
Motion-Encoded Particle Swarm Optimization
for Moving Target Search Using UAVs

Manh Duong Phunga,b,∗, Quang Phuc Haa

aSchool of Electrical and Data Engineering, University of Technology Sydney (UTS)
15 Broadway, Ultimo NSW 2007, Australia

bVNU University of Engineering and Technology (VNU-UET), Vietnam National University, Hanoi (VNU)
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract

This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO) for finding a
moving target with unmanned aerial vehicles (UAVs). From the Bayesian theory, the search problem can be converted
to the optimization of a cost function that represents the probability of detecting the target. Here, the proposed MPSO
is developed to solve that problem by encoding the search trajectory as a series of UAV motion paths evolving over the
generation of particles in a PSO algorithm. This motion-encoded approach allows for preserving important properties
of the swarm including the cognitive and social coherence, and thus resulting in better solutions. Results from extensive
simulations with existing methods show that the proposed MPSO improves the detection performance by 24% and
time performance by 4.71 times compared to the original PSO, and moreover, also outperforms other state-of-the-art
metaheuristic optimization algorithms including the artificial bee colony (ABC), ant colony optimization (ACO), genetic
algorithm (GA), differential evolution (DE), and tree-seed algorithm (TSA) in most search scenarios. Experiments have
been conducted with real UAVs in searching for a dynamic target in different scenarios to demonstrate MPSO merits
in a practical application.

Keywords: Optimal search, Particle swarm optimization, UAV
Source code: The implementation of MPSO can be found at https://github.com/duongpm/MPSO

1. Introduction

Unmanned aerial vehicles (UAVs) have been receiving
much research interest with numerous practical applica-
tions, especially in surveillance and rescue due to their
capability of operating in harsh environments with sensor-
rich work capacity suitable for different tasks. In searching
for a lost target using UAVs, there often exists a criti-
cal period called “golden time” in which the probability
the target being found should be highest [1]. As time
progresses, that probability rapidly decreases due to the
attenuation of initial information and the influence of ex-
ternal factors such as weather conditions, terrain features
and target dynamics. The main objective in searching for
a lost target using UAVs therefore includes finding a path
that can maximize the probability of detecting the target
within a specific flight time given initial information on
target position and search conditions [2, 3].

In the literature, the search problem is often formulated
as probabilistic functions so that uncertainties in initial
assumptions, search conditions and sensor models can be

∗Corresponding author
Email addresses: manhduong.phung@uts.edu.au (Manh Duong

Phung), quang.ha@uts.edu.au (Quang Phuc Ha)

adequately incorporated. In [2, 4], a Bayesian approach
has been introduced to derive the objective functions for
evaluating the detection probability of UAV flight paths.
The initial search map has been modeled as a multivari-
ate normal distribution with the mean and variance being
computed based on initial information about the target
position [5, 6]. In [3, 6], the target dynamic is represented
by a stochastic Markov process which can then be deter-
ministic or not depending on the searching scenarios. The
sensor, on the other hand, is often modeled as either a bi-
nary variable with two states, “detected” or “not detected”
[5], or as a continuous Gaussian variable [2].

Due to various probabilistic variables involved, the com-
plexity of the searching problem varies from the level
of nondeterministic polynomial-time hardness (NP-hard
[7]) to nondeterministic exponential-time completeness
(NEXP-complete [8]), in which the number of solutions
available to search grows exponentially with respect to the
search dimension and flight time. Consequently, solving
this problem using classical methods such as differential
calculus to find the exact solution becomes impractical,
and hence, approximated methods are often used. A num-
ber of methods have been developed, such as greedy search
with one-step look ahead [2] and k-step look ahead [3], ant

1

https://github.com/duongpm/MPSO

colony optimization (ACO) [5], Bayesian optimization ap-
proach (BOA) [4], genetic algorithm (GA) [9, 10], cross
entropy optimization (CEO) [11], branch and bound ap-
proach [12], limited depth search [13], and gradient de-
scend methods [14, 15]. Table 1 compares main properties
of some algorithms where the “multi-agent” column im-
plies the possibility of using multiple UAVs for searching
and “ad hoc heuristic” for the case being specifically desig-
nated for the search problem. It is noted that most meth-
ods cope with moving targets and use the binary model for
detection sensors. Some approaches ([4, 5, 11, 13]) employ
multiple UAVs to speed up the search process, whereas
others use ad hoc heuristic to improve detection probabil-
ity.

From the literature, it is recognizable that approaches to
optimal search diverge in assumptions, constraints, target
dynamics and searching mechanisms. Due to its complex
nature, optimal search, especially in scenarios with fast-
moving targets, remains a challenging problem. Besides,
recent advancements in sensor, communication and UAV
technologies enable the development of new search plat-
forms. They pose the need for new methods that should
not only robust in search capacity but also possess prop-
erties such as computational efficiency, adaptability and
optimality.

For optimization, particle swarm optimization (PSO) is
a potential technique with a number of key advantages
that have been successfully applied in various applications
[16, 17, 18, 19, 20]. It is less sensitive to initial conditions
as well as the variation of objective functions and is able
to adapt to many search scenarios via a small number of
parameters including an initial weight factor and two ac-
celeration coefficients [21]. It generally can find the global
solution with a stable convergence rate and shorter com-
putation time compared to other stochastic methods [22].
More importantly, PSO is simple in implementation with
the capability of being parallelized to run with not only
computer clusters or multiple processors but also graphi-
cal processing units (GPU) of a single graphical card. This
allows to significantly reduce the execution time without
requiring any change to the system hardware [23].

Motivated from the aforementioned analysis, we will em-
ploy the PSO methodology in this study to deal with the
search problem in complex scenarios for fast moving tar-
gets, aiming to improve the search performance in both
detection probability and execution time. To this end,
we propose a new motion-encoded PSO algorithm, tak-
ing into account both cognitive and social coherence of
the swarm. Our contributions include: (i) the formula-
tion of an objective function for optimization, incorporat-
ing all assumptions and constraints, from the search prob-
lem and the probabilistic framework; (ii) the development
of a new motion-encoded PSO (MPSO) from the idea of
changing the search space for the swarm to avoid getting
stuck at local maxima; (iii) the demonstration of MPSO
implemented for UAVs in experimental search scenarios
to validate its outperformance over other PSO algorithms

obtained from extensive comparison analysis. The results
show that MPSO, on one hand, presents superior perfor-
mance on various search scenarios while on the other hand
remains simple for practical implementation.

The rest of this paper is structured as follows. Section 2
outlines the steps to formulate the objective function. Sec-
tion 3 presents the proposed MPSO and its implementa-
tion for solving a complex search problem. Section 4 pro-
vides simulation and experimental results. A conclusion is
drawn in Section 5 to close our paper.

2. Problem Formulation

The search problem is formulated by modeling the tar-
get, sensor and belief map with details as follows.

2.1. Target Model

In the searching problem, the target is described by an
unknown variable x ∈ X representing its location. Be-
fore the search starts, a probability distribution function
(PDF) is used to model the target location based on the
available information, e.g., the last known location of the
target before losing its signal. This PDF could be a normal
distribution centered about the last known location, but
also could be a uniform PDF if nothing is known about
the target location. In the searching space, this PDF is
represented by a grid map called the belief map, b(x0),
in which the value in each cell corresponds to the prob-
ability of the target being in that cell. The map can be
created by discretizing the searching space S into a grid
of Sr × Sc cells and associating a probability to each cell.
Assume the target presents in the searching space, we have∑

x0∈S b(x0) = 1.
During the searching process, the target may be not

static but navigate in a certain pattern. This pattern can
be modeled by a stochastic process which can be assumed
as a Markov process. In the special case of a conditionally
deterministic target, which is considered in this study, that
pattern merely depends on the initial position x0 of the
target. In that case, the transition function, p(xt|xt−1),
representing the probability which the target goes from
cell xt−1 to xt, is known for all cells xt ∈ S. Consequently,
the path of the target will be entirely known if its initial
position is known. This assumption is made quite often
for the survivor search at sea [24] and also for the search
problems in general [5].

2.2. Sensor Model

In order to look for and find a target, a sensor is in-
stalled on the UAV to carry out an observation zt at each
time step t. The observations are independent such that
the occurrence of one observation provides no information
about the occurrence of the other observation. A detec-
tion algorithm is implemented to return a result for each
observation which is assumed to have only two possible

2

Table 1: Comparison between search methods

Method Work Target
Binary
sensor

Multi-
agent

Ad hoc
heuristic

one-step look ahead [2] Static & Dynamic 7 7 3
k-step look ahead [3] Dynamic 3 7 3

BOA [4] Dynamic 3 3 7
ACO [5] Dynamic 3 3 3
GA [10] Static 3 7 7

CEO [11] Dynamic 3 3 7
Depth search [13] Static 3 3 3

Gradient descent [14] Static 7 7 7

outputs, the detection of the target, zt = Dt, or no detec-
tion, zt = D̄t, where Dt represents a “detection” event at
time t. Due to imperfectness of the sensor and detection
algorithm, an observation of the target detected, zt = Dt,
still does not ensure the presence of the target at xt. This
is reflected through the observation likelihood, p(zt|xt),
given knowledge of the sensor model. The likelihood of no
detection, given a target location xt, is then computed by:

p(D̄t|xt) = 1− p(Dt|xt). (1)

2.3. Belief Map Update

Once the initial distribution, b(x0), is initialized, the
belief map of the target at time t, b(xt), can be estab-
lished based on the Bayesian approach and the sequence
of observations, z1:t = {z1, ..., zt}, made by the sensor.
This approach is conducted recursively via two phases,
prediction and update. In the prediction, the belief map
is propagated over time in accordance with the target mo-
tion model. Suppose at time t, the previous belief map,
b(xt−1), is available. Then, the predicted belief map is
calculated as:

b̂(xt) =
∑

xt−1∈S
p(xt|xt−1)b(xt−1). (2)

Notice from (2) that the belief map b(xt−1) is in fact the
conditional probability of the target being at xt−1 given
observations up to t − 1, b(xt−1) = p(xt−1|z1:t−1). When
the observation zt is available, the update is conducted
simply by multiplying the predicted belief map by the new
conditional observation likelihood as follows:

b(xt) = ηtp(zt|xt)b̂(xt), (3)

where ηt is the normalization factor,

ηt = 1/
∑
xt∈S

p(zt|xt)b̂(xt). (4)

ηt scales the probability that the target presents inside the
searching area to one, i.e.,

∑
xt∈S b(xt) = 1.

2.4. Searching Objective Function

According to the Bayesian theory, the probability that
the target does not get detected at time t during an ob-
servation, rt = p(D̄t|z1:t−1), relies on two factors: (i) the
latest belief map from the prediction phase (2), and (ii)
the no detection likelihood (1). Across the whole search-
ing area, that probability is given by:

rt =
∑
xt∈S

p(D̄t|xt)b̂(xt). (5)

Notice that rt is exactly the inverse of the normalization
factor ηt in (4), rt = 1/ηt, for a “no detection” event,
zt = D̄t, and thus is smaller than 1. By multiplying the not
detected probability rt over time, the joint probability of
failing to detect the target from time 1 to t, Rt = p(D̄1:t),
is then obtained:

Rt =

t∏
k=1

rk = Rt−1rt. (6)

Hence, the probability that the target gets detected for the
first time at time t is computed as:

pt =

t−1∏
k=1

rk(1− rt) = Rt−1(1− rt). (7)

Summing pt over t steps gives the probability of detecting
the target in t steps:

Pt =

t∑
k=1

pk = Pt−1 + pt. (8)

Pt is thus often referred to as the “cumulative” probability
to distinguish it with pt. Notice that

Pt = 1−Rt, (9)

and as t grows, the probability of first detection pt be-
comes smaller because the chance of detecting the target
in previous steps increases. The cumulative probability
Pt is thus bounded and increases toward one as t goes to
infinity.

3

The objective function for the searching problem can
now be formulated based on (8) given a finite search
time. Let the search time period be {1, ..., N}, the goal
of the searching strategy is to determine a search path
O = (o1, ..., oN) that could maximize the cumulative prob-
ability Pt. As such, the objective function is eventually
formulated as follows:

J =

N∑
t=1

pt. (10)

3. Motion-encoded Particle Swarm Optimization

As the search problem defined in (10) is NP-hard [7, 8],
the time required to calculate all possible paths to find
the optimal solution would greatly increase and become
intractable. Therefore, a heuristic approach like PSO can
be a good option for solving the optimal search problem
as in this study.

3.1. Particle Swarm Optimization

PSO is a population-based stochastic technique, in-
spired by social behavior of bird flocking, designed for
solving optimization problems [16, 25]. In PSO, a swarm
of particles is initially generated with random positions
and velocities. Each particle then moves and evolves in a
cognitive fashion with other particles to seek the global op-
timum. Those movements are driven by its best position,
Lk, and the best position of the swarm, Gk. Let xk and
vk be the position and velocity of a particle at generation
k, respectively. The movement of that particle in the next
generation is given by:

vk+1 ← wvk + ϕ1r1(Lk − xk) + ϕ2r2(Gk − xk) (11)

xk+1 ← xk + vk+1, (12)

where w is the inertial weight, ϕ1 is the cognitive coef-
ficient, ϕ2 is the social coefficient, and r1, r2 are random
sequences sampled from a uniform probability distribution
in the range [0,1]. From (11) and (12), the movement of
a particle is directed by three factors, namely, following
its own way, moving toward its best position, or moving
toward the swarm’s best position. The ratio among those
factors is determined by the values of w, ϕ1, and ϕ2.

3.2. MPSO for Optimal Search

There have been several modifications and improve-
ments from the PSO algorithm, depending on the appli-
cation. However, the implementation of PSO for online
searching for dynamic targets in a complex environment
remains a challenging task, particularly in a limited time
window. For the search problem, it is desired to encode
the position of particles in a way that the particles can
gradually move toward the global optimum. A common

3 2
1

876

5

4

7π
(2,)

4

(1,0)

3π
(1,)

2

Figure 1: Motion-encoded illustration for a path with three
segments, Uk = ((1, 0), (1, 3π/2), (

√
2, 7π/4))

approach is to define a position as a multi-dimensional
vector representing a possible search path:

xk ∼ Ok = (ok,1, ..., ok,N), (13)

where ok,i corresponds to a node of the search map [26, 27].
The drawback of this approach is that it does not cover the
adjacent dynamic behavior in path nodes and thus may re-
sult in invalid paths during the searching process. Discrete
PSO can be used to overcome this problem, but the mo-
mentum of particles is not preserved, causing local maxima
[28]. Indirect approaches such as the angle-encoded PSO
[29] and priority-based encoding PSO [30] can be a good
option to deal with it and generate better results. Their
mapping functions, however, require the phase angles to
be within the range of [−π/2, π/2] which limits the search
capacity, especially in a large dimension.

Here, we propose the idea of using UAV motion to en-
code the position of particles. Instead of using nodes, we
view each search path as a set of UAV motional segments,
each corresponds to the movement of UAV from its cur-
rent cell to another on the plane of flight. By respectively
defining the magnitude and direction of the motion at time
t as ρt and αt, that motion can be completely described
by a vector ut = (ρt, αt). A search path is then described
by a vector of N motion segments, Uk = (uk,1, ..., uk,N).
Using Uk as the position of each particle, equations for
MPSO can be written as:

∆Uk+1 ← wUk + ϕ1r1(Lk − Uk) + ϕ2r2(Gk − Uk) (14)

Uk+1 ← Uk + ∆Uk+1. (15)

Figure 1 illustrates a path with three segments, Uk =
((1, 0), (1, 3π/2), (

√
2, 7π/4)), where the belief map is

colour-coded with probability values indicated on the
right.

During the search, it is also required to map Uk to a
direct path Ok so that the cost associated with Uk can be

4

evaluated. As shown in Fig. 1, the mapping process can
be carried out by first constraining the UAV motion to one
of its eight neighbors in each time step. Then, the motion
magnitude ρt can be normalized and the motion angle αt

can be quantized as:

ρ∗t = 1 (16)

α∗t = 45◦bαt/45◦e, (17)

where be represents the operator for rounding to the near-
est integer. Node ok,t+1 corresponding to the location of
UAV in the Cartesian space is then given by:

ok,t+1 = ok,t + u∗k,t, (18)

where
u∗k,t = (bcosα∗t e, bsinα∗t e). (19)

From the decoded path Ok, the cost value can be evalu-
ated by the objective function (10) and then the local and
global best can be computed as follows:

Lk =

{
Uk if J(Ok) > J(L∗k−1)
Lk−1 otherwise

, (20)

Gk = argmax
Lk

J(Ok), (21)

where L∗k is the decoded path of Lk. It can be seen from
the mapping process that (17) discretizes the motion to
one of eight possible directions, (19) converts the moving
direction to an increment in Cartesian coordinates, and
(18) incorporates the increment to form the next node of
the path.

Similarly to the interchange between the time domain
and frequency domain in signal analysis, the mapping pro-
cess of MPSO allows particles to search in the motion space
instead of the Cartesian space. This leads to the following
advantages:

• The motion space maintains the location of nodes con-
secutively so that the resultant paths after each gen-
eration evolvement are always valid, which is not the
case of the Cartesian space;

• In motion space, the momentum of particles and
swarm behaviors including exploration and exploita-
tion are preserved so that the search performance is
maintained and the swarm is able to cope with differ-
ent target dynamics;

• As the normalization of ρt and quantization of αt in
(16) and (17) are only carried out for the purpose of
cost evaluation, their continuous values are still be-
ing used for velocity and position updates as in (14)
- (15). This property is important to avoid the dis-
cretizing effect of PSO so that the search resolution is
not affected.

Finally, it is also noted that MPSO preserves the search
mechanism of PSO via its update equations (14) - (15)
so that the advantages of PSO such as stable convergence,
independence of initial conditions and implementation fea-
sibility can be maintained.

Start

Initialize the belief map
and particles with motion-

encoded paths

Compute the cumulative
probability via objective function

Decode the paths encoded in
particles’ position

Update the velocity and position
of particles

Get target dynamics
and initial data

Update the local best and global
best

Check maximum
generation

End

No

Yes

Figure 2: Flowchart of MPSO algorithm

3.3. Implementation

Figure 2 shows the flowchart of MPSO to illustrate the
implementation presented in Algorithm 1. Its structure is
based on the core PSO but extended with the incorpora-
tion of the motion encoding and decoding steps. The belief
map update as in (2) and (3) needs to be conducted dur-
ing calculating the fitness when the target is non-static.
Notably, the parallelism technique proposed in [23] can be
applied to speed up the computation process of MPSO.

4. Results

To evaluate the performance of MPSO, we have con-
ducted extensive simulation, comparison and experiments
with detail described below.

4.1. Scenarios setup

For the sake of coverage, six different search scenarios
are used to analyze the performance of MPSO for optimal
search (some of them are adopted from [5]). The scenarios
are defined to have the same map size (Sr = Sc = 40),

5

/* Initialization: */

Get target dynamics and initial data;
Create belief map;
Set swarm parameters w, ϕ1, ϕ2, swarm size;
foreach particle in swarm do

Create random motion-encoded paths Uk;
Assign Uk to particle position;
Compute fitness value of each particle;
Set local best value of each particle to itself;
Set velocity of each particle to zero;

end
Set global best to the best fit particle;
/* Evolutions: */

for k ← 1 to max generation do
foreach particle in swarm do

Compute motion velocity ∆Uk+1; /* Eq.14

*/

Compute new position Uk+1; /* Eq.15 */

Decode Uk+1 to Ok+1; /* Eq.19 - 18 */

Update fitness of Ok+1; /* Eq.10 */

Update local best Lk+1; /* Eq.20 */

end
Update global best Gk+1; /* Eq.21 */

end

Algorithm 1: Pseudo code of MPSO.

but differ in the initial locations of UAV, target motion
model P (xt|xt−1) and initial belief map b(x0). As shown
in Fig.3, the probability map is color-coded with the tar-
get dynamics presented by a white arrow and the initial
location of UAV described by a white circle. The scenarios
represent different searching situations as follows:

Scenario 1 has two high probability regions located
next to each other. They are slightly different in location
and value, which may cause difficulty in finding a better
region to search for the target.

Scenario 2 includes two separated high probability re-
gions located opposite to each other over the UAV location.
The algorithm has to quickly identify the higher proba-
bility region to search and track as the target is moving
south-west.

Scenario 3 has one small dense region moving rapidly
toward the south-east. It thus tests the algorithm in its
exploration and adaptation capability.

Scenario 4 is similar to Scenario 3 except that the tar-
get is moving toward the UAV’s start location. It further
evaluates the adaptability of the searching algorithm.

Scenario 5 consists of two probability regions located
oppositely via the start location in which the right region
is slightly higher in probability. As the target is moving
north, the algorithm needs to identify the correct target
region.

Scenario 6 is similar to Scenario 5, but the start loca-
tion is below the potential regions and the target is moving
North-East. It thus evaluates the capability of searching

in a diagonal direction.
In our evaluations, MPSO is implemented with the pa-

rameters w = 1 at the damping rate of 0.98, ϕ1 = 2.5 and
ϕ2 = 2.5. The swarm size is chosen to be 1000 particles.
The number of iterations is 100 and the size of the search
path is 20 nodes. Due to the stochastic nature of PSO,
the algorithm is executed 10 times to find the average and
standard deviation values for each scenario.

4.2. Search path

Figure 4 shows the search paths of MPSO for each sce-
nario together with the cumulative probability values. In
all scenarios, MPSO is able to find the highest probability
regions and generates relevant paths for the UAV to fly.
For scenarios with only one high probability region such
as Scenario 3 and 4, the cumulative probabilities are high
because the chance of finding the target is not spread to
other regions. It is also noted from Fig. 4 that the prob-
ability map only reflects the target belief at the last step
whereas the search path represents the tracking of high
probability regions over time. By comparing them with
those in Fig. 3, we can see that the search paths adapt to
the target dynamics to maximize the detection probability.

4.3. Comparison with other PSO algorithms

We have judged the merit of MPSO over other PSO algo-
rithms including a classical PSO, denoted here as PSO for
the comparison purpose, quantum-behaved PSO (QPSO)
and angle-encoded PSO (APSO).

PSO is introduced in [16] in which the particles encode
a search path as a set of nodes. They then evolve according
to (11) and (12) to find the optimal solution.

APSO operates in a similar way as PSO. It, however,
encodes the position of particles as a set of phase angles so
that each angle represents the direction in which the path
would emerge [29].

QPSO, on the other hand, assumes particles to have
quantum behavior in a bound state. The particles are
attracted by a quantum potential well centered on its local
attractor and thus have a new stochastic update equation
for their positions [31]. In QPSO, the position of particles
also encodes a search path that includes a set of nodes.

Table 2 shows the average and standard deviation val-
ues of the fitness representing the accumulated detection
probability obtained by all algorithms after 10 runs. It can
be seen that MPSO introduces the best performance in 5
scenarios. APSO is slightly better than MPSO in Scenario
3, but its convergence is not stable reflected via a larger
standard deviation value. These results can be further
verified via the convergence curves shown in Fig. 5. They
show that PSO and QPSO present poor performance as
the use of nodes to encode search paths does not maintain
particle momentum resulting in local maxima.

APSO, on the other hand, introduces a comparable per-
formance with MPSO. Unlike PSO and QPSO, the use of
angles in APSO allows particles to search in orientation

6

10 20 30 40

x (cell)

10

20

30

40

y
(c

el
l)

5

10

15

10 -3

10 20 30 40

x (cell)

10

20

30

40

y
(c

el
l)

5

10

15

10 -3

(a) Scenario 1

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

10 -3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

10 -3

(b) Scenario 2

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

10

20

30

40

50

60

70

10-3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

10

20

30

40

50

60

70

10-3

(c) Scenario 3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40
y

(c
e

ll
)

10

20

30

40

50

60

70

10 -3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40
y

(c
e

ll
)

10

20

30

40

50

60

70

10 -3

(d) Scenario 4

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

20

10 -3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

20

10 -3

(e) Scenario 5

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

20

10 -3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

20

10 -3

(f) Scenario 6

Figure 3: Scenarios used for evaluating the searching algorithms

7

10 20 30 40
x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

5

10

15

10-3

(a) Scenario 1: Pt = 0.1886

10 20 30 40
x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

5

10

15

10-3

(b) Scenario 2: Pt = 0.2496

10 20 30 40
x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

10

20

30

40

50

60

70

10-3

(c) Scenario 3: Pt = 0.64907

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40
y

(c
el

l)

0

10

20

30

40

50

60

70

10-3

(d) Scenario 4: Pt = 0.5111

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

5

10

15

20
10-3

(e) Scenario 5: Pt = 0.2226

10 20 30 40
x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

5

10

15

20
10-3

(f) Scenario 6: Pt = 0.1907

Figure 4: Search paths for each scenario generated by MPSO

8

Table 2: Comparison between PSO algorithms on fitness representing the accumulated detection probability

Scenario MPSO PSO QPSO APSO
1 0.1876±0.0011 0.1476 ±0.0043 0.1198±0.0037 0.1869±0.0025
2 0.247±0.0055 0.2019±0.0163 0.2014±0.0046 0.2393±0.0113
3 0.6554±0.014 0.5403±0.0218 0.5468±0.014 0.6649±0.0287
4 0.5018±0.0095 0.4082±0.0092 0.4259±0.0164 0.4969±0.0109
5 0.2213±0.0025 0.1785±0.0067 0.1819±0.0008 0.2199±0.004
6 0.1881±0.0112 0.097±0.0239 0.0943±0.0168 0.1735±0.0187

space and thus maintains the swarm properties. Interest-
ingly, APSO can be considered as a special case of MPSO
when the motion magnitude is constrained to 1. While
this constraint limits the flexibility of the swarm, it may
improve the exploration capacity in certain scenarios to
yield a good result such as in Scenario 3.

4.4. Comparison with metaheuristic optimization algo-
rithms

To further evaluate the performance of MPSO, we
have compared it with state-of-the-art metaheuristic op-
timization algorithms including the artificial bee colony
(ABC), ant colony optimization (ACO), genetic algorithm
(GA), differential evolution (DE), and tree-seed algorithm
(TSA).

ABC searches for optimal solutions based on the co-
operative behavior of three types of bees: employed bees,
onlooker bees and scout bees [32]. Our implementation
represents each solution as a search path that consists of
a set of motion segments similar to MPSO.

ACO solves optimization problems based on heuristic
information and a pheromone model of artificial ants, each
maintains a feasible solution [33]. Our implementation of
ACO is based on [5] in which the “ACO-Node+H” ap-
proach is used together with the max-min ACO.

GA is a popular metaheuristic optimization that modi-
fies a population of individual solutions similar to the pro-
cess of natural selection [9]. Our implementation of GA is
based on the “EA-dir” approach in [10] where a path is en-
coded as a string of directions subjected to two mutation
techniques including “flip” and “pull”.

DE is an optimization method that finds the optimal so-
lution by improving its candidates via simple mathemati-
cal formulas from a population of individual solutions [34].
In implementing DE for optimal search, we represent each
solution as a set of motions similar to the representation
used in MPSO.

TSA solves the optimization problem by simultaneously
exploring and exploiting the search space based on the
spread of seeds from a tree population. The level and
balance between the exploration and exploitation are con-
trolled by predefined parameters including the search ten-
dency (ST) and the number of seeds (NS). Those pa-
rameters are chosen as in the original study [35] in our
implementation, i.e., ST = 0.1 and NS ∈ [0.1, 0.25].

Table 3 presents the fitness values corresponding to the
optimal solutions of MPSO and metaheuristic algorithms
over six scenarios after 10 runs. The values include the av-
erage and standard deviation representing the cumulative
detection probability. It can be seen that MPSO outper-
forms other metaheuristic algorithms in scenarios 1 to 5
with the highest fitness values and small standard devia-
tion. TSA is the second best with satisfactory results in
most scenarios, whereas the remaining algorithms are only
good in one or two scenarios.

Figure 6 further compares the convergence among the
algorithms. While MPSO shows good exploitation capa-
bility represented via the high fitness value in most sce-
narios, its exploration reflected via the convergence speed
is rather slow in some scenarios such as Scenario 3 where
the high probability region is small and the target is mov-
ing away from the UAV. TSA, on the other hand, is good
at exploration but rather limited in exploitation so that
its final fitness values are slightly less than MPSO. ACO
performs well in detecting static and slow-moving targets,
but its adaptation to fast-moving targets is limited due to
the nature of ACO incrementally exploring via nodes. DE
and ABC have stable performance in most scenarios. GA,
on the other hand, is often trapped at local minimums as
the crossover and mutation operators cause many invalid
paths during operation. Besides, the enhanced “flip” and
“pull” operators which prioritize horizontal and vertical
search do not perform well in scenarios requiring diagonal
search such as Scenario 6.

4.5. Execution time

Apart from the accuracy, we also evaluate the execution
time of all algorithms to roughly estimate their complex-
ity. We executed all algorithms under the same conditions
of software and computer hardware. Table 4 shows the
average execution time together with the standard devi-
ation after 10 runs on an Intel Core i7-7600U 2.80 GHz
processor. It can be seen that MPSO is the fastest in four
scenarios, followed by ABC with two scenarios. DE also
introduces relatively short execution time due to its sim-
plicity in the search mechanism. TSA, on the other hand,
is rather slow due to the extra computation required to
evaluate the seeds of each tree. ACO is the slowest because
of a large time spent on calculating heuristic information
[5]. Notably, the execution time of APSO is close to MPSO
which further explains it as a special case of MPSO. PSO

9

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

(a) Scenario 1

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue
(b) Scenario 2

0 20 40 60 80 100

Number of Iterations

0

0.2

0.4

0.6

0.8

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100

Number of Iterations

0

0.2

0.4

0.6

0.8

F
itn

es
s

V
al

ue

(c) Scenario 3

0 20 40 60 80 100
Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

F
itn

es
s

V
al

ue

(d) Scenario 4

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

(e) Scenario 5

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

(f) Scenario 6

Figure 5: Convergence curves of the four PSO algorithms on the six benchmark scenarios

10

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

(a) Scenario 1

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue
(b) Scenario 2

0 20 40 60 80 100

Number of Iterations

0

0.2

0.4

0.6

0.8

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.2

0.4

0.6

0.8

F
itn

es
s

V
al

ue

(c) Scenario 3

0 20 40 60 80 100

Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

F
itn

es
s

V
al

ue

(d) Scenario 4

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

(e) Scenario 5

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

(f) Scenario 6

Figure 6: Convergence curves of MPSO and other metaheuristic algorithms on the six benchmark scenarios

11

Table 3: Comparison between MPSO and other metaheuristic algorithms on fitness

Scenario MPSO ABC GA ACO DE TSA
1 0.1876±0.0011 0.1691±0.0076 0.1283±0.0001 0.1836±0.0013 0.1818±0.0015 0.1873±0.0006
2 0.247±0.0055 0.2099±0.0041 0.2151±0.0018 0.2145±0.0049 0.22±0.0045 0.2362±0.0085
3 0.6554±0.014 0.5872±0.0152 0.5995±0.003 0.6053±0.02 0.5985±0.0166 0.6236±0.0135
4 0.5018±0.0095 0.4225±0.0017 0.3497±0.0311 0.4866±0.0139 0.4243±0.0252 0.4626±0.0239
5 0.2213±0.0025 0.2093±0.0071 0.1733±0.0001 0.2208±0.0024 0.2128±0.006 0.2209±0.0005
6 0.1881±0.0112 0.181±0.0019 0.1255±0.0001 0.15±0.0119 0.1829±0.0139 0.1889±0.0018

and QPSO both require extra execution time due to the
invalid paths generated during operation.

4.6. Validation on UAV platform

To demonstrate the practical use of MPSO, we have
applied it to real searching scenarios with details as follows.

4.6.1. Experimental setup

The experiment is carried out in the search area of 60
m × 60 m located in a park in Sydney. The UAV used
is a 3DR Solo drone with a control architecture developed
for infrastructure inspection [36] that can be controlled
via a ground control station (GCS) software named Mis-
sion Planner. The detection sensor is a Hero 4 camera
attached to the drone via a three-axis gimble responsible
for adjusting and stabilizing the camera. An unmanned
ground vehicle (UGV) is used as the target. The UGV
is equipped with control and communication modules to
allow it to track certain trajectories for the sake of exper-
imental verification.

In experiments, initial locations of UAV and UGV are
obtained via the GPS modules equipped on those vehicles
and used as the input to generate a belief map. The map is
fed to MPSO to generate a search path that includes a list
of waypoints. Those waypoints are loaded into Mission
Planner to fly the UAV. During the flight, for recording
the testing results, positions of the vehicles are tracked via
GPS and the video received from the camera is streamed
to GCS.

4.6.2. Experimental results

Figure 7a shows the belief map and path generated by
MPSO for the scenario in which the UGV started from the
center of the map at the latitude of -33.875992 and the lon-
gitude of 151.19145 and moved in East direction. Figure
7b shows the planned and actual flight paths recorded via
Mission Planner together with the actual path of UGV. It
can be seen that the flight path tracks the planned path
with some inevitably small tracking errors caused by GPS
positioning. Those errors can be compensated for by ex-
tending the field of view of the detection camera via the
flight attitude. The UAV thus can trace and approach the
target at the location of (-33.87598,151.19153), as shown
in Figure 7b. This can be verified in Fig. 8 that displays
the target within the vision of the camera.

In another experiment where the UGV moves toward
the starting location of the UAV, the planned path
adapts to it by turning backward as shown in Fig. 7c.
Figure 7d presents the actual trajectories of the UAV
and UGV. It can be seen that the UAV tracks the
planned path to approach the target at the location of
(-33.875938,151.191515) and then can trace it eventually.
Those results, together with various successful trials, con-
firm the validity and applicability of our proposed algo-
rithm.

4.7. Discussion

Through extensive simulation, thorough comparison
and experiments as described above, it can be seen that
MPSO presents better performance than other state-of-
the-art heuristic algorithms in most search scenarios and
is suitable for practical UAV search operations. The ratio-
nale for the success of MPSO lies in the motion-encoded
mechanism that prevents the algorithm from generating
invalid paths during the searching process so that it can
avoid the need for re-initialization, and as such, to acceler-
ate the convergence. The motion-encoded mechanism also
allows MPSO to search in the motion space instead of the
Cartesian space to improve search performance and bet-
ter adapt to target dynamics. This advantage is clearly
reflected in the good search result of MPSO for the chal-
lenging Scenario 4 where the target moves in the oppo-
site direction to the search path that requires the UAV
to turn around. Nevertheless, like PSO, MPSO may need
to increase the swarm size and number of iterations if the
search dimension increases [37]. In those scenarios, par-
allel implementation is required to effectively reduce the
computation time, and hence, improve the scalability of
the proposed algorithm for large-scale systems.

In practical search, the target dynamics may vary de-
pending on the applications so that the deterministic as-
sumption used in this study may go beyond its validity.
In those scenarios, a prediction mechanism using optimal
estimators such as the Kalman filter [38] can be employed
to provide a prediction of the target trajectory. It is then
used to calculate the cumulative probability used in the
objective function of MPSO.

12

Table 4: Comparison between MPSO and other algorithms on execution time in seconds

Scenario MPSO PSO QPSO APSO ABC GA ACO DE TSA
1 43±2 129±6 140±15 50±8 34±1 85±2 144±3 37±3 84±2
2 26±4 150±7 180±22 34±4 34±5 95±3 157±2 32±6 57±6
3 30±8 142±4 149±3 39±4 31±4 97±1 150±5 34±2 50±2
4 20±2 149±7 149±1 32±5 30±3 92±3 133±3 26±3 47±1
5 29±7 126±4 129±5 46±5 34±4 92±3 150±4 31±3 60±5
6 48±7 140±3 139±2 61±1 39±3 99±2 146±13 39±3 85±2

5 10 15 20
x (cell)

5

10

15

20

y
(c

el
l)

0

20

40

60

80

100

10-3

(a) Belief map and search path in experimental scenario 1

Target trajectory

Planned path

UAV
trajectory

Start

End

(b) Planned and actual flight paths in experimental scenario 1

5 10 15 20
x (cell)

5

10

15

20

y
(c

el
l)

0

20

40

60

80

100

10-3

(c) Belief map and search path in experimental scenario 2

Target
trajectory

Planned path

UAV
trajectory

Start

End

(d) Planned and actual flight paths in experimental scenario 2

Figure 7: Experimental detection results

13

Drone

Target

Target viewed
from drone

Figure 8: The target within the vision of the camera attached on
the drone

5. Conclusion

We have presented a new algorithm, the motion-encoded
particle swarm optimization (MPSO), to solve the prob-
lem of optimal search for a moving target using UAVs. The
algorithm encodes the search path as a series of motions
that are directly applicable to the search problem which
constrains the movement of a UAV to its neighbor cells.
By changing the search domain from the Cartesian space
to motion space, the algorithm is able to adapt to different
target dynamics. It also preserves key properties of PSO
to enhance the search performance and allows to conduct
continuous search in discrete maps. Simulation and ex-
perimental results show that the algorithm is effective and
practical enough to deploy for search operations. To be
effective also for large-scale systems, the proposed algo-
rithm would need parallel computation to further reduce
its execution time. Our future work will focus on evalu-
ating MPSO on benchmarking functions and exploring its
capability to solve other complex optimization problems.

References

[1] S. F. Ochoa, R. Santos, Human-centric wireless sensor net-
works to improve information availability during urban search
and rescue activities, Information Fusion 22 (2015) 71 – 84.
doi:10.1016/j.inffus.2013.05.009.

[2] F. Bourgault, T. Furukawa, H. F. Durrant-Whyte, Optimal
Search for a Lost Target in a Bayesian World, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 209–222. doi:10.

1007/10991459_21.
[3] M. Raap, S. Meyer-Nieberg, S. Pickl, M. Zsifkovits, Aerial ve-

hicle search-path optimization: A novel method for emergency
operations, Journal of Optimization Theory and Applications
172 (3) (2017) 965–983. doi:10.1007/s10957-016-1014-y.

[4] P. Lanillos, J. Yañez Zuluaga, J. J. Ruz, E. Besada-Portas, A
bayesian approach for constrained multi-agent minimum time
search in uncertain dynamic domains, in: Proceedings of the

15th Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO ’13, ACM, New York, NY, USA, 2013, pp. 391–
398. doi:10.1145/2463372.2463417.

[5] S. Perez-Carabaza, E. Besada-Portas, J. A. Lopez-Orozco, J. M.
de la Cruz, Ant colony optimization for multi-uav minimum
time search in uncertain domains, Applied Soft Computing 62
(2018) 789 – 806. doi:10.1016/j.asoc.2017.09.009.

[6] T. Furukawa, F. Bourgault, B. Lavis, H. F. Durrant-Whyte,
Recursive bayesian search-and-tracking using coordinated uavs
for lost targets, in: Proceedings 2006 IEEE International Con-
ference on Robotics and Automation, 2006. ICRA 2006., 2006,
pp. 2521–2526. doi:10.1109/ROBOT.2006.1642081.

[7] K. E. Trummel, J. R. Weisinger, Technical note - the complex-
ity of the optimal searcher path problem, Operations Research
34 (2) (1986) 324–327. doi:10.1287/opre.34.2.324.

[8] D. S. Bernstein, R. Givan, N. Immerman, S. Zilberstein, The
complexity of decentralized control of markov decision pro-
cesses, Mathematics of Operations Research 27 (4) (2002) 819–
840. doi:10.1287/moor.27.4.819.297.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, 1st Edition, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1989.

[10] L. Lin, M. A. Goodrich, UAV intelligent path planning for
wilderness search and rescue, in: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009, pp. 709–
714. doi:10.1109/IROS.2009.5354455.

[11] P. Lanillos, E. Besada-Portas, G. Pajares, J. J. Ruz, Mini-
mum time search for lost targets using cross entropy optimiza-
tion, in: 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2012, pp. 602–609. doi:10.1109/

IROS.2012.6385510.
[12] J. N. Eagle, J. R. Yee, An optimal branch-and-bound procedure

for the constrained path, moving target search problem, Oper-
ations Research 38 (1) (1990) 110–114. doi:10.1287/opre.38.

1.110.
[13] A. Sarmiento, R. Murrieta-Cid, S. Hutchinson, An effi-

cient motion strategy to compute expected-time locally op-
timal continuous search paths in known environments, Ad-
vanced Robotics 23 (12-13) (2009) 1533–1560. doi:10.1163/

016918609X12496339799170.
[14] S. K. Gan, S. Sukkarieh, Multi-UAV target search using ex-

plicit decentralized gradient-based negotiation, in: 2011 IEEE
International Conference on Robotics and Automation, 2011,
pp. 751–756. doi:10.1109/ICRA.2011.5979704.

[15] G. Mathews, H. Durrant-Whyte, M. Prokopenko, Asynchronous
gradient-based optimisation for team decision making, in: 2007
46th IEEE Conference on Decision and Control, 2007, pp. 3145–
3150. doi:10.1109/CDC.2007.4434301.

[16] J. Kennedy, R. Eberhart, Y. Shi (Eds.), Swarm Intelligence,
Morgan Kaufmann, 2001. doi:10.1016/B978-1-55860-595-4.

X5000-1.
[17] K. Y. Lee, J. Park, Application of particle swarm optimization

to economic dispatch problem: Advantages and disadvantages,
in: 2006 IEEE PES Power Systems Conference and Exposition,
2006, pp. 188–192.

[18] V. Mohammadi, S. Ghaemi, H. Kharrati, PSO tuned FLC for
full autopilot control of quadrotor to tackle wind disturbance
using bond graph approach, Applied Soft Computing 65 (2018)
184 – 195. doi:10.1016/j.asoc.2018.01.015.

[19] T. Niknam, M. R. Narimani, M. Jabbari, Dynamic optimal
power flow using hybrid particle swarm optimization and simu-
lated annealing, International Transactions on Electrical Energy
Systems 23 (7) (2013) 975–1001. doi:10.1002/etep.1633.

[20] T. Niknam, M. R. Narimani, J. Aghaei, R. Azizipanah-
Abarghooee, Improved particle swarm optimisation for multi-
objective optimal power flow considering the cost, loss, emis-
sion and voltage stability index, IET Generation, Transmission
Distribution 6 (6) (2012) 515–527.

[21] R. C. Eberhart, Y. Shi, Comparison between genetic algorithms
and particle swarm optimization, in: V. W. Porto, N. Sara-
vanan, D. Waagen, A. E. Eiben (Eds.), Evolutionary Program-

14

http://dx.doi.org/10.1016/j.inffus.2013.05.009
http://dx.doi.org/10.1007/10991459_21
http://dx.doi.org/10.1007/10991459_21
http://dx.doi.org/10.1007/s10957-016-1014-y
http://dx.doi.org/10.1145/2463372.2463417
http://dx.doi.org/10.1016/j.asoc.2017.09.009
http://dx.doi.org/10.1109/ROBOT.2006.1642081
http://dx.doi.org/10.1287/opre.34.2.324
http://dx.doi.org/10.1287/moor.27.4.819.297
http://dx.doi.org/10.1109/IROS.2009.5354455
http://dx.doi.org/10.1109/IROS.2012.6385510
http://dx.doi.org/10.1109/IROS.2012.6385510
http://dx.doi.org/10.1287/opre.38.1.110
http://dx.doi.org/10.1287/opre.38.1.110
http://dx.doi.org/10.1163/016918609X12496339799170
http://dx.doi.org/10.1163/016918609X12496339799170
http://dx.doi.org/10.1109/ICRA.2011.5979704
http://dx.doi.org/10.1109/CDC.2007.4434301
http://dx.doi.org/10.1016/B978-1-55860-595-4.X5000-1
http://dx.doi.org/10.1016/B978-1-55860-595-4.X5000-1
http://dx.doi.org/10.1016/j.asoc.2018.01.015
http://dx.doi.org/10.1002/etep.1633

ming VII, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998,
pp. 611–616.

[22] Zwe-Lee Gaing, Particle swarm optimization to solving the eco-
nomic dispatch considering the generator constraints, IEEE
Transactions on Power Systems 18 (3) (2003) 1187–1195.

[23] M. D. Phung, C. H. Quach, T. H. Dinh, Q. Ha, Enhanced dis-
crete particle swarm optimization path planning for UAV vision-
based surface inspection, Automation in Construction 81 (2017)
25 – 33. doi:10.1016/j.autcon.2017.04.013.

[24] K. Iida, R. Hohzaki, K. Inada, Optimal survivor search for a tar-
get with conditionally deterministic motion under reward crite-
rion, Journal of the Operations Research Society of Japan 41 (2)
(1998) 246–260. doi:10.15807/jorsj.41.246.

[25] M. Kohler, M. M. Vellasco, R. Tanscheit, PSO+: A new par-
ticle swarm optimization algorithm for constrained problems,
Applied Soft Computing 85 (2019) 105865. doi:10.1016/j.

asoc.2019.105865.
[26] V. Roberge, M. Tarbouchi, G. Labonte, Comparison of parallel

genetic algorithm and particle swarm optimization for real-time
uav path planning, IEEE Transactions on Industrial Informatics
9 (1) (2013) 132–141. doi:10.1109/TII.2012.2198665.

[27] Y. Zhang, D. wei Gong, J. hua Zhang, Robot path planning
in uncertain environment using multi-objective particle swarm
optimization, Neurocomputing 103 (2013) 172 – 185. doi:10.

1016/j.neucom.2012.09.019.
[28] M. Clerc, Discrete Particle Swarm Optimization, illustrated

by the Traveling Salesman Problem, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2004, pp. 219–239. doi:10.1007/

978-3-540-39930-8_8.
[29] Y. Fu, M. Ding, C. Zhou, Phase angle-encoded and

quantum-behaved particle swarm optimization applied to three-
dimensional route planning for UAV, IEEE Transactions on Sys-
tems, Man, and Cybernetics - Part A: Systems and Humans
42 (2) (2012) 511–526. doi:10.1109/TSMCA.2011.2159586.

[30] A. W. Mohemmed, N. C. Sahoo, T. K. Geok, Solving short-
est path problem using particle swarm optimization, Applied
Soft Computing 8 (4) (2008) 1643 – 1653, soft Computing for
Dynamic Data Mining. doi:10.1016/j.asoc.2008.01.002.

[31] J. Sun, W. Fang, X. Wu, V. Palade, W. Xu, Quantum-behaved
particle swarm optimization: Analysis of individual particle
behavior and parameter selection, Evolutionary Computation
20 (3) (2012) 349–393, pMID: 21905841. doi:10.1162/EVCO_a_

00049.
[32] D. Karaboga, B. Basturk, On the performance of artificial bee

colony (ABC) algorithm, Applied Soft Computing 8 (1) (2008)
687 – 697. doi:10.1016/j.asoc.2007.05.007.

[33] M. Dorigo, T. Stützle, The Ant Colony Optimization Meta-
heuristic: Algorithms, Applications, and Advances, Springer
US, Boston, MA, 2003, pp. 250–285. doi:10.1007/

0-306-48056-5_9.
[34] R. Storn, K. Price, Differential evolution–a simple and efficient

heuristic for global optimization over continuous spaces, Journal
of global optimization 11 (4) (1997) 341–359. doi:10.1023/A:

1008202821328.
[35] M. S. Kiran, Tsa: Tree-seed algorithm for continuous optimiza-

tion, Expert Systems with Applications 42 (19) (2015) 6686 –
6698. doi:10.1016/j.eswa.2015.04.055.

[36] V. T. Hoang, M. D. Phung, T. H. Dinh, Q. P. Ha, System ar-
chitecture for real-time surface inspection using multiple UAVs,
IEEE Systems Journal (2019) 1–12doi:10.1109/JSYST.2019.
2922290.

[37] S. Piccand, M. O’Neill, J. Walker, On the scalability of particle
swarm optimisation, in: 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelli-
gence), 2008, pp. 2505–2512.

[38] H. Musoff, P. Zarchan, Fundamentals of Kalman filtering: a
practical approach, American Institute of Aeronautics and As-
tronautics, 2009.

15

http://dx.doi.org/10.1016/j.autcon.2017.04.013
http://dx.doi.org/10.15807/jorsj.41.246
http://dx.doi.org/10.1016/j.asoc.2019.105865
http://dx.doi.org/10.1016/j.asoc.2019.105865
http://dx.doi.org/10.1109/TII.2012.2198665
http://dx.doi.org/10.1016/j.neucom.2012.09.019
http://dx.doi.org/10.1016/j.neucom.2012.09.019
http://dx.doi.org/10.1007/978-3-540-39930-8_8
http://dx.doi.org/10.1007/978-3-540-39930-8_8
http://dx.doi.org/10.1109/TSMCA.2011.2159586
http://dx.doi.org/10.1016/j.asoc.2008.01.002
http://dx.doi.org/10.1162/EVCO_a_00049
http://dx.doi.org/10.1162/EVCO_a_00049
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1007/0-306-48056-5_9
http://dx.doi.org/10.1007/0-306-48056-5_9
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.eswa.2015.04.055
http://dx.doi.org/10.1109/JSYST.2019.2922290
http://dx.doi.org/10.1109/JSYST.2019.2922290

	Introduction
	Problem Formulation
	Target Model
	Sensor Model
	Belief Map Update
	Searching Objective Function

	Motion-encoded Particle Swarm Optimization
	Particle Swarm Optimization
	MPSO for Optimal Search
	Implementation

	Results
	Scenarios setup
	Search path
	Comparison with other PSO algorithms
	Comparison with metaheuristic optimization algorithms
	Execution time
	Validation on UAV platform
	Experimental setup
	Experimental results

	Discussion

	Conclusion

