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Abstract 

In the clinical diagnosis of epilepsy using electroencephalogram (EEG) data, an accurate automatic 

epileptic spikes detection system is highly useful and meaningful in that the conventional manual process 

is not only very tedious and time-consuming, but also subjective since it depends on the knowledge 

and experience of the doctors. In this paper, motivated by significant advantages and lots of achieved 

successes of deep learning in data mining, we apply Deep Belief Network (DBN), which is one of the 

breakthrough models laid the foundation for deep learning, to detect epileptic spikes in EEG data. It is 

really useful in practice because the promising quality evaluation of the spike detection system is higher 

than 90%. In particular, to construct the accurate detection model for non-spikes and spikes, a new set 

of detailed features of epileptic spikes is proposed that gives a good description of spikes. These features 

were then fed to the DBN which is modified from a generative model into a discriminative model to aim 

at classification accuracy. A performance comparison between using the DBN and other learning models 

including DAE, ANN, KNN and SVM was provided via numerical study by simulation. Accordingly, the 

sensitivity and specificity obtained by using the kind of deep learning model are higher than others. The 

experiment results indicate that it is possible to use deep learning models for epileptic spike detection 

with very high performance. 
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*1. Introduction 

  
Epilepsy is a chronic disorder of the nervous 

system in the brain. It is characterized by 

epileptic seizures, which are abnormal excessive 

discharges of nerve cells. Generally, people with 

epilepsy may have uncontrollable movement, 

loss of consciousness and temporary confusion. 

According to the Epilepsy Foundation and the 

World Health Organization [45, 46], there are 

________ 
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now approximately 65 million people diagnosed 

with epilepsy and 2.4 million people detected 

with signs of epilepsy each year in the world. 

This makes epilepsy the fourth most common 

neurological disease globally. In developed 

countries, the number of new cases is between 

30 and 50 per 100,000 people in the general 

population. In developing countries, the figures 

are nearly twice as high as in the developed 
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countries. The figures are remarkable and can 

increase significantly in the future. 

Medical tests are highly important in the 

diagnosis of epilepsy, including blood-related 

tests, and brain-related tests using devices such 

as Electroencephalography (EEG), magnetic 

resonance imaging (MRI), Computed 

Tomography (CT). Scalp EEG is used to record 

and monitor electrical activities of the brain by 

measuring voltage fluctuations resulting from 

ionic current flows within the neurons of the 

brain. The measurement is done by using sensors 

(electrodes) attached to the skin of the head, 

receiving electrical impulses of the brain and 

sending them to a computer. The electrical 

impulses in an EEG recording is normally 

characterized by wavy lines with peaks and 

valleys. Scalp EEG remains the most commonly 

used medical test for epilepsy, because it is cost-

effective and it provides EEG signals with very 

high temporal resolution required for reading 

epileptic activity.  

 

  
Figure  1. Epileptic spikes in EEG data,  

marked by the red-lines. 

Neurologists usually inspect the EEG 

recordings on a computer screen and look for 

signs of epileptic activity, generally called 

epileptiform discharges, which are abnormal 

patterns of the brain electrical activity. In this 

work, we consider one special type of 

epileptiform discharges, called epileptic spikes, 

as illustrated in Fig 1. Accurate EEG reading to 

find spikes greatly depends on the knowledge, 

experience and skill of the neurologists to avoid 

misdiagnosis, because various non-epileptic 

brain activity and artefacts in the recording can 

look similar to the epileptic spikes. Therefore, it 

is useful to design automatic EEG software 

systems that can support the neurologists along, 

with an automatic spike detection task. Such 

systems can also save tremendous reading time 

in 24-hour EEG monitoring. In Vietnam, they 

can be of even greater support because the lack 

of skillful neurologists. 

Over the last four decades, many methods 

have been proposed for automatic spike 

detection, but performance of the existing 

methods has reached about 90% on average so 

far. There are two main reasons why the results 

are still not as good as expected. First, EEG data 

always contain artefacts due to non-brain 

activities such as heart beats, eye movements and 

muscle movements, which are recorded by ECG, 

EOG and EMG, respectively. Second, the 

current learning models used in these methods 

are not good enough, while the epileptic spikes 

usually have complicated features. In particular, 

while some spike detection methods are 

introduced based on simple comparison/filter 

thresholds between true spikes and possible 

spikes, such as in [13, 30, 10, 12, 8], some others 

follow a systematic approach, aimed at revealing 

different types of hidden information in EEG 

data, by dividing the automatic detection system 

into subsystems, performing pre-processing, 

feature extraction, classification, etc. Often, a 

spike detection system provides good results if it 

allows us to exploit the advantages of different 

algorithms targeting different types of 

information in the EEG data. Several learning 

models have been used successfully, such as 

Artificial Neural Networks (ANN) [42, 27, 20, 

28, 23, 37, 36, 5], K-means [35], and Support 

Vector Machines (SVM) [1]. 

Recently, deep learning has been attracting a 

great attention in machine learning. Deep 

learning exploits various deep architectures and 

specialized learning algorithms to capture multi-

level representation and abstraction of data. 

These deep architectures have achieved several 

successes and occasionally breakthrough in 

many applications such as natural language 

processing, speech recognition, speech 

synthesis, image processing and computer 

vision. In particular, recent EEG studies have 

used deep learning to some extent. For example, 

Convolutional Neuron Network (CNN) is the 

first deep learning model applied for EEG 

seizure prediction [26]. [43, 22, 44] use another 
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deep learning model called Deep Belief Network 

(DBN) on EEG data to investigate anomalies 

related to epilepsy, different sleep states, critical 

frequency bands for EEG based emotion 

recognition respectively; other deep learning 

models are used to explore complicated tasks 

such as discovery of brain structure [31]; 

learning brain waves’ characteristics [38] using 

three deep models including CNN, deep learning 

using linear Support Vector Machine (DL-SVM) 

and Convolutional Auto Encoders (CAE); 

classification of EEG data using multichannel 

DBN [3]. At the same time, [18] applies CNN 

model to detect epileptic spikes in EEG data. 

However, since EEG signals are non-stationary 

and they can vary greatly from patient to patient, 

there might be not sufficient data (i.e. only 5 

patients) to evaluate the performance of the 

detection system. Furthermore, a performance 

comparison between CNN and simple shallow 

learning models as KNN, RF, SVM is provided 

but the results show insignificant difference. 

At the same time, deep learning could be 

categorized into different classes based on kinds 

of factors such as architectures, purposes and 

learning types [9]. Recently, CNNs are well 

known as the most famous type of deep learning. 

They are highly effective and commonly used in 

computer vision, image recognition, and speech 

recognition with very good results. To our best 

knowledge, types of CNN, however, may reach 

their saturation point. If improving, there is just 

a little bit. So what’s next for deep learning? 

Deep generative models can be the good 

alternative solutions due to the fact that they are 

not only directly related to learning theory 

compared with the inference process of our 

brain, but also able to go deeper. There are now 

many types of deep generative models such as 

Deep Boltzmann Machines [33], Deep Auto 

Encoders [21, 6], Deep Belief Networks [14] and 

Generative Adversarial Nets [11]. This motivates 

us apply the kinds of learning model first. 

The studies mentioned above encourage us 

to find and experiment an improved deep 

learning model to detect epileptic spikes, as 

described shortly after. The contributions of this 

work are: first, we define a detailed feature 

extraction model for EEG data that is suitable for 

applying deep learning models; and second, we 

introduce a systematic approach to apply DBN 

for epileptic spikes detection. 

The paper is organized as follows: In Section 

2, we introduce information related directly to 

our feature extraction and DBN model for 

classification. Implementation of our methods 

for detecting spikes is presented in Section 3 and 

then Section 4 concludes the study with some 

notes and future works.  

2. Methods 

2.1. Feature extraction 

For large and noisy datasets, feature 

extraction is a vital preprocessing step. If carried 

out successfully, feature extraction could reduce 

the undesired effect of noise and high 

dimensionality, the main culprits that hinder 

high performance detection system for EEG data 

in particular. In this work, multiple methods 

have been proposed based on the parameters of 

a spike in time-frequency domain, for example, 

eigenvector methods [41], spike models with 

wave features [24], [23] and time-varying 

frequency analysis [32]. These methods are 

combined to find a set of measurements 

characterizing the spikes. 

Over a last decade, wavelet transform is 

valuable in processing non-stationary signals 

analysis like EEG recordings. In particular, 

wavelet decomposes the signal 𝑥(𝑡) into other 

signals by varying the wavelet scale 𝑎 and shift 
𝑏, which provides different views of the signal 

and visualizes the signal features. Wavelet 

transform has been successfully applied in recent 

studies in EEG such as spike detection and 

sorting [32]. More specifically, wavelet features 

of a spike are obtained immediately from the 

waveforms of the transformed signal, leading to 

the selection of wavelet scale to be used as input 

for spike detection systems. The wavelet scale is 

selected such that the corresponding transformed 

signal of an epileptic spike is likely to be 

waveform of the true spike, while wavelet 

transform of non-spike is disabled. For example, 

in the recently proposed multi-stage automatic 

epileptic spike detection system in [5], the 

authors choose the continuous wavelet transform 
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(CWT) at 5 scales (from 4𝑡ℎ to  8𝑡ℎ) that could 

improve detection performance. In a nutshell, 

using waveform features of wavelet as input of 

the classifier could be effective.   

 
Figure  2. Features of a spike. 

  

       Motivated by results from the 

previously proposed methods and significant 

advantages of wavelet transform, we 

introduce a model to extract a set of detailed 

features for each peaks in EEG data. Seven 

wavelet features of spikes are obtained from 

[23] and divided into 4 groups: duration, 

amplitude, slope and area, shown as in Fig 2. 

In addition, by enlarging the scale range 

compared to that of [5], we increase the 

dimension of input space providing more 

information about spikes. In particular, the 

EEG bandwidth is divided into 4 sub-bands 

including Theta (3.5 - 7.5 Hz), Alpha (7.5 - 

12.5 Hz), Beta1 (12.5 - 30 Hz) and Beta2 (30 

- 50 Hz) and each sub-band gets 10 scales to 

obtain total 280 parameter of features in 

total. These parameters are then fed to the 

DBN classifier as discussed in the next 

section. 

2.2. Deep belief network for classification 

Deep Belief Network (DBN), proposed by 

Hinton et al. [14], is considered as one of the 

most breakthrough models constructing the 

foundation for deep learning. DBN consists of 

two types of neural layers: Belief Network and 

Restricted Boltzmann Machine, shown as  

in Fig. 3. 

 

 
Figure  3. A typical DBN contains 2 Belief Nets  

and 2 RBMs. 

Belief Network 

 

      Belief network, or alternately Bayesian 

network, is often used to contruct the first stages 

or layers of a DBN, shown as in Fig 3. The 

network is a causal model which present the 

cause-effect relationship between input and 

output layer via Bayesian probability theory [7]. 

In particular, a belief network connecting two 

layers using a weighted matrix 𝐖 and the 

probability of input neurons becoming 1 is as 

follows  

𝑃(𝐡1(𝑗) = 1) =
1

1 + 𝑒− ∑ 𝐡2(i)𝐖𝑖,𝑗𝑖
 . (1) 

One could use this model to infer the state of 

unobserved units and, in model training, one 

could adjust the weights to capture the 

distribution of observed data. Belief network is 

often trained using many iterations of Markov 

Chain Monte Carlo (MCMC) which could be 

very time-consuming. Furthermore, when 

stacked in a multi-layer network, its inference 

becomes infeasible due to large number of 

possible configurations and that convergence is 

not guaranteed. To circumvent these drawbacks, 

Hinton et al. proposed that one could restrict the 

connectivity between layers and train the 

network one layer at a time using a simplified 

cost function called Contrastive Divergence 

(CD). This breakthrough [15, 16] will be 

discussed in the next section. 
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Figure  4. Restricted Boltzmann Machine. 

 

Restricted Boltzmann Machine 
    

Restricted Boltzmann Machine (RBM), a 

special type of Markov random field, is a 

simplified Boltzmann Machine. RBM is first 

introduced in the 1980s [2]. The network 

consists of two layers: visible layer where states 

(neurons) are observed, and hidden layer where 

the features are detected. RBM only has inter-

layer connections and does not allow intra-layer 

connections [34]. The structure of a RBM is 

depicted in Fig. 4. 

The RBM network simulates the law of 

thermodynamics in which each state 

(configurations) of the network is characterized 

by a energy, given by:   

𝐸(𝒗, 𝒉) = − ∑ 𝒗𝑖𝒉𝑗𝐖𝑖,𝑗 − ∑ 𝑎𝑖𝒗𝑖

𝑖𝑖,𝑗

− ∑ 𝑏𝑗𝒉𝑗 .

𝑗

 (2) 

The joint probability over hidden and visible 

units in a configuration is then defined in terms 

of energy function:  

𝑃(𝒗, 𝒉) =  
1

𝑍
 𝑒−𝐸(𝒗,𝒉). (3) 

where Z  is the partition function, i.e. the total 

energy of all configurations of the network  

𝑍 =  ∑ 𝑒−𝐸(𝒗,𝒉).

𝒗,𝒉

 (4) 

The probability that the network assigns to a 

certain visible input vector v  is  

𝑃(𝒗) =  
1

𝑍
∑ 𝑒−𝐸(𝒗,𝒉).

𝒉

 (5) 

Given a training set of N  input (visible) 

vectors Nv ,1,=,)( 
, the selection of the 

model parameters (i.e. the jiji baW ,,, ’s) follows 

the Maximum Likelihood Estimation (MLE) 

principle. The MLE principle states that the best 

set of parameters should maximize the training 

data likelihood (or log-likelihood), which is 

defined as the probability of the training data 

given a set of parameters. In particular, for RBM, 

one has to maximize the log-likelihood of 

Nv ,1,=,)( 
:  

max
𝐖𝑖,𝑗,𝑎𝑖,𝑏𝑗

  
1

𝑁
∑ log ∑ 𝑃(𝒗(ℓ), 𝒉),

𝒉

𝑁

ℓ=1

 (6) 

where N  is the number of training data. One 

could solve (5) using the gradient methods 

meaning that one need to compute its derivatives 

  
𝜕 log 𝑃(𝒗)

𝜕𝐖𝑖,𝑗

= 〈𝒗𝑖𝒉𝑗〉𝑑𝑎𝑡𝑎 − 〈𝒗𝑖𝒉𝑗〉𝑚𝑜𝑑𝑒𝑙  , (7) 

where 〈 . 〉𝑑𝑎𝑡𝑎 and 〈 . 〉𝑚𝑜𝑑𝑒𝑙 are the expectation 

operators under data and model distributions, 

respectively. The parameter is then adjusted as  

 

∆𝐖𝑖,𝑗 = 𝜀. (〈𝒗𝑖𝒉𝑗〉𝑑𝑎𝑡𝑎 − 〈𝒗𝑖𝒉𝑗〉𝑚𝑜𝑑𝑒𝑙), (8) 

∆𝑎𝑖 = 𝜀. (〈𝒗𝑖〉𝑑𝑎𝑡𝑎 − 〈𝒗𝑖〉𝑚𝑜𝑑𝑒𝑙), (9) 

∆𝑏𝑗 = 𝜀. (〈𝒉𝑗〉𝑑𝑎𝑡𝑎 − 〈𝒉𝑗〉𝑚𝑜𝑑𝑒𝑙 ), (10) 

with   is the learning rate. 

 

To compute 〈 . 〉𝑑𝑎𝑡𝑎, the expectation under 

data distribution, one could exploit the fact that 

there are no direction connections between 

hidden units in a RBM. This allow one to easily 

generate an unbiased sample of the state of 

hidden units via the conditional probability      

𝑃(𝒉𝑗 = 1|𝒗) =
1

1 + exp (−𝑏𝑗 − ∑ 𝒗𝑖𝐖𝑖,𝑗𝑖 )
. (11) 

Similarly, one could generate an unbiased 

sample of the state of a visible unit given a 

hidden vector because there are no connections 

between units in visible layer, either.   

𝑃(𝒗𝑖 = 1|𝒉) =
1

1 + exp (−𝑎𝑗 − ∑ 𝒉𝑗𝐖𝑖,𝑗𝑗 )
. (12) 

Obtaining the expectation under model 

distribution  jihv , however, is much more 

difficult. Generally, one could perform 

alternative Gibbs sampling for a huge number of 

iterations starting from a random state of the 
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visible units, as described in the MCMC 

algorithm [4]. This is infeasible when the 

number of units is increasing and later, when 

RBM layers are stacked in a deep architecture. 

Fortunately, the Contrastive Divergence 

(CD) algorithm [15, 16] can be used to fasten the 

learning for an RBM. The general idea is to 

sample all the hidden units in parallel starting 

from visible units (input), then reconstruct 

visible units from the sampled hidden units, and 

finally sample the hidden units once again. The 

intuition behind this is that after a few iterations 

the data will be transformed from the target 

distribution (i.e. that of the training data) towards 

the model distribution, and therefore this gives 

an idea in which direction the proposed 

distribution should move to better model the 

training data. Empirically, Hinton has found that 

even 1 cycle of MCMC is sufficient for the 

algorithm to converge to the acceptable answer. 

The learning rule is    

 

∆𝐖𝑖,𝑗 = 𝜀. (〈𝒗𝑖𝒉𝑗〉𝑑𝑎𝑡𝑎 − 〈𝒗𝑖𝒉𝑗〉1), (13) 

∆𝑎𝑖 = 𝜀. (〈𝒗𝑖〉𝑑𝑎𝑡𝑎 − 〈𝒗𝑖〉1), (14) 

∆𝑏𝑗 = 𝜀. (〈𝒉𝑗〉𝑑𝑎𝑡𝑎 − 〈𝒉𝑗〉1), (15) 

where 1  represents the expectation operator 

given by 1 cycle of MCMC. The CD  algorithm 

with 1 cycle ( 1CD ) is summarized as follows:   

 

• Initialize 𝒗0 from input data;  

• Sample  𝒉0 ≔ 𝑝(𝒉|𝒗0);  

• Sample  𝒗1 ≔ 𝑝(𝒗|𝒉0);    

• Sample  𝒉1 ≔ 𝑝(𝒉|𝒗1).  

 

     The algorithm described above represents a 

breakthrough in learning a single layer of Deep 

Belief Networks (DBN). Several RBM layers 

could be stacked and configured (i.e. learned) 

sequentially to obtain multi-level representation 

of the data. The idea is to used output of previous 

layers as training data of subsequent layers and 

one could learn multiple layers at ease. In the 

next section, we will discuss our method to adapt 

DBN, a powerful generative model, to use in 

classification tasks. 

 

 
Figure  5. Generative DBN to discriminative DBN. 

 
Deep Belief Networks for EEG Classification 

 

Deep Belief Networks could learn pattern in 

data even when no labeled sample is available. 

DBN efficiently models the generative 

distribution of input data. However, when used 

in classification tasks such as EEG classification, 

one needs to augment the architecture of DBN 

for classification accuracy. 

To carry out classification, we add a 

discriminative objective function on top of the 

existing DBN. There are several possible 

methods for classification. Firstly, one can use 

standard discriminative methods which use 

features (outputs) generated by DBNs as inputs, 

for example, k-Mean, kNN, logistics regression, 

SVM [39]. However, a more natural way to add 

classification capability to DBNs is to directly 

modify the generative DBN model into a 

discriminative DBN model [17]. This method 

transforms two units of the last RBM into a new 

stage as shown in Fig 5. To be more specific, we 

train RBM on each class (we have only two 

groups: epileptic-spike and non-spike), and then 

obtain the free-energy of a test data vector for 

each class. The free energy of a visible vector 

(F(v)) is defined as the energy a configuration 

need to obtain in order to have same probability 

as all configuration that contain v [17]. 

   For each class-specific RBM, we have that  

𝑒−𝐹(𝒗) =  ∑ 𝑒−𝐸(𝒗,𝒉)

ℎ
 (16) 

𝐹(𝒗) = − ∑ 𝑎𝑖𝒗𝑖 ∑ 𝑝𝑗𝑥
𝑗 𝑖

 

        + ∑ 𝑝𝑖 log 𝑝𝑖 + (1 − 𝑝𝑖) log(1 − 𝑝𝑖)
𝑖

. 
(17) 
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It is also calculated by  

     𝐹(𝒗) =  − ∑ 𝑎𝑖𝒗𝑖 −  ∑ log(1 + 𝑒𝑥𝑗)𝑗𝑖 . (18) 

where 
ijiiii Wvbx +=  is the total input to 

hidden unit j, )(= jj xp   is the probability that 

𝒉𝑗 = 1 give v. 

 

Recall that there are only 2 classes in EEG 

data, so it is easy to predict the probability of 

assigning a vector to one class via its free 

energies as           

                𝑃(𝑐𝑙𝑎𝑠𝑠 = 𝑐 | 𝒕) =  
𝑒−𝐹𝑐(𝒕)

∑ 𝑒−𝐹𝑑(𝒕)2
𝑑=1

. (19) 

where 𝐹𝑡(𝒕) is a free energy of the test vector 𝒕 

on class c . 

3. Experiments 

3.1. EEG dataset 

The EEG data used in this study are recorded 

at Signal and Systems Laboratory, University of 

Engineering and Technology, Vietnam National 

University using the international standard 10-20 

system with 32 channels and representing in 

EEG with the sampling rate of 256 Hz. 

Measurements were carried out on 19 patients 

aged from 6 to 18 years who were detected signs 

of the epilepsy. 

 

In data collection, we first gather locations of 

epileptic spikes which are validated by a 

neurologist, then take 56 data points around each 

peak position into a segment presenting a spike. 

After that, 1491 epileptic spike segments 

(vectors) are combined together into the first 

class namely “spike”. Similarly, we take random 

peak segments samples from the EEG dataset to 

create the non-spike class. They are therefore 

randomly divided into three subsets based on cross 

validation method: a training and a validation set 

are obtained from a number of patients; while the 

remaining patients are used to tested. In a nutshell, 

we get totally several cases for experiments to 

measure how good the DBN is. 

 

There is a significant difference in EEG data 

usage between our implementation and previous 

method. In the following experiments, we use 

the raw EEG data instead of filtering out the 

“noise”. In general, the EEG data always consist 

of many artifacts as mentioned in section 1. This 

artifacts often lead to difficulty in reliably 

detectiing epileptic spike. Thus, in previous 

methods, preprocessing step is highly important 

to minimize the effect of the noise on the 

performance of spike detector. In fact, to the best 

of our knowledge, there has been no study of 

high performance spike detector in EEG using 

only raw data. In this work, that features are 

extracted from unprocessed data using DBN 

without any filtering also helps the whole 

detection system performs faster. 

3.2. Evaluation metrics 

There are various criteria used to measure 

the performance of a detection system depending 

on specific fields. In this work, sensitivity, 

selectivity, specificity and accuracy, which are 

typical statistical measures in machine learning 

and computer science, are first used to evaluate 

the quality of our spike detection system. In 

particular, let’s consider that TP and FP are a 

number of correctly and incorrectly identified 

epileptic spikes in EEG data respectively; TN, FN 
are the number of correctly and incorrectly 

rejected non-spikes, respectively. Therefore, the 

sensitivity (SEN) measures a proportion of 

correct classification , that is given by  

             SEN =  
TP

TP + FN
 ; (20) 

the selectivity (SEL) indicates a percentage of 

spikes that are correctly detected over total 

spikes detected by the classifier  

            SEL =  
TP

TP + FP
; (21) 

the specificity (SPE) is quite similar to 

selectivity (SEL) but for negative cases    
        

                  SPE =  
TN

TN + FP
; (22) 

meanwhile the negative predictive value (NPV)  

is a proportion of non spikes identified correctly  
 

               NPV =  
TN

TN + FN
;  (23) 
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The accuracy (ACC) show hows the classifier 

makes the correct prediction,   
         

            ACC =  
TP + TN

TP + FP + TN + FN
 .  (24) 

 

The following confusion matrix is another way 

to illustrate the above evaluation metrics. The 

performance criteria above are represented as 

columns and rows of this matrix, as shown in 

Tab 1. 
 

Table  1. Matrix Confusion 

  

TN FN NPV 

FP TP SEL 

SPE SEN ACC 

 
Finally, we also use Receiver Operator 

Characteristic (ROC) curve to visualize the 

performance of the system. The curve is drawn 

by plotting true positive rate based on  

SEN and false positive rate that can be 

calculated as 1 −  SPE. ROC analysis allows us 

get a trade offs between benefits and costs to 

make a decision. 

3.3. Results 

Our experiments are implemented in MATLAB 

2015b on Intel core i7 processor and 8G RAM 

machine. In the experiments, DBN training is 

performed through three steps including pre-

training of each layer; training all layers and 

fine-tuning of all with back-propagation. The 

goal of the training is to learn the weights and 

biases between each layer and reconstruction so 

that the network’s output are as close to the input 

as possible. In this section, we would like to 

estimate how good the DBN implement in 

practice via three estimation cases: (1) 

estimating the best DBN’s configuration, (2) 

testing the DBN based on the cross validation 

method and (3) comparing the DBN with 

previously proposed methods and the state of the 

art deep learning methods. 

 
Fig 6. Configurations of the DBN 
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First, several different configurations of the 

DBN in terms of the number of hidden layers and 

hidden units are tested to choose the best result. 

We configure the DBN as following. The 

number of units in input and output layer 

corresponds to the true length of vector feature 

input and possible classifications on EEG data. 

The number of units in each hidden layers will 

be tested in simulation to find the best number of 

hidden units. Besides, we also let the number of 

hidden layers vary. Those settings of number of 

layers and number of units constitute several 

configurations of the DBN. We test these 

configurations to examine the best deep 

architecture of DBN for our EEG dataset. 

 

It may be intuitive that if the DBN has many 

more hidden layers, the network is able to learn 

more complex features in dat with high accuracy. 

However, this can be misconception. We first 

use one hidden layer for training (then the total 

system contains input layer - a hidden layer - 

output layer), and the classification accuracy is 

not good. We then add another hidden layer 

(with same number of units to the first layer) and 

get a good result. Again, another hidden layer is 

put into the DBN that gives a improved result. 

As far, the more depth is good; hence, we add 

another layer with encouragement. Suddenly, the 

result fell down, one more time, we try inserting 

more layers into the deep network, but it is not 

encouraging, either. 

Table  3. The sample EEG dataset to investigate 

various configurations of the DBN model  

for the best result 

 

   Training Validation Testing 

Epileptic 

Spike  
978 123 390 

Non-Spike  2030 377 760 

Total  3010 500 1150 

 

In practice, when dealing with the case of a 

sample dataset as in Tab 3, the typical results are 

shown statistically in Fig 6. Specifically, 4 first 

items give the result for varying number of 

hidden layers and fixed number of hidden units, 

while the next items gives the results for fixed 

number of hidden layers and varying number of 

units in each or every hidden layer. It can be seen 

that the configuration of [1 input, 3 hidden 

layers, 1 output] allows us to have the best 

classification accuracy. Next, the results for the 

cases of varying number of units confirm that the 

number of units should be under a threshold for 

each layer to obtain best results. If they 

overcome this value, the classification accuracy 

will drop. This negates the intuition that the more 

number of neurons in each layer, the more 

efficient performance. By comparing across 

training, we observe that we observe that the 

Table 2: Quantitative statistics of the DBN based on the Leave-One-Out Cross Validation method 

Patient 
Spikes/Non-

Spikes 
SEN SPE Patient 

Spikes/Non-

Spikes 
SEN SPE 

1 8/190 75.00% 97.89% 9 4/380 100% 100% 

2 44/190 95.45% 97.37% 10 635/190 97.95% 98.95% 

3 22/190 81.82% 99.47% 11 22/190 86.36% 97.89% 

4 28/380 85.71% 99.70% 12 5/190 100% 89.47% 

5 4/380 50.00% 98.42% 13 1/190 0% 100% 

6 351/190 84.90% 95.79% 14 24/190 95.68% 99.47% 

7 8/190 100% 98.95% 15 2/190 0% 97.36% 

8 21/380 80.95% 100% 16 11/190 81.82% 85.26% 
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DBN’s configuration of [1 input, 3 hidden 

layers, 1 output] with [280:1000:300:30:2] 

neurons has the highest average performance in 

item of sensitivity, selectivity, specificity, and 

accuracy 92.82%, 97.83% , 96.41%, and 96.87% 

respectively. In particular, the results are shown 

statistically in Confusion Matrix in Fig 7. It is 

clear that 362 epileptic spikes are correctly 

detected that corresponds to 97.8% and 92.83% 

of all peaks detected by DBN and the neurologist 

respectively. Only 8 non-spikes are detected as 

epileptic spikes and this corresponds to 0.7% of 

1150 peaks in the testing data. More specifically, 

out of 390 true epileptic spikes, 92.83% are 

correct and 7.2% are wrong. At the same time, 

total evaluation metrics measuring non-spikes 

are very well with NPV and SPE be 98.9%, 

96.4% respectively. Overall, 96.9% of prediction 

are correct and 3.1% are wrong detection. 

  
Figure  7. Resulting confusion matrix. 

 

Second, several experiments are  

implemented on many datasets to estimate the 

performance of the DBN in practice. Recall that, 

the EEG signals are nonstationary which vary 

not only from patient to patient, but also from 

day to night in each patient. This leads to the fact 

that results may not be good if the testing patient 

is greatly different both in terms of the number 

of epileptic spikes and their characteristic shape 

from the training patients. At the same time, 

leave-one-out cross-validation (LOO-CV) is a 

well-know tool for estimating the performance 

of classification systems that can provide a 

conservative evaluation [19]. In this work, the 

whole EEG dataset composed of 19 patients are 

randomly split into training, validation and 

testing sets based on the LOO-CV. In each 

observation, the best DBN’s configuration is 

fitted using a training data composed of 18 

patients and then tested by a remaining patient. 

The measurement is repeated until the last 

patient is done. 

The experimental results are shown 

statistically in the Tab 2. It can be clearly that, 

the estimation of emphspecificity is stable in all 

tests which is reasonable at 95% to 100% due to 

the fact that the number of non spikes for testing 

are large compared with the testing epileptic 

spike, meanwhile the sensitivity seems to be 

different   in   patients.  Accordingly, among  the 

observations, the patient number 7 and 8 reach 

the highest sensitivity of 100%; whereas the 

DBN can not detect any epileptic spikes of 

patient number 13 and 15 leading to the lowest 

result at 0% or the model returns a sensitivity of 

50% from patient number 5. It may be caused by 

the fact that the patients have a few spike which 

can be considered as anomalies, so it is hard to 

capture them. In addition, the statistics indicate 

that the more epileptic spike we obtain from the 

testing patient, the higher accuracy the DBN can 

predict at. For examples, 622 spikes of patient 

number 10 are correctly detected over the total 

number of 635 spikes with a precision of 

97.95%; and in the case of the patient number 14, 

the experimental results are very high when the 

percentage of epileptic spikes and non spikes 

detected correctly is 95.68% and 99.47% 

respectively. In other cases, the outputs returned 

from patients with more than 20 spikes are quite 

good and stable in the range sensitivity of 80%  

to 86%. 
 

 Finally, a performance comparison between 

using the DBN and other learning models was 

provided via numerical study by simulation. In 

this work, there are the ANN, deep autoencoder 

(DAE), support vector machine (SVM) and  

K-nearest neighbor (kNN). In particular, the 

ANN is organized by an input layer, two hidden 

layers and an output layer followed the way of 

Liu [23] and Dao [5]. The DAE which is a deep 
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generative model is modified into a 

discriminative model to be aiming to predict 

epileptic spikes that is composed of three stages 

including encoder, decoder and softmax layer 

[6]. The SVM and kNN, which are well-know 

models, are already applied to classify epileptic 

spikes, shape waves and emotion in EEG data in 

[1, 29] and [25] respectively. All the models are 

trained and tested on the same above EEG 

dataset.  

 

The results are show statistically and 

graphically in Tab 4 and Fig 8. It is clear that all 

the quality evaluation including sensitivity; 

specificity and area undercurve (AUC) of the 

DBN are better than that of other models. 

Moreover, using DBN consumes less training 

time than using others for the reason which the 

training time of DBN can be reduced by the 

decreasing the number of iterations to 

convergence in CD algorithm while SVM, kNN 

and ANN are very time-consuming in the 

training process due to the high-dimensional 

input vector space. Specifically, the  
SEN, SPE of the DBN classifier are 87.35%, 

97.89% respectively and better 20% than the 

classifier ANN, meanwhile, only 58.64% and 

28.40% of true spikes are correctly detected by 

SVM and kNN. It may be caused by the fact that 

the EEG dataset used in this work is raw without 

filtering and removing artifacts. Therefore, using 

shallow architectures are not useful for this 

work. Surprisingly, the deep DAE model can not 

detect any spikes and provide a worthless result 

with very low AUC of approximately 0.5. It 

indicates that not all deep learning models are 

suitable for this problem. In addition, the 

experiments show that the DBN reaches the 

biggest AUC of 0.9597 representing an excellent 

system which providing better performance than 

other models. Once again, this emphasizes the 

advantage and efficiency of DBN in epileptic 

spikes detection. 

Figure  8. ROC curves for some learning models 

trained on the EEG data. 

 
Table  4. A performance comparison between the 

DBN and other learning models 

Model SEN SPE AUC 

DBN 87.35%    97.89%    0.9597 

DAE 0% 100%    0.5232 

ANN 65.74%    91.72%    0.8918 

SVM   58.64%    92.53%    0.8815 

kNN 28.40%    95.42%    0.8058 

4. Conclusions 

In conclusion, we have applied the DBN 

model as a classifier to detect epileptic spikes in 

EEG signal. The training process show that the 

DBN can learn hidden features in EEG data 

which distinguish between epileptic spikes and 

non spikes group with high accuracy. The 

experiment results not only indicates that 

learning high-level representations of EEG data 

can be achieved successfully for spike detection, 

but also emphasizes the advantage and 

efficiency of DBN in epileptic spikes detection. 

In addition, we also compare the performance of 

the detection system between using the DBN and 

other learning models like SVM, kNN, ANN, 

DAE. Accordingly, the results returned by the 

kind of deep learning models are better than 

those earlier methods. 
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In the near future, we would like to build a 

new model to get more suitable features for deep 

networks with better classification result. We 

will also continue to complete the DBN model 

and try to use the other state of the art deep 

learning models, adjust the parameters of these 

networks to determine which is the best model 

for detecting spikes in EEG signal. Moreover, to 

get higher quality, we will consider improving 

preprocessing with more appropriate design of 

filters, perceptrons to get clearer data before 

training deep learning models.  
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