology)
for performing a part of experiments. We also appreciate the two
anonymous reviewers for their insightful comments and
suggestions.

Appendix A

Table 4 reports the comparison between lp-ALNS and cp-ALNS
in terms of objective values on average. The three first columns
represent the size, class name, and the number of special cus-
tomers of each instance class. Columns 4 and 5 report the objective
of solutions (Column ‘‘FinalObj”) and running time in seconds (Col-
umn ‘‘RunTime”) on average of the cp-ALNS. Next columns show
the results on average for each instance class of our lp-ALNS. More
precisely, ‘‘InitialObj” is the objective value of the initial solution
constructed by regret-2 heuristic. ‘‘FinalObj” is the objective value
of the final solution after the search is stopped. ‘‘RunTime” reports
the computational time in seconds. Column ‘‘Imp%” shows the
improvement of final solutions compared with initial ones. The
final column ‘‘gap%” presents the gap between lp-ALNS and cp-
ALNS solutions. A negative value means lp-ALNS provides a better
solution.

References

Afifi, Sohaib, Dang, Duc-Cuong, Moukrim, Aziz, 2016. Heuristic solutions for the
vehicle routing problem with time windows and synchronized visits.
Optimization Letters 10 (3), 511–525.
Bredström, David, Rönnqvist, Mikael, 2008. Combined vehicle routing and
scheduling with temporal precedence and synchronization constraints.
European Journal of Operational Research 191 (1), 19–31.

Dohn, Anders, Rasmussen, Matias Sevel, Larsen, Jesper, 2011. The vehicle routing
problem with time windows and temporal dependencies. Networks 58 (4),
273–289.

Drexl, Michael, 2012. Synchronization in vehicle routing – A survey of vrps with
multiple synchronization constraints. Transportation Science 46 (3), 297–316.

Fink, Martin, Desaulniers, Guy, Frey, Markus M., Kiermaier, Ferdinand, Kolisch,
Rainer, Soumis, François, 2019. Column generation for vehicle routing problems
with multiple synchronization constraints. European Journal of Operational
Research 272 (2), 699–711.

Ghedira, Khaled, 2013. Constraint Satisfaction Problems: CSP Formalisms and
Techniques. John Wiley & Sons.

Ham, Andy M., 2018. Integrated scheduling of m-truck, m-drone, and m-depot
constrained by time-window, drop-pickup, and m-visit using constraint
programming. Transportation Research Part C: Emerging Technologies 91, 1–
14.

Hojabri, Hossein, Gendreau, Michel, Potvin, Jean-Yves, Rousseau, Louis-Martin,
2018. Large neighborhood search with constraint programming for a vehicle
routing problem with synchronization constraints. Computers & Operations
Research 92, 87–97.

Homberger, J., Gehring, H., 1999. Two evolutionary metaheuristics for the vehicle
routing problem with time windows. INFOR 37, 297–318.

IBM Software, 2015. Ibm ilog cplex optimization studio v12.6.3..
Kindervater, G.A.P., Savelsbergh, M.W.P., 1997. Vehicle Routing: Handling Edge

Exchanges. John Wiley & Sons, pp. 337–360.
Nacima Labadie, Christian Prins, Yanyan Yang, 2004. Iterated local search for a

vehicle routing problem with synchronization constraints. In: Begoña Vitoriano,
Eric Pinson, Fernando Valente (Ed.), ICORES 2014 – Proceedings of the 3rd
International Conference on Operations Research and Enterprise Systems,
Angers, Loire Valley, France, March 6–8, 2014, pages 257–263. SciTePress..

Liu, Ran, Tao, Yangyi, Xie, Xiaolei, 2019. An adaptive large neighborhood search
heuristic for the vehicle routing problem with time windows and synchronized
visits. Computer & Operations Research 101, 250–262.

Parragh, Sophie N., Doerner, Karl F., 2018. Solving routing problems with pairwise
synchronization constraints. Central European Journal of Operations Research
26 (2), 443–464.

Paul Shaw, 1998. Using constraint programming and local search methods to solve
vehicle routing problems. In: Michael J. Maher, Jean-Francois Puget (Eds.),
Principles and Practice of Constraint Programming – CP98, 4th International
Conference, Pisa, Italy, October 26–30, 1998, Proceedings, vol. 1520 of Lecture
Notes in Computer Science, Springer, pp. 417–431..

Pesant, Gilles, Gendreau, Michel, Potvin, Jean-Yves, Rousseau, Jean-Marc, 1998. An
exact constraint logic programming algorithm for the traveling salesman
problem with time windows. Transportation Science 32 (1), 12–29.

Philippe Laborie, 2009. IBM ILOG CP optimizer for detailed scheduling illustrated on
three problems. In: Willem Jan van Hoeve, John N. Hooker (Ed.), Integration of
AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, 6th International Conference, CPAIOR 2009,
Pittsburgh, PA, USA, May 27–31, 2009, Proceedings, vol. 5547 of Lecture
Notes in Computer Science, Springer. pp. 148–162..

Pillac, V., Guéret, C., Medaglia, A.L., 2018. A Fast Reoptimization Approach for the
Dynamic Technician Routing and Scheduling Problem. Springer International
Publishing, Cham, pp. 347–367.

Pisinger, David, Ropke, Stefan, 2007. A general heuristic for vehicle routing
problems. Computer & Operations Research 34 (8), 2403–2435.

Rasmussen, Matias Sevel, Justesen, Tor, Dohn, Anders, Larsen, Jesper, 2012. The
home care crew scheduling problem: Preference-based visit clustering and
temporal dependencies. European Journal of Operational Research 219 (3),
598–610.

Rousseau, Louis-Martin, Gendreau, Michel, Pesant, Gilles, 2013. The synchronized
dynamic vehicle dispatching problem. INFOR Information Systems and
Operational Research. 51 (2), 76–83.

Sarasola, Briseida, Doerner, Karl F., 2020. Adaptive large neighborhood search for
the vehicle routing problem with synchronization constraints at the delivery
location. Networks 75 (1), 64–85.

Solomon, Marius M., 1987. Algorithms for the vehicle routing and scheduling
problems with time window constraints. Operations Research 35 (2), 254–265.

Vikas Goel, M. Slusky, W.-J. van Hoeve, Kevin C. Furman, Yufen Shao, 2015.
Constraint programming for LNG ship scheduling and inventory management.
European Journal of Operational Research 241 (3), 662–673..

http://refhub.elsevier.com/S0305-0548(20)30202-1/h0005
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0005
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0005
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0010
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0010
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0010
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0015
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0015
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0015
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0020
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0020
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0025
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0025
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0025
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0025
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0030
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0030
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0035
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0035
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0035
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0035
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0040
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0040
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0040
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0040
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0045
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0045
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0055
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0055
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0065
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0065
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0065
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0070
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0070
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0070
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0080
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0080
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0080
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0090
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0090
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0090
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0095
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0095
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0100
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0100
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0100
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0100
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0105
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0105
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0105
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0110
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0110
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0110
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0115
http://refhub.elsevier.com/S0305-0548(20)30202-1/h0115

	A new constraint programming model and a linear programming-based adaptive large neighborhood search for the vehicle routing problem with synchronization constraints
	1 Introduction
	2 Problem definition and a mixed integer programming model
	3 A new constraint programming model
	4 Linear programming-based adaptive large neighborhood search algorithm
	4.1 Insertion operators
	4.1.1 Cheapest insertion heuristic
	4.1.2 Regret heuristics
	4.1.3 Checking insertion feasibility of regular customers
	4.1.4 Checking insertion feasibility of special customers

	4.2 Removal operators
	4.2.1 Random removal
	4.2.2 Related removal
	4.2.3 Worst removal

	5 Computational results
	5.1 Comparison of CP model, MIP model, lp-ALNS, and cp-ALNS on the small-size instances
	5.2 Comparison of lp-ALNS and cp-ALNS on all the instances of Hojabri et␣al. (2018)
	5.3 Comparison of lp-ALNS with the state-of-the-art approaches for the VRPTWSyn

	6 Conclusion
	CRediT authorship contribution statement
	Acknowledgment
	Appendix A
	References

