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Abstract: The Influence Maximization (IM) problem, which finds a set of k nodes (called seedset)
in a social network to initiate the influence spread so that the number of influenced nodes after
propagation process is maximized, is an important problem in information propagation and social
network analysis. However, previous studies ignored the constraint of priority that led to inefficient
seed collections. In some real situations, companies or organizations often prioritize influencing
potential users during their influence diffusion campaigns. With a new approach to these existing
works, we propose a new problem called Influence Maximization with Priority (IMP) which finds out
a set seed of k nodes in a social network to be able to influence the largest number of nodes subject
to the influence spread to a specific set of nodes U (called priority set) at least a given threshold T in
this paper. We show that the problem is NP-hard under well-known IC model. To find the solution,
we propose two efficient algorithms, called Integrated Greedy (IG) and Integrated Greedy Sampling (IGS)
with provable theoretical guarantees. IG provides a

(
1− (1− 1

k )
t
)

-approximation solution with t
is an outcome of algorithm and t ≥ 1. The worst-case approximation ratio is obtained when t = 1
and it is equal to 1/k. In addition, IGS is an efficient randomized approximation algorithm based
on sampling method that provides a

(
1− (1− 1

k )
t − ε

)
-approximation solution with probability

at least 1 − δ with ε > 0, δ ∈ (0, 1) as input parameters of the problem. We conduct extensive
experiments on various real networks to compare our IGS algorithm to the state-of-the-art algorithms
in IM problem. The results indicate that our algorithm provides better solutions interns of influence
on the priority sets when approximately give twice to ten times higher than threshold T while running
time, memory usage and the influence spread also give considerable results compared to the others.

Keywords: social networks; influence maximization with priority; optimization; approximation
algorithm

1. Introduction

Presently, Online Social Networks (OSNs) have become an important platform in communication
as well as e-commerce. Companies and businesses have leveraged a rapid spread of information
thanks to the “word of mouth” effect among friends in social networks as a powerful tool for viral
marketing. For instance, companies can provide some ones with free samples over an OSN so
that much more people may know about their products and they have more chances to sell them.
Influence Maximization (IM) problem [1], a key problem in viral marketing, has been extensively
studied for this decade due to its tremendous value in business, viral marketing and influence
propagation. Basically, IM aims to find some nodes (called seedset) in a social network to inject opinion,
innovation or influence that can effect the largest the number of nodes. Kempe et al. [1] first studied
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IM as an optimization problem combined with two well-known models, Independent Cascade (IC) and
Linear Threshold (LT). Since IM is NP-hard, they designed a native greedy algorithm that returned
an (1− 1/e)-approximation solution. The research shows that IM is not only a potential commercial
role in viral marketing [2,3] but also a foundation of various applications in many fields such as
epidemics control in social network [4–8], social network monitoring [9,10], recommendation system
[11], etc. Hence, IM has been extensively studied recently [2,4,12–19].

Although IM has a lot of great applications in viral marketing, previous studies ignored
considering the impact on priority users who could play an important role for effectiveness of viral
marketing campaigns. In fact, companies often prioritize specific potential customers, who are
financially competent or suitable for their products. For examples, if a company produces baby
diapers, they tend to introduce the product to married women aged 20 to 45. Supposing that they
have some data about user accounts on a social network, hence they launch a promotion with suitable
amount of gifts to married female users via this social network. If we only care about the number of
influenced individuals, as in the case of IM, we will not evaluate the impact to the potential users and
lead to wrong selection of a seed set. Figure 1 shows an example. This network contains 8 nodes and
9 edges, the priority set is {b, d} and the weight of each edge (or influence probability) is assigned to 1.
Considering the case when the budget k = 1 (number of seed nodes), the optimal solution of IM is { f }
influences to 6 nodes including { f , d, g, c, e, h} except b. Hence, IM cannot take effect to all priority
nodes.The solution must be {a} that has the total influence is only 5.

g
f

e

b c

d

a

h

Figure 1. A toy example shows the difference between the influence maximization and our
proposed problem.

Motivated by such interesting scenarios, in this paper we investigate the Influence Maximization
with Priority (IMP) problem, which takes into account the priority constraint for influence process.
Given a social network G = (V, E), a priority set U ⊂ V, a budget k and a priority threshold T, (T ≤ k),
the goal is to find the seed set S sized at k so that it influences to U at least T and the influence
of the cascade is maximized. In fact, IMP is more suitable than IM. Besides, it generalizes IM

problem. Nevertheless this problem faces with complicated challenges caused by the constraint
of priority. To address this problem, we propose two approximation algorithms, Integrated Greedy
(IG) and Integrated Greedy-based Sampling (IGS), with provable theoretical guarantees. IG meets the
theoretical guarantee based on a modification of the natural greedy algorithm while IGS is an efficient
randomized approximation algorithm based on sampling method [13–15,20]. This algorithm combines
two novel techniques. Firstly, we propose Targeted Reverse Reachable (TRR) concept by modifying the
Reverse Reachable Sampling (RR) technique [13–15,20] to estimate influence from a seed set to a given
priority set. Secondly, we develop a new strategy to select a set of seeds in accordance with the priority
constraint and set the number of samples to give a theoretical guarantees. Because IMP is a separate
case of IM, we have built extensive experiments on various real networks to compare our IGS algorithm
to the state-of-the-art algorithms for IM problem such as DSSA [15], BCT [2], OPIM about the influence
on a given priority set, running time and memory used while the influence spread approximations are
ensures as in IM.

Our contributions are summarized as follows:

• We propose the Influence Maximization with Priority (IMP) problem that considers priority constraint
in Influence Maximization (IM) problem. It means we expand the IM by adding a constraint
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to influence on a given set of users. IMP aims to find the seed set S with size k so that total
influence of priority users is at least a given threshold T, (k ≥ T) and still maintain the influence
of cascade maximized.

• We propose two approximation algorithms, IG and IGS, for the IMP problem. IG algorithm

provides an approximation ratio of
(

1− (1− 1
k )

t
)

, where t ≥ k− T is an output of the algorithm.
In addition, IGS is a randomized approximation algorithm providing an approximation ratio of(

1− (1− 1
k )

t − ε
)

with probability at least 1− δ, where ε > 0, δ ∈ (0, 1) are input parameters
and t is an output of algorithm.

• We conduct extensive experiments on various real networks such as netHEPT, netPHY,
Email-Enron, DBLP, and Twitter ReTweet. The results indicate that our algorithm,
IGS, often outperforms state-of-the-art IM algorithms in terms of influence, running time and
memory used. In particular, IGS provides the solution which ensures that the influence on
the priority set is approximately from twice to 10 times greater than its threshold T while still
maintains influence spread approximations as in IM algorithms. Further, we also demonstrate that
IGS is faster and uses lower memory than the others in a lot of cases. On the whole, although IGS

has to care about how influences to a target given users, IGS still gives considerable fast runtime,
low memory used and high maximized influence on all nodes such as state-of-the-art algorithms
such as DSSA, BCT, OPIM-C. It proves that IGS has been very well designed.

Related work. Kempe et al.[1] first studied the Influence Maximization (IM) problem inspired by
exploiting the influence among users in social networks for viral marketing [21]. They formulated IM

as a discrete optimization problem under two classical information diffusion models, Independent
Cascade (IC) and Linear Threshold (LT). They proved that IM could be approximated within a ratio of
1− 1/e + ε for any ε ∈ (0, 1) and proposed a greedy algorithm that provided an approximation ratio of
1− 1/e− ε for ε > 0. Later, Chen et al.[12,16] continued to study IM and proved that to calculate exactly
the influence spread of a seeding set was #P-Hard. Hence although many heuristics algorithms have
been proposed to solve this problem in large networks, they still have failed to retain the approximation
ratio of 1− 1/e− ε and have provided a low quality solutions such as the cost-effective lazy-forward
heuristic (CELF) proposed by Leskovec et al. [22] which is based on improving greedy algorithm to
get 700 times faster than the greedy algorithm with Mote-Carlo simulation; a fast heuristics algorithm
called PMIA proposed by Chen et al. [12] which constructs a directed acyclic graph to estimate the
influence under IC model or the algorithm proposed by the authors in [16] which uses a local directed
acyclic graphs (LDAG) to calculate the local influence of nodes under LT model. To keep the 1− 1/e− ε

ratio, research on the approximation approach continues to be explored. Borgs et al. [13] first presented
an (1− 1/e− ε)-approximation algorithm with probability at least 1− δ in O(kl2(m + n) log2 n/ε3)

time complexity by introducing Reverse Influence Sampling (RIS) model. This model has formed the
foundation for further algorithm development. [14,15,20,23].

From then on, many works expanded IM in contexts of viral marketing. Nguyen et al. [24]
investigated the Budged Influence Maximization (BIM) problem which considered the cost of selecting
a node and proposed a (1− 1/

√
e − ε) approximation algorithm. The authors in [2] studied the

a generalization of IM and BIM problems, called Cost-aware Targeted Viral Marketing (CTVM). In this
work, each node u had an arbitrary cost c(u) and a benefit b(u) and the goal of CTVM was to select
a seed set within a given budget so that the total benefit was maximized. We believe that this is the
closest problem to our work. In CTVM problem, we can set parameters that maximize the influence
on a given target set of users but cannot simultaneously maximize the influence of the others as in
our problem. Later, several works improve the approximation as well as the scalability of CTVM
algorithms [25,26].

Moreover, there are also many variants of IM problem that were studied. Some works studied
the constraints of IM such as [17,18,27], in which edges were associated with a topic influence weight.
These problems aimed to find a set of k users that maximized influenced users according to a topic



Algorithms 2020, 13, 183 4 of 23

query. However, the proposed algorithms did not provide any theoretical guarantee. Li et al. [28]
proposed the Location-aware Influence Maximization (LIM) problem with the goal was to select the
k-seed set so that the number of influenced nodes in the given query region was maximized. [29]
investigated the Distance-aware Influence Maximization (DAIM) problem which considered the role
of distance between users and the promoted location in seed selection. They extended a RIS process
model and provided an unbiased estimator for the DAIM problem.

Besides, some works investigated the problem of Competitive Influence Maximization (CIM),
which considered the context of IM under the competition of many rivals. Bharathi et al. [30] first
formulated the CIM problem under a new competitive propagation model which was an extension
of IC model. Chen et al. [12] investigated CIM under the combating with negative opinions based
on an assumption that negative information was often more attractive than official information.
Some authors considered the problem under many different cases in viral marketing, such as
proposing a distance-aware problem [31], expanding the LT model to reflect competition [13,32–34],
proposing a heuristic algorithm [35], etc.

Recently, some authors studied the selection of seed nodes in a social network to influence groups
of users or communities instead of individuals [36–39]. They argue that in real-world scenarios,
creating impact on groups is more beneficial than the individuals in a network. Tsang et al. [36]
investigated the Fairness Group Maximization problem with two fairness criteria including maximin
fairness and diversity. While the maximin fairness aimed to maximize the minimum influence
nodes of any per their population, the criterion of diversity was an alternate fairness concept by
extending the notion of individual rationality to group rationality. They proposed an approximation
algorithm based on multi-submodular objective function processing techniques. More recent, the
authors in [37] proposed exact algorithms for fairness group influence with multiple criteria based
on mix integer linear programming formulation on a specific set of sample graphs under IC model.
In [38], the authors characterize the intricate relationship between diversity and efficiency, which
sometimes may be at odds but may also reinforce each other. Nguyen et al. [39] considered the
Influence Maximization problem at the Community level problem, which found seed set of k nodes
that influenced to largest number of communities. They showed that the objective function was
neither sub-modular nor super-modular and proposed some approximation algorithms with provable
guarantees. Different to our studied problem in this paper, these studies did not address the priority
set in influence maximization context. Hence the proposed algorithms cannot be applied to the IMP

problem.
Organization. The rest of the paper is organized as follows: Section 2 presents information

diffusion model and problem definitions. Sections 3 and 4 present our proposed Integrated Greedy
and Integrated Greedy-based Sampling algorithms for IMP problem with the theoretical analysis.
Experimental results are shown in Section 5. In Section 6 we discuss the future work and conclude
this paper.

2. Model and Problem Definition

In this section, we introduce about network model and the well-known Independent Cascade (IC)
diffusion information model [1]. Under IC model, we formally define the Influence Maximization with
Priority (IMP) problem.

2.1. Graph Notation and Independent Cascade Model

Let G = (V, E) be a directed graph representing a social network with a node set V and a directed
edge set E, |V| = n and |E| = m. Let Nin(v) and Nout(v) be two sets of in-neighbors and out-neighbor
of a node v, respectively. The notations of S and S∗ represent to a seed set that is a solution and an
optimal solution of IMP, respectively. We also note OPT = σ(S∗) is the influence of an optimal solution.

In Independent Cascade (IC) model, each edge e = (u, v) ∈ E has an influence probability
p(u, v) ∈ (0, 1) that represents the information transmission from u to v. Each node v ∈ V has
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two possible states, active and inactive. Given a seed set S ⊆ V, the diffusion process from S happens in
discrete steps t = 0, 1, . . ., as follow:

• At step t = 0, all nodes in S is activated.
• At step t ≥ 1, for an activated node u in previous steps, it has a single chance to activate each

inactive neighbour v with the successful probability p(u, v). An activated node remains active till
the end of the diffusion process.

• The propagation process ends when no more node is activated.

Kempe et al. [1] show that IC model is equivalent to live-edge model and estimating the quantity
of influence nodes can be done as follows. We first generate a sample graph g from original graph G by
selecting each edge e = (u, v) ∈ E, independently, with probability p(u, v), and no select edge (u, v)
with probability 1− p(u, v). The probability that a realization g can be generated from G (denoted as
g ∼ G) is

Pr[g ∼ G] = ∏
e∈E(g)

p(u, v) ∏
e∈E\E(g)

(1− p(u, v)) (1)

In this equation, E(g) is the set edge of g. The number of sample graphs is 2|E|. The influence
spread of a seed set S in G is calculated as follows:

σ(S) = ∑
g∼G

Pr[g ∼ G]|R(g, S)| (2)

where R(g, S) denotes the set of reachable nodes from S in g. For a set of priority nodes U, the influence
spread of S to U is calculated as follows:

σU(S) = ∑
g∼G

Pr[g ∼ G]|R(g, S→ U)| (3)

where Rg(S→ P) denotes the set of nodes in U that can reach from S in g. Kempe et al. [1] also show
that, σ(·) is a monotone and sub-modular function, i.e, for any A ⊂ V, and v /∈ V \ B, we have:

σ(A + {v}) ≥ σ(A) (4)

and for any A ⊆ B ⊂ V, and v /∈ V \ B, we have:

σ(A + {v})− σ(A) ≥ σ(B + {v})− σ(B) (5)

We also easy to see that σU(·) is a monotone and sub-modular function.

2.2. Problem Definition

We investigate Influence Maximization with Priority (IMP) defined as follows:

Definition 1 (IMP problem). Given a graph G = (V, E) under IC model, a positive integer k (budget),
the priority set U ⊂ V, and the threshold T with T ≤ k, T ≤ |U|. IMP problem asks to find the seed set S ⊂ V,
with |S| ≤ k and σU(S) ≥ T so that influence spread, σ(S), is maximized, i.e, find S that is the solution to the
following optimization problem:

maximize: σ(S) (6)

subject to: |S| ≤ k (7)

σU(S) ≥ T (8)
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IMP becomes IM problem when U = ∅. Therefore, IM is a special case of IMP and IMP is also
NP-hard. In addition, the calculation of the influence function from the seed set is proven to be
#P-hard [12]. Thus finding the solution to the problem within the time allowed is very challenging.

3. Integrated Greedy Algorithm

In this section, we first propose Integrated Greedy (IG) Algorithm which is well-known to
resolve monotone and sub-modular problems that ensures an lower-bounded of optimization solution.
The details of algorithm is described in Algorithm 1.

Algorithm 1: Integrated Greedy (IG) algorithm

Input: Graph G = (V, E), U ⊂ V, k, T
Output: Seed set S, and t

1. S1 ← ∅, S2 ← ∅
/* Phase 1: Greedy strategy for prior set */

2. while σU(S1) < T do
3. u← arg maxv∈V\S1

(
σU(S1 ∪ {v})− σU(S1)

)
4. S1 ← S1 ∪ {u}
5. end
6. t← |k| − |S1|, i← 0
/* Phase 2: Greedy strategy for IM within remain budget */

7. while i < t do
8. u← arg maxv∈V\S2

(
σ(S2 ∪ {v})− σ(S2)

)
9. if u ∈ S1 then

10. t← t + 1
11. end
12. S2 ← S2 ∪ {u}, i← i + 1
13. end
14. S← S1 ∪ S2

15. return S, t;

Assume S1 is the solution of the problem that finds the minimum seed nodes such that the
influence on the priority set is greater than threshold T, and S2 is a solution of IM problem. The main
idea of this algorithm is to modify the native greedy algorithm [1] by combining two above solutions.

The algorithm is divided into two main phases. In the first phase, it tries to find a solution S1

by a greedy strategy (line 2–4). In each iterator, the algorithm chooses a node u with largest influence
incremental to set U into S1 (line 3-4) until the σU(S1) ≥ T. Since T < k, |S1| ≤ T < k. Denote t = k− T
as the remaining budget (line 6). The algorithm next finds the candidate solution S2 for IM with the
remaining budget t by using a greedy method in the second phase (line 6-10). In each iterator i, it selects
a node u with largest influence incremental (line 7). If u already belongs to S1, the algorithm increases t by
1 (line 8–9). This phase ends when the remaining budget t is exhausted (line 6). Finally, the algorithm
returns the solution S which unites S1 and S2. It is easy to confirm that |S| = k, and t > T − k ≥ 1
since k > T. Theorem 1 shows the approximation guarantee of IG algorithm.

Theorem 1. IG algorithm returns (S, t), where S is a feasible solution and t ≥ 1, satisfies:

σ(S) ≥
(

1−
(

1− 1
k

)t
)

σ(S∗)

The worst-case approximation ratio is obtained when t = 1 and it is equal to 1/k.
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Proof. Denote S∗IM = {s1, s2, . . . , sk} is an optimal solution of IM problem for input data of Algorithm 1
(the graph G and budget k). Obviously, we have σ(S∗IM) ≥ σ(S∗). After ending the second
phase, assume that S2 = {u1

2, u2
2, . . . , ut

2}, Si
2 = {u1

2, u2
2, . . . , ui

2}, and S0
2 = ∅. In the second phase,

the algorithm repeatedly selects a node u of which incremental influence gain is largest and due to the
function σ(·) is monotone and sub-modular [1], so we have:

σ(S∗IM)− σ(Si
2) ≤ σ(S∗IM ∪ Si

2)− σ(Si
2) (9)

≤
k

∑
j=1

(
σ(Si

2 ∪ {s1, s2, . . . , sj})− σ(Si
2 ∪ {s1, s2, . . . , sj−1})

)
(10)

≤
k

∑
j=1

(
σ(Si

2 ∪ {sj})− σ(Si
2)
)

(Due to σ is a sub-modular function) (11)

≤ k · max
s∈S∗IM

(
σ(Si

2 ∪ {s})− σ(Si
2)
)

(12)

≤ k ·
(

σ(Si+1
2 )− σ(Si

2)
)

(13)

Therefore, for any i = 0, . . . , t− 1, we have

σ(Si+1
2 )− σ(Si

2) ≥
1
k
(σ(S∗IM)− σ(Si

2)) (14)

Minus two inequality terms to σ(S∗IM), we have:

σ(Si+1
2 )− σ(Si

2)− σ(S∗IM) ≥ 1
k

σ(S∗IM)− σ(S∗IM)− 1
k

σ(Si
2) (15)

Rearrange the terms of the above inequality, we have

σ(Si+1
2 )− σ(S∗IM) ≥

(
1− 1

k

)
(σ(Si

2)− σ(S∗IM)) (16)

≥
(

1− 1
k

)t
(σ(S0

2)− σ(S∗IM)) (17)

Together with the fact that S0
2 = ∅ and σ(∅) = 0, the above inequality implies

σ(S2) = σ(St
2) ≥

(
1−

(
1− 1

k

)t
)

σ(S∗IM) (18)

Since σU(S1) ≥ T and S = S1 ∪ S2, S is feasible solution of IMP, and

σ(S) ≥ σ(St
2) ≥

(
1−

(
1− 1

k

)t
)

σ(S∗IM) ≥
(

1−
(

1− 1
k

)t
)

σ(S∗) (19)

which proves the theorem!

Although Algorithm 1 can provide an approximation guarantee, but it cannot work with
real-social networks because the calculation of the influence function σ(S) is #P-hard under IC

model [12]. To overcome this challenge, we propose a randomize algorithm with provable
approximation guarantee based on combining IG with a sampling technique.
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4. Sampling Algorithm with Provable Guarantees

In this section, we present an efficient algorithm for IMP problem called Integrated Greedy Sampling
(IGS) algorithm that can provide an guarantee theoretical. In addition, we show that our algorithm can
also be applied to large networks in experiments.

4.1. Estimator of Influence Functions

Firstly, we recap the concept of Reachable Reverse (RR) set [40] to estimate influence function
σ(·). Base on that, we propose the concept of Targeted Reachable Reverse (TRR) set to estimate
influence function σU(S). Then we propose IGS algorithm and provide theoretical analysis based on
statistical evidence.

Definition 2 (Reachable Reverse (RR) set [40]). Given a graph G = (V, E) under IC model. A random RR
set Rj is generated from G by:

1. Picking a source node u with probability 1
n .

2. Generating a sample graph g from G, and returning Rj as nodes which can be reached from u in g.

For a random RR set Rj, define a random variable Xg(S) = min{1, |Rg ∩ S|}. Borgs et al. [40]
show that RR samples can be used to estimate the influence function by applying the following Lemma.

Lemma 1. For any set of nodes S ⊆ V, we have σ(S) = n ·E[Xg(S)].

Given a set of RR setR, and a set node S, we can approximate the value of σ(S) by σ̂(S) defined
as follow:

σ̂(S) =
n
|R| ∑

Rg∈R
Xg(S) (20)

Generating RR sets can be accomplished by using IM algorithms in [13–15,20,23]. The common
algorithm for generating RR set Rj is described in Algorithm 2. This algorithm first selects a source
node u with a probability 1

n to add into Rj. The algorithm uses a queue Q to store the visited nodes.
Initially, u is also added to Q. The algorithm next retrieves each node v in Q and picks an incoming
node x with probability p(x, v) (line 6). If successful, it adds x in to Q and Rj. This process takes place
until the set Q is empty.

Algorithm 2: Generating RR sample under IC model

Input: Graph G = (V, E) under IC model
Output: A RR Sample Rj

1. Pick a source node u with probability 1
n

2. Initialize a queue Q = {u} and Rj = u
3. while Q is not empty do
4. v← Q.pop()
5. foreach x ∈ Nin(v) \ (Rj ∪Q) do
6. With probability p(x, v): Q.push(x) and Rj ← Rj ∪ {u}
7. end
8. end
9. return Rj

We now introduce the definition of Targeted Reachable Reverse (TRR) Set on the basis of modifying
RR concept.
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Definition 3 (Targeted Reachable Reverse (TRR) Set). Given a graph G = (V, E) under IC model.
A random TRR set RU

j is generated from G by:

1. Picking a source node u ∈ U with probability 1
|U| .

2. Generating a sample graph g from G, and returning RU
g as nodes which can be reached from u in g.

We define a random variable Yg(A) = min{1, |RU
g ∩ S|}. Similar to Lemma 1, Lemma 2 shows

that we can use the value of Yg(S) to estimate function σU(S).

Lemma 2. For any set of nodes S ⊆ V, we have σU(S) = |U| ·E[Yg(S)]

Proof. Denote RU
g (u) is a TRR sample with a source node u for the sample graph g, we have:

σU(S) = ∑
g∼G
|R(g, S→ U)|

= ∑
u∈U

∑
g∼G

Pr[g ∼ G][∃v ∈ S : u is reached from v]

= ∑
u∈U

∑
g∼G

Pr[g ∼ G][∃v ∈ S : v ∈ RU
g (u)]

= |U| ∑
u∈V

1
|U| ∑

g∼G
Pr[g ∼ G]Yg(S)

= |U| ∑
u∈V

∑
g∼G

Pr[u is source node]Pr[g ∼ G]Yg(S)

= |U| ·E[Yg(S)]

The transition from the second equality to the third equality comes from the definition of RU
g (u)

and from the third to the fourth then to the fifth is caused by the distribution of choosing a node u as
a source node.

Given a set of TRR samplesR and a set node S, we define and an approximation value of σU(S)
as follow:

σ̂U(S) =
|U|
|R| ∑

RU
g ∈R

Yg(S) (21)

From Lemma 2, we can give a good approximation of σU(·) when the number of TRR samples is
large enough. We can re-use Algorithm 2 to generate a TRR set RU

j by a modification. We replace line 1

in the algorithm by picking source node u ∈ U with probability 1
|U| and leave the rest as is.

4.2. Algorithm Description and Theoretical Analysis

Algorithm description. The algorithm is detailed in Algorithm 3. It generates the set of NU TRR sets
R1, and set two candidate solutions S1, S2 empty at first. Then the body of the algorithm divides into
two phases. In phase 1, it finds a candidate solution S1 with minimum-size so that σ̂(S) ≥ (1 + α)T
by using a greedy strategy with potential function σ̂ overR1. In each iterator, it selects a node u with
maximal incremental value of the potential function (line 4) until σ̂(S) ≥ (1 + α)T. The candidate
solution S1 obtained by this phase satisfies the priority constraint, σU(S1) ≥ T with probability at least
1− δ (Lemma 4).

The phase 2 selects a candidate solution S2 with the remaining budget (t = k − |S1|) so that
the influence spread σ(·) is maximized. In this phase, it first sets the parameters ε1, tmax, Nmax and
generates N1 set of RR samples R2. The main of this phase operates in several iterators (line 12-27)
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until meeting the stopping condition (line 22). In each iterator, it finds a candidate solution S2 by a
greedy strategy. It picks a node u with maximal incremental of approximation influence σ̂(·) over R2

(line 12) until t nodes are selected. Similar to IG algorithm, if u already belongs to S1, the algorithm
increases t by 1. After that, the algorithm checks the quality of candidate solution S2 (line 17). It calculates
Fl(S2,R2, δ)- a lower-bounded of σ(S2), and Fu(S2,R2, δ)-an upper-bounded of an optimal solution
respect to IMP problem. These functions ensure the statistical criterion, which are claimed in the
Lemmas 5 and 6. If solution S2 meets the approximation condition (line 19), the algorithm returns
S2. If not, it moves to the next iterator and stops when the number of TRR samples is at least Nmax (line 21).

Algorithm 3: Integrated Greedy -based Sampling (IGS) algorithm

Input: Graph G = (V, E), U ⊂ V, k, T, ε, α, δ ∈ (0, 1)
Output: Seed set S

1. Generate a set of NU = (2 + 2
3 α)|U|

ln(( |U|
b|U|/2c)/δ)

(T+Tα)α2 TRIS setsR1.

2. S1 ← ∅, S2 ← ∅
/* Phase 1 */

3. while σ̂U(S1) < T + αT do
4. u← arg maxv∈V\S1

(
σ̂U(S1 ∪ {v})− σ̂U(S1)

)
5. S1 ← S1 ∪ {u}
6. end
/* Phase 2 */

7. ε1 ← ε
2(1−1/e)−ε

8. t0 ← k− |S1|, δ1 ← δ
6 , tmax ← arg maxj∈{t,t+1,t+2,...,k} ln((n

j)/δ1)/j

9. N1 ← ln(1/δ1)

ε2
1

, Nmax ←
(2+ 2

3 ε1)n ln(( n
tmax)/δ1)

t0ε2
1

10. imax = dNmax
N1
e, δ2 ← δ

3imax

11. Generate set of N1 RR samplesR2

12. repeat
13. t← t0, i← 0
14. while i < t do
15. u← arg maxv∈V\S2

(
σ̂(S2 ∪ {v})− σ̂(S2)

)
16. if u ∈ S1 then
17. t← t + 1
18. end
19. S2 ← S2 ∪ {u}, i← i + 1
20. end
21. Calculate Fl(S2,R2, δ2) and Fu(S2,R2, δ2)

22. if Fl(S2,R2,δ2)
Fu(S2,R2,δ2)

≥ 1− (1− 1
k )

t − ε then

23. return S2

24. else
25. Generate |R2| RR samples and add them intoR2

26. end
27. until |R2| ≥ Nmax;
28. S← S1 ∪ S2

29. return S;
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Theoretical analysis. Fortunately, the sequence of random variables Xg(S) and Yg(S)
constructed from the RR and TRR samples can be shown to form a martingale. For any random
variable Xg(S) ∈ [0, 1], let a random variable Mi = ∑i

j=1(Xi
g(S) − µ), ∀i ≥ 1, where µ = E[Xg].

For a sequence of random variables M1, M2, . . . we have E[Mi|M1, . . . , Mj−1] = E[Mi−1] +E[Xi
g(S)−

µ] = E[Mi−1]. Hence, M1, M2, . . . be a form of martingale [41]. Similarly, Yg is also a form of martingale.
Therefore, the following concentration inequality [41] applies:

Lemma 3. If M1, M2, . . . be a form of martingale, |M1| ≤ a, |Mj −Mj−1| ≤ a for j ∈ [1, i], and

Var[M1] +
i

∑
j=2

Var[Mj|M1, M2, . . . , Mj−1] = b (22)

where Var[·] denotes the variance of a random variable. Then, for any λ, we have:

Pr[Mi −E[Mi] ≥ λ] ≤ exp

(
− λ2

2
3 aλ + 2b

)
(23)

Apply this Lemma with |M1| = |X1
g(S)| ≤ 1, |Mj − Mj−1| = |X j

g(S) − X j−1
g (S)| ≤ 1,

Var[M1] = Var[X1
g(S)− µ] = Var[Xg(S)], Var[Mj|M1, M2, . . . , Mj−1] = Var[X j

g(S)− µ] = Var[Xg(S)],
and Var[Xg(S)] ≤ µ(1− µ) ≤ µ, we have:

Pr
[ |R|

∑
i=1

Xi
g(S)− |R| · µ ≥ λ

]
≤ exp

(
− λ2

2
3 λ + 2µ|R|

)
(24)

Similarly, −M1, . . . ,−Mi, . . . also form a Martingale, so apply Lemma 3, we have:

Pr
[ |R|

∑
i=1

Xi
g(S)− |R| · µ ≤ −λ

]
≤ exp

(
− λ2

2µ|R|

)
(25)

Let λ = εµ|R| and put it in two above inequalities, we have:

Pr[
|R|

∑
i=1

Xi
g − |R| · µ ≥ ε|R|µ] ≤ exp

(
− ε2|R|µ

2 + 2
3 ε

)
(26)

Pr[
|R|

∑
i=1

Xi
g − |R| · µ ≤ −ε|R|µ] ≤ exp

(
− ε2|R|µ

2

)
(27)

The following Lemma shows the lower-bound of the influence of candidate solution S1.

Lemma 4. The candidate solution S1 obtained by phase 1 of Algorithm 3 satisfies Pr[σU(S1) ≥ T] ≥ 1− δ
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Proof. Denote µY = E[Yg] =
σU(S1)
|U| , and µ̂Y = 1

NU
∑NU

i=1 Yi
g = σ̂U(S1)

|U| ≥
(T+αT)
|U| . Apply (27) for set R1,

we have:

Pr[µ̂Y ≤ (1− α)µY] = Pr
(
∑ Yi

g − NUµY ≤ −αNUµY

)
≤ exp

(
−ε2NUµY

2

)
≤ exp

(
−ε2µ̂Y NU
2(1− α)

)
≤ exp

(
−ε2(T + αT)
2(1− α)|U| NU

)

≤ exp

−(2 + 2
3 α) ln(( |U|

b|U|/2c)/δ)

2(1− α)


≤ exp

(
− ln(

(
|U|

b|U|/2c

)
/δ)

)
≤ δ

b|U|/2c

We assume that the event µ̂Y ≤ (1− α)µY happens, apply (26) for setR1, we have:

Pr[σU(S1) ≤ T] ≤ Pr
(

σU(S1) ≤
σ̂U(S1)

1 + α

)
(28)

= Pr (σ̂U(S1) ≥ (1 + α)σU(S1)) (29)

= Pr

(
|U|
NU

NU

∑
i=1

Yi
g − |U|µY ≥ |U|αµY

)
(30)

= Pr

(
NU

∑
i=1

Yi
g − NUµY ≥ NUαµY

)
(31)

≤ exp

(
− α2µY

2 + 2
3 α

NU

)
(32)

≤ exp

(
− α2µ̂Y

(2 + 2
3 α)(1− α)

NU

)
(33)

≤ exp

(
− α2σ̂U(S1)

(2 + 2
3 α)(1− α)(T + αT)

NU

)
(34)

≤ exp
(
− ln(

(
|U|

b|U|/2c

)
/δ)

)
(35)

≤ δ

( |U|
b|U|/2c)

(36)

Assume that |S1| = k1, there are at most ( n
k1
) possibilities for the candidate solutions S1. Therefore,

Pr[∃S1 : σU(S1) ≤ T] ≤
(

n
k1

)
δ

( |U|
b|U|/2c)

≤ δ (37)

Lemma 5 (Lower-bound). For any δ ∈ (0, 1), a set of RR samplesR, let c = ln( 1
δ ), and

Fl(R, S, δ) = min

{
σ̂(S)− nc

3|R| , σ̂(S) +
n
|R|

(
2c
3
−
√

4c2

9
+ 2|R|c σ̂(S)

n

)}
(38)
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We have Pr[σ(S) ≥ Fl(R, δ)] ≥ 1− δ.

Proof. Denote µ = E[Xg(S)] = σ(S)
n and µ̂ = 1

n ∑Rg∈R Xg(S) = σ̂(S)
n . Apply (24) with λ = c

3 +√
c2

9 + 2cµ|R|, we have:

Pr
[ T

∑
j=1

Xg(S)− |R| · µ ≥ λ
]
≤ δ (39)

Therefore, the following event happens with probability at least 1− δ

T

∑
j=1

Zj(S)− |R| · µ ≤ λ⇔ |R|µ̂− |R|µ− c
3
≤
√

c2

9
+ 2cµ|R| (40)

We consider two following cases:

Case 1: If |R|µ̂− |R|µ− c
3 ≤ 0, then µ ≥ µ̂− c

3|R| .

Case 2: if |R|µ̂− |R|µ− c
3 > 0, (40) becomes:

(
|R|µ̂− |R|µ− c

3

)2
≤ c2

9
+ 2cµ|R| (41)

⇔ (µ̂− µ)2|R|+ 4c
3
(µ̂− µ)− 2cµ̂ ≤ 0 (42)

Solve the above inequality for µ, we obtain:

µ ≥ µ̂ +
1
T

(
2c
3
−
√

4c2

9
+ 2|R|cµ̂

)
(43)

Combine two above cases and replace µ = σ(S)
n , µ̂ = σ̂(S)

n , we obtain the proof.

Lemma 6 (Upper-bound). For any δ ∈ (0, 1), in an iterator t of Algorithm 3, denoteRt
2 is a set of RR samples

with Nt = |Rt|, St
2 is a candidate solution of phase 2, and

Fu(Rt
2, St

2, δ) =
σ̂(St

2)

1−
(

1− 1
k

)t +
n
Nt


√√√√√c2 + 2Ntc

σ̂(St
2)(

1−
(

1− 1
k

)t
)

n
− c


We have Pr[OPT ≤ Fu(Rt

2, St
2, δ)] ≥ 1− δ

Proof. Let λ =
√

2cµNt, apply inequality (25), we have:

Pr
[ Nt

∑
i=1

Xi
g(S)− |R| · µ ≥ −λ

]
≤ exp

(
− λ2

2µ|R|

)
≤ δ (44)

Therefore, the following event happens with the probability at least 1− δ:

Ntµ̂− Ntµ ≤ −
√

2cµNt ⇔ −Nt(µ̂− µ) ≥
√

2cµNt (45)
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Solve the above quadratic inequality for µ, we obtain upper-bound for µ is,

µ ≤ max
{

µ̂, µ̂ +
1

Nt

(√
c2 + 2Ntcµ̂− c

)}
(46)

= µ̂ +
1

Nt

(√
c2 + 2Ntcµ̂− c

)
(47)

Denote S0 = arg maxS,|S|≤k σ̂(S), where σ̂ is calculated overR2
t . Since the phase of Algorithm 3

selects a candidate solution St
2 by a greedy strategy. Similar to Theorem 1, we have:

σ̂(St
2) ≥

(
1− (1− 1

k
)

)t
σ̂(S0) ≥

(
1− (1− 1

k
)

)t
σ̂(S∗) (48)

Replace µ =
σ(St

2)
n , µ̂ =

σ̂(St
2)

n into (47) and combine it with (48), we have:

OPT = σ(S∗) ≤ σ̂(S∗) +
n
Nt

(√
c2 + 2Ntc

σ̂(S∗)
n
− c

)
(49)

≤
σ̂(St

2)(
1− (1− 1

k )
)t +

n
Nt


√√√√√c2 + 2Ntc

σ̂(St
2)

n
(

1− (1− 1
k )
)t − c

 (50)

which completes the proof.

Based on above theoretical analysis, the following Theorem Approximation guarantee of
IGS algorithm.

Theorem 2. The Algorithm 3 provides a solution S and an integer t, satisfies:

• Pr[σU(S) ≥ T] ≥ 1− δ

• Pr[σ(S) ≥
(

1− (1− 1
k )

t
)
OPT] ≥ 1− δ

Proof. Since S = S1 ∪ S2 and Lemma 4, we have:

Pr[σU(S) ≥ T] ≥ Pr[σU(S1) ≥ T] ≥ 1− δ

We consider two following cases:

Case 1: If the algorithm stops with the condition |Rt
2| ≥ Nmax, apply (26) with set S∗ andR2, we have:

Pr[σ̂(S∗) ≤ (1− ε1)σ(S∗)] ≤ exp

{
−ε2

1NmaxOPT

2n

}
(51)

≤ exp

{
−ε2

1Nmaxk
2n

}
(Due to OPT ≥ k) (52)

≤ exp

{
−ε2

1Nmaxt0

2n

}
(Due to k ≥ t0) (53)

≤ δ2/
(

n
tmax

)
≤ δ2 (54)
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From (27), we have:

Pr[σ(St
2) ≤

σ̂(St
2)

(1 + ε1)
] ≤ exp

{
−ε2

1Nmaxσ(St
2)

(2 + 2
3 ε1)n

}
(55)

≤ exp

{
−ε2

1Nmaxt
(2 + 2

3 ε1)n

}
(Due to σ(St

2) ≥ t) (56)

≤ δ2/
(

n
tmax

)
≤ δ2 (57)

Apply an union probability that the events (54) and (57) happen with the probability at most
δ1 + δ1 = δ/3. Assume that they do not happen, we have:

σ(St
2) ≥

σ̂(St
2)

1 + ε1
≥

(
1− (1− 1

k )
)t

σ̂(S0)

1 + ε1
(58)

≥

(
1− (1− 1

k )
)t

σ̂(S∗)

1 + ε1
(59)

≥ 1− ε1

1 + ε1

(
1− (1− 1

k
)

)t
σ(S∗) (60)

=

((
1− (1− 1

k
)

)t
− 2ε1

1 + ε1

(
1− (1− 1

k
)

)t
)

σ(S∗) (61)

≥
((

1− (1− 1
k
)

)t
− 2ε1

1 + ε1
(1− 1

e
)

)
σ(S∗) (62)

≥
((

1− (1− 1
k
)

)t
− ε

)
σ(S∗) (63)

Hence, in this case the algorithm satisfies approximation guarantee with probability at least 1− δ
3 .

Case 2: If the algorithm stops at any iterator i, i = 1, 2, . . . , imax. At this iterator, the condition in line 19
is satisfied, apply Lemma 5 and Lemma 6, the following thing happens with the probability at
least 1− 2imaxδ2 = 1− 2δ/3:

σ(St
2)

OPT
≥

Fl(St
2,R2, δ2)

Fu(St
2,R2, δ2)

≥
(

1− (1− 1
k
)

)t
− ε (64)

Combine two above cases, the algorithm meets the approximation ratio condition with the
probability at least 1− δ/3− 2δ/3 = 1− δ.

5. Experiments

In this section, we implement and compare our algorithm IGS to other influence maximization
methods about the influence in general, the influence on priority nodes, running time and memory usage.
The dataset includes several network databases with thousands or even millions nodes and edges
(Table 1).
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Table 1. Dataset’s statistics.

Database #Nodes #Edges Types Avg. Degree

netHEPT [15] 15 K 59 K directed 4.1
ENRON [15] 37 K 184 K directed 5
netPHY [15] 37 K 181 K directed 13.4
DBLP [15] 655 K 2 M directed 6.1
TWITTER RETWEET [42] 1 M 2 M directed 4

5.1. Experimental Settings

All the implementations are on Linux machine with configurations are 2× Intel(R) Xeon(R) CPU
E5-2697 v4 @ 2.30GHz and 4 × 16 GB DIMM ECC DDR4 @ 2400MHz.

Algorithm comparisons. Since IMP is an expansion of IM, we compare IGS algorithm with several
state-of-the-art IM algorithms including: DSSA [15], BCT [2], OPIM-C [23]. In addition, we use the basic
algorithm, Max degree (Degree), which is the common baseline for information diffusion problems.
In IMP, there are two factors that impact the solution in practice: the budget (k) of selecting seed node
and the priority set of nodes (U). As a result, these two factors also affect the algorithms. From the
above observation, we conduct experiments under two settings: varies k and fixed T; varies T and
fixed k.

The dataset. For experimental purpose, we choose 5 types of databases from various resources:
NetHept, NetPhy, DBLP are citation networks, Email-Enron is communication network [15] and Twitter
Retweet is online social networks [42]. The brief of these ones are described on Table 1. These databases
are experimented because they are popular in information diffusion problems, especially used in the
state-of-the-art algorithms what we are comparing.

Parameter Settings. Graphs are formatted as each edge e = (u, v) ∈ E has the weight w(u, v)

formulated as w(u, v) =
1

din(v)
where din(v) is the in-degree of node v [14,15,20].

For the first case, k is assigned with 150, 160, 170, 180, 190 and 200, respectively, while T is fixed
at 100. In addition, set U is generated with 200 nodes. With the second case, the value of k is fixed
at 500. U set includes about 1000 nodes. We change the value of T increasing from 100 to 500. In all
experiments, we keep ε = 0.1, δ = 1/n according setting for IM algorithms [14,15,20] and α = 0.01.

5.2. Experimental Results

We install IGS to compare with state-of-the-art algorithms such as BCT, DSSA, OPIM− C and
Degree then calculate the spread of influence on all nodes and to U, the priority set, U ⊂ V. Results are
shown in following tables and figures.

The Influence. The Figure 2 and the Table 2 indicate IGS outperforms the others when influencing
to priority nodes by a given threshold T.

The above figure gives information about the influence values in case k changes from 150 to 200,
U includes 200 nodes and the threshold T is 100. The terms “infU”, “inf ” mean the influences to set U
(σU(S) ) and to all nodes (σ(S)), respectively. These algorithms output differently on various databases.
Looking at red bars, we can see IGS approximately affects the set U twice the value of the threshold
T on most databases except Re-Tweet but still higher than T . Conversely, the influence on U of the
remaining sharply fluctuate according to the databases. While DSSA and BCT influence on U over T
with netHEPT and ENRON, they work quite low with the others. OPIM− C and Degree often affect U
much lower than T. Besides, the σ(S) of BCT is highest on netHEPT whereas the one of IGS keeps at
top in all other cases. In general, the values of σ(S) of DSSA, OPIM− C and Degree have similarities
with each others.
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Figure 2. Comparisons of Influence Spreading with k = 100→ 500, T = 100 and U size = 200.

Besides, Table 2 describes the experiment while T comes from 100 to 500, k = 500 and enlarge U up
to 1K nodes. This setting is to check the case when U is large and when the threshold T is incremental.
Certainly, the condition that k ≥ T has to be maintained so we fixed k = 500. Looking at bold values,
we can see although U and S both become large and T increments gradually, the influence on U of IGS
is always significantly higher than T, even up to more than ten times. DSSA, BCT and OPIM− C also
give the outputs over threshold T in many cases, they still have values lower than T = 500 on netPHY,
DBLP and RETWEET however. The σU(S) of Degree is lowest, especially, is only 22.77 on Re-Tweet.

From Figure 2 and Table 2, we can see σU(S) of IGS is significantly higher than T and produces
better results than the state-of-the-art algorithms. This is because IGS always prioritizes affecting U
until over the threshold T then affects other nodes as well even with large values of k, U size and
T. The other algorithms show that they are not always possible to influence U to exceed the desired
threshold. On the whole, the state-of-the-art IM algorithms cannot influence the given priority set as
well as IGS can.
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Table 2. Comparisons about σ(S) and σU(S) between IGS and the others with k = 500, U size = 1 K and
T = 100→ 500.

IGS

Dataset

T NetHept Enron netPHY DBLP RETWEET

100 σ(S) 5666.16 14,267.40 1865.92 54,033.50 17,307.70
σU(S) 1482.04 1075.77 1192.84 1271.62 511.08

200 σ(S) 5581.34 14,162.20 1805.26 53,553.90 18,581.50
σU(S) 1478.93 1079.74 1175.32 1267.52 491.35

300 σ(S) 5645.40 14,284.80 1773.33 53,240.50 19,459.10
σU(S) 1476.08 1074.30 1153.32 1264.79 492.39

400 σ(S) 5640.21 14,196.50 1688.53 52,918.80 18,832.20
σ(S) 1468.48 1075.68 1125.69 1260.31 490.46

500 σ(S) 5039.45 14,245.50 1593.66 52,130.90 228,801.00
σU(S) 1238.54 1079.28 1104.20 1252.70 994.40

DSSA σ(S) 4098.63 9960.35 3230.27 58,197.7 38,253.7
σU(S) 1093.7 857.608 174.479 474.635 168.087

BCT σ(S) 11,088.10 19,901.70 6675.95 117,197.00 77,316.90
σU(S) 1280.54 1701.60 386.49 474.635 159.77

OPIM-C σ(S) 3779.09 19,326.3 6262.5 112,334 72,026.1
σU(S) 600.93 894.18 194.04 459.801 173.41

Degree σ(S) 3824.44 19,349.10 6345.86 114,249 73,936
σU(S) 292.82 779.84 164 260.94 22.77

Running time. Figure 3 compares running time of these algorithms. They indicate time of IGS
gives lowest values on netHEPT, ENRON and netPHY databases. Nevertheless, IGS stays at top 3 on
DBLP while it costs highest running time on the remaining of the dataset to find 150 and 160 seed sets
but return to top 3 at the other values of budget k. IGS only takes about 0.1 s to find out the seed set in
most cases except RETWEET. Besides, the figures also give information about the other algorithms.
First, BCT runs significantly slow on netHEPT than the others. This method often stays at top 3 or top
4 on ENRON, DBLP and RETWEET. Second, running time of DSSA and IGS look similiar, while that of
OPIM-C and Degree is usually higher than the above two algorithms. As the whole, IGS’s running time
gives the most stable results and usually runs around the 0.1-s mark.

The time of IGS is fast and stable because of parallel programming and this algorithm costs most
of time to find out S1 while the loop to calculate S2 usually stops at 1–2 rounds. The TRR sampling
technique also helps to quickly identify which seeds will affect to the priority U.

Memory Usage. The Table 3 illustrates the memory consumption of IGS and state-of-the-art
methods including DSSA, BCT, OPIM− C and Degree. The smallest numbers are highlighted in bold
while the largest ones are in red. The output shows that IGS outperforms the others, especially on
small databases with tens of thousands of nodes and from tens to hundreds of thousands of edges
such as netHEPT, ENRON, and netPHY. IGS also consumes sharply less memory than OPIM− C and
Degree when testing with larger databases such as DBLP and RETWEET. When IGS spends only more
than 130 MB and more than 200 MB, OPIM− C and Degree spend about four times higher with DBLP
and RETWEET, respectively. Besides, DSSA also results less expensive memory usage in all cases.
BCT is less stable than IGS and DSSA because it works as DSSA does on ENRON, netPHY, DBLPB and
RETWEET but suddenly costs the most memory in NetHEPT.
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Figure 3. Comparisons about Runtime (s) with k varies from 150 to 200 between IGS and the others.

TRR sampling technique focuses on finding the seeds that influence the priority U first then
Algorithm 3 explores another seeds to push on the seed set. Hence the algorithm 3 saves memory to
run loop more than the others because of must not check whether a seed node influences to U set or
not. Moreover, the condition of Fl(S2,R2,δ)

Fu(S2,R2,δ) ≥ 1− (1− 1
k )

t − ε helps S2 generated soon without waiting
for the stop condition of the repeat.

Finally, our algorithm, IGS, was designed very well to get a balance between the target to influence
on the given priority set and the influence that has to propagate to the largest number of nodes.
Hence, running time, memory used and the influence of IGS give significantly high results and even
more steadily rather than the others in general.
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Table 3. Memory usage (MB) comparisons between IGS and the others

Dataset Algorithm Budget k

150 160 170 180 190 200
N

et
H

EP
T IGS 9.90 9.90 9.90 9.89 9.89 9.95

DSSA 22.84 22.84 22.84 22.84 22.84 22.84

BCT 1023.79 1017.52 1021.60 1012.21 1020.18 1020.74

OPIM-C 47.76 47.91 48.03 48.11 48.30 48.46

Degree 49.14 49.18 49.48 49.68 49.86 50.13

EN
R

O
N IGS 16.82 16.79 16.81 16.81 16.82 16.82

DSSA 30.48 28.07 28.07 28.07 28.07 30.48

BCT 30.35 30.35 30.39 30.39 30.39 30.39

OPIM-C 27.16 27.20 42.00 27.22 27.25 27.30

Degree 27.98 28.08 43.77 28.19 28.27 28.41

N
et

PH
Y IGS 15.18 15.18 15.18 15.18 15.18 15.04

DSSA 52.12 52.12 52.12 52.12 38.50 52.14

BCT 34.82 34.82 34.82 34.82 34.82 34.80

OPIM-C 87.88 88.39 88.92 89.31 90.26 90.51

Degree 92.26 92.71 93.33 93.88 94.68 94.98

D
B

LP

IGS 138.66 138.66 138.66 138.66 138.66 138.66

DSSA 152.90 152.87 152.87 152.91 152.91 152.83

BCT 162.88 162.87 162.87 162.88 162.88 162.89

OPIM-C 475.05 373.72 373.78 373.95 477.18 477.51

Degree 500.87 395.00 394.26 395.35 504.52 505.26

R
ET

W
EE

T IGS 214.67 214.67 214.67 214.67 214.67 214.67

DSSA 253.14 253.14 253.14 253.14 253.14 253.14

BCT 282.50 282.50 282.50 282.47 282.50 282.48

OPIM-C 877.31 874.20 722.91 876.99 886.78 877.80

Degree 918.53 916.23 756.93 920.00 930.33 921.95

6. Conclusions

In this paper, we investigate the IMP problem, which is a variant of the IM problem with priority
constraint that arises in a realistic scenario in which companies or organizations often prioritize
influencing potential users during their viral marketing campaigns. The goal of the IMP problem
is to select a seed set with k nodes can influence of a given priority set U greater than a threshold
T which adjusts the influence of the seed set to the priority set. Although the objective function
(influence spread function) is still a monotone and sub-modular function, but when considering the
priority constraint the state-of-the-art IM algorithms cannot be applied.

To address this challenge, we propose two algorithms with provable theoretical guarantees,
called IG and IGS. We show that IG provides a

(
1− (1− 1

k )
t
)

-approximation solution;
IGS is an efficient randomized approximation algorithm based on sampling method that returns
a
(

1− (1− 1
k )

t − ε
)

-approximation solution with probability at least 1− δ with ε > 0, δ ∈ (0, 1)
as input parameters of the problem. Experiments on real world social networks show our algorithm
outperforms state-of-the-art IM algorithms including DSSA [15], BCT [2] and OPIM [23] in terms of
influences, running time, and memory used.
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In the future, we are going to improve our algorithm to expand it with large networks to billions
scale with acceptable time. In addition, the problem with multiple priority user sets and thresholds is
going to be considered.
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