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Abstract—Our work improves the encoded image quality from
HiDDeN framework, an end-to-end image steganography based
on deep convolution neural network. In the encoding phase of
HiDDeN framework, to embed a message in a cover image, it is
required to split the cover image into smaller image blocks and
embed the message bits in each block in parallel. These embedded
blocks are then combined to form an encoded image that has the
same size as the cover image. This image reconstruction process
causes artifacts that appear on the boundaries of the blocks.
This can be explained by the fact that when message bits are
embedded in the image blocks, the pixel-level information of each
image block is unequally alternated. In order to reduce block
artifacts, in this work we propose a blocking loss as an additional
objective function in HiDDeN framework. This loss measures
the difference between encoded images and modified versions of
the cover images. The proposed method is evaluated on COCO
2014 and BOSS datasets and the experimental results show
the effectiveness in reducing the block artifacts that appeared
in the encoded images of HiDDeN framework. This has an
important impact on increasing the invisibility or transparency
of the steganography system. In addition, the experimental result
on secrecy of the proposed method also indicates the same
performance as the HiDDeN pipeline.

Index Terms—image steganography, convolution network,
blocking artifact

I. INTRODUCTION

Image-based steganography is mainly used in such tasks as
watermarking or information hiding. The main purpose is to
embed a hidden message, which is present in the form of
a sequence of bits, into a cover image. The result of this
procedure is an encoded image or stego image, from which
the original sequence of bits can be extracted by the decoding
process. Normally, the encoded image should be viewed as
similar as possible to the cover image by the human vision sys-
tem. This is equivalent to a metric of invisibility of an image-
based steganography system. The difference between the cover
image and encoded image is measured by PSNR (peak signal
to noise rate). In addition to invisibility, several metrics are
used to evaluate the efficiency of image-based steganography.

The capacity presents how many bits of message can be hidden
in the cover image. The robustness shows how altered a hidden
message is when the stego image is distorted. The secrecy
presents the rate of hidden message can be recovered from
the encoded image.

Some popular approaches for image steganography in-
cluding Least Significant Bit (LSB) [1], HUGO [2], or S-
UNIWARD [3]. These approaches evolve around the idea of
replacing unnecessary bits in the cover image by the bits of
the message needed to be hidden. This modification is done in
such a way that it can not make the visual difference between
cover image and encoded image. In the aspect of security, in
order to detect one image contains hidden message or not,
there are a number of ways. For example, the work in [4]
uses image features to detect the encoded image with the
assumption that it has access to the encoding model.

Recently, with the advance of deep networks and generative
models, CNN-based image steganography can be applied and
achieved prominent results. Neural networks have been used
for both steganography and digital watermarking such as the
work of C.Jin et al [5], Kandi et al [6] and Mun et al [7].

The HiDDeN framework [9] shows an end-to-end trainable
deep network that can be focused on both secrecy and ro-
bustness. Its main idea is to split a binary sequence of the
message unequally and conceal them to each pixel of the
cover image. In order to do this, the proposed pipeline uses
deep convolution networks as an encoder and decoder. The
encoder receives an image as the cover image and a message
and creates the encoded image, which contains the hidden
message. The decoder would take the encoded image and the
initial image to extract the hidden message. In the training
phase, the HiDDeN aims to optimize several metrics. The first
one is the differences between the encoded image and the input
image. The second one is the difference between the decoded
message and the input message. The final one is a GAN-based
loss [8], for detecting real or fake images.



Compare to the previous works, such as HUGO [2] or S-
UNIWARD [3], HiDDeN outperforms both of these in terms
of robustness and secrecy. However, to reach a reasonable
capacity, the HiDDeN pipeline requires dividing the cover
image into small blocks and encode each block individually.
When combining these blocks to the original size of the cover
image, the blocking artifacts as the vertical and horizontal
edges between each consecutive pair of blocks are created.
The effects would be similar to blocking artifacts of JPEG as
described in [15]. This shows a visible change of the encoded
image in comparison with the cover image. Therefore, the
invisibility or imperceptibility of image-based steganography
would be violated.

In order to reduce the block artifacts caused by HiDDeN
framework, in this paper we add another loss called blocking
loss to this framework. The proposed loss attempts to reduce
the differences between the encoded image and a modified
version of the cover image. Moreover, an entropy weight is
added to put more emphasis on the region where the network
should be trained to prevent the mismatch of the boundaries
of the encoded consecutive blocks. The proposed method is
tested on the datasets of COCO 2014 [16] and BOSS [19].
Our work has shown better invisibility but retains the secrecy
metric of HiDDeN framework.

The remains of our papers are organized as follows: in
the section II, we introduce several related works to image
steganography, the HiDDeN framework and its block artifacts
issue are presented in section III, our proposed solution is
introduced in section IV, we provide the experiment results
and discussion in section V. The summary is given in section
VI.

II. RELATED WORKS

The pipeline framework of an image steganography system
may consist of two inputs: a cover image and a message.
The message is concealed in the cover image by embedding
algorithm to output encoded image. In a reverse process, the
hidden message can be extracted from the encoded image. The
difficulty or ease of recovering hidden message from encoded
image by steganalyzers is evaluated in security criteria.

Least-Significant Bit (LSB) [1] starts with the idea of
replacing the rightmost bit in a binary number string of a pixel
in cover image by a bit of a message so that this replacement
is transparent to human vision system. By design, LSB has an
asymmetry embedding operation and altered statistics which
is a potential vulnerability to the development of highly
accurate targeted steganalyzers lead to reliable detection. More
advanced techniques based on LSB such as LSB matching
[10] was created to overcome this weakness by modulating
the pixel value by 1 so that the LSBs of pixels match the
secret message.

Besides LSB-based image steganography, recent algorithms
attempt to optimize a distortion metric when a message is
embedded into the cover image. Several notable works in-
cluding HUGO [2], which relies on means of efficient coding

algorithm and S-UNIWARD [3] with using the functions on
the spatial domain from a bank of directional high-pass filters.

The recent advances of deep convolution neural network
(CNN) allows the image encoder and decoder in the image
steganography could be built easily. The encoder structures
includes VGG-base structures [11] or ResNet structures with
residual connection [12]. In the decoder part, generative neural
networks such as Variational autoencoders (VAEs) [13] or gen-
erative adversarial nets (GANs) [8] achieve good performances
in a wide range of image generation tasks.

Prior to HiDDeN [9], CNN network approaches for image
steganography is used on several parts of a large pipeline.
For example, [5] divide original image in to blocks then uses
neural network to measure secrecy of each block. In the first
step, the original image is divided into blocks, and then neural
networks decide adaptive different embedding strengths for
each block, depend on their textural features and luminaries.
In the second step, the watermark detection is based on the
correlation of different keys. [6] propose the use of an auto-
encoder base on CNN and [7] to construct a CNN-decoder for
decoding the message bit. The deep CNN network could also
be used in detecting the encoded images. SRNet [14] proposes
the usage of a deep residual architecture which removes the
pooling step in the early step to preserve the stego signal in
images.

III. HIDDEN FRAMEWORK AND BLOCK ARTIFACTS

A. Overview of HiDDEN Framework

The main idea of HiDDeN [9] is to use an encoder to hide
a binary bits sequence of a secret message in spatial regions
of the cover image. This results into a encoded image or stego
image from which the hidden message could be retrieved by a
parallel-reverted decoder. In the encoding phase, the encoder
E receives a cover image Ico of shape C x H x W and a
binary secret message Min ∈ {0, 1} of length m and produces
an encoded image Ien with the same shape as Ico. In the
decoding phase, The noise layer N receives Ien and Ico as
inputs and distorts the encoded image to produce a noised
image Ino. The decoder D recovers the message Mout from
Ino. For training the encoder E and decoder D, the authors
proposed to use a large number of images Ico and randomly
pick a binary message Min to feed through the network. The
losses are then computed on the image reconstruction loss LI ,
which measures how differs between the cover image Ico and
the encode image Ien, the decoded message error LM between
Min and Mout and the GAN loss LG of A. As reported in
[9], the detection rate of encoded images by HiDDeN is 50%
with a capacity of 0.2 bit per pixel. The detection result is
better than HUGO [2] and S-UNIWARD [3], which have the
detection rate of 70% and 68%, respectively.

In the proposed approach, to incorporate the message M of
length m into the cover image Ico, the network architecture
contains a message volume as an intermediary representation.
The message volume is a layer which has the spatial size H
x W as the image and the depth channel is m. Given a fixed
bit per pixel (BPP) λ, the size of the message volume would



increase linearly to the image size. Specifically, to reach the
capacity λ of a gray cover image Ico with size of H x W , it
requires the input message to have the length m = λ x H x W .
For example, m could be over the size of 3200 depth channels
with H = W = 128 and BPP capacity λ = 0.2. Therefore, it
makes the training procedure impractical with a large image
size. Moreover, the number of depth channels in intermediary
representation could affect the performance of the network in
the message decoding phase. In other ways, it is more difficult
to retrieve the hidden message from a large message volume.
To overcome the issues, the authors of HiDDeN proposed an
approach to split the cover image and the message into smaller
blocks and train the network in each smaller block, one-by-
one.

Without the loss of generality, we could assume the input
cover image Ico has the dimension of H = W = N . By
selecting a block size KxK, and let n = N/K, the image
Ico would be divided into n2 image blocks Ii,jb with size
KxK (0 ≤ i, j < n). As a result, given the same BPP λ,
the encoding message length m is fixed by K, rather than
N . Therefore, it also removes the linear relation between the
size of the intermediary representation and the input cover
image size. However, by splitting a cover image Ico into n2

smaller blocks of Ii,jb , encoding the message into each block
and reassembling these encoded blocks to form an encoded
image Ien create block artifacts in Ien. This phenomenon is
similar to lossy image compression of JPEG. It is a noticeable
distortion of the encoded images in the HiDDen steganography
system. This means the invisibility metric of image-based
steganography is not satisfied. Fig 1 indicates an example of
block artifacts (horizontal and vertical lines or edges) that
appeared on the encoded image (the middle one) compared
to the normal display of the cover image (the left one). The
standard encoder of HiDDeN works on (16x16) block size
(K = 16) of 128x128 cover image. The embedding capacity
λ = 0.2 results in a message size that can be hidden in each
block is m = 52 bits . The peak signal to noise (PSNR)
for image, computed by |Ico − Ien|, shows the differences
emphasized by vertical and horizontal edges along with the
blocks of size K x K.

(a) (b) (c)

Fig. 1: From left to right, the cover image (a), the encoded
image (b) and its peak signal to noise image. The white pixel
in signal to noise image indicates large differences in pixel
values between the encode image and the cover image.

In the following sections, we present the proposed methods
to calculate block artifacts and reduce block artifacts in

encoded images resulting from HiDDeN system.

B. Block Artifact Calculation

In order to measure the influence of block artifacts, we can
compute the difference between the pixels of two neighboring
blocks. The blocking values of each image could be computed
similarly to the blocking effects of JPEG. The work in [15]
defines an edge as a boundary between two regions with rel-
atively distinct gray-level properties. We adapt this definition
for computing the block artifacts of the full size NxN encoded
image, which are reassembled from n2 images with the size
of KxK.

For an vertical edge at position x = j ∗K with 0 ≤ j < n,
it splits the cover image into two consecutive blocks. Fig
2 illustrates the edges which are constructed from image
blocks of size KxK within the cover image of size NxN
(N=n ∗ K). The total number of vertical edges in an image
is n − 1. Let w is the edge width of each side, we could
forms a pair of image regions Rleft

j and Rright
j . Each region

Rj has a dimension of 1 × w and each pixel i in this
region has a gray scale value pi with 0 ≤ i < w. The
gray level P over a region Rj is calculated by the average
value P (Rj) = (

∑
pi) /w. Therefore, the distinct gray level

Dj between two average gray value of Rleft
j and Rright

j is
defined as the absolute value of the subtraction between the
two: Dj =

∣∣∣P (Rleft
j )− P (Rright

j )
∣∣∣.

Fig. 2: Illustration of the region pair’s coordinate in the spatial
domain.

With a given constant G value, we count the number of
distinct gray level values Dj that are greater than G in vertical
direction Vcount. Similarly, we could compute the number of
distinct gray level values in horizontal direction Hcount. The
block artifact value B of one image is then calculated as the
fraction of the sum over total number of region pairs:

B =
Hcount + Vcount
2 ∗ n ∗ (n− 1)

(1)

By using the above equation, the encoded image in Fig. 1
has a block value of 0.1093 with G = 1/8 of maximum gray
level.

The mismatch issue between two consecutive image blocks
is similar to JPEG [15] or other pipelines which require



Fig. 3: Loss variables of original HiDDeN framework and our Loss variables. Original HiDDeN loss function LI based on
Cover image block Ib and Encoded Image block Ieb, while we calculate our loss LB on Edge image block Iedge and Encoded
Image block Ieb.

splitting the original image to smaller sizes. There are several
methods that attempt to fix the artifacts. Novel methods
such as adaptive filtering [15] or wavelet transform [17] are
proposed to reduce the artifacts. These methods can be applied
for any block-based image encoders. In [18], the authors
proposed a BlockCNN architecture which reads the image
blocks consecutively and fixes the mismatch boundaries.

IV. TRAINING ADDITIONAL LOSS FOR REDUCING
BLOCKING ARTIFACTS

Given the block artifacts value B from Equation 1, one
could set up a training schedule between two sharing-edge
blocks of the cover image and user the derivative of B to
train. However, it requires to modify the encoder to work on
two blocks of the cover image instead of one. This would add
more complexity to the message encoding and decoding at the
later phases. Instead, we create a modified version of the cover
image named the edge image Iedge. The edge image Iedge is
produced by replacing the pixels in the boundary regions of
the original cover image with the pixels of the next image
blocks. We modify the HiDDeN training procedure by adding
a blocking loss LB in HiDDeN framework (Fig 3). The main
purpose of the new loss LB is to ask the encoder to produce the
output encoded image similar to the Iedge, which reduces the
differences between the pixels of those boundaries. Therefore,
it would reduce the effects of blocking artifacts in the later
process of block reassembling.

A. The Modified Cover Image

The edge image Iedge can be created from the Ico by
blending the pixels in the boundary region of one image block
with the corresponding pixels in the boundary region of its
consecutive block, given the block size K. We propose a way
to construct the Iedge by keeping the pixels in the center the
same as the initial Ico. In the edge boundary regions, there are
two factors of α and β that are used to control the difference
between the Iedge and the Ico. The α parameter is used to
control the blending factor of the pixel’s gray value and the β
parameter defines the width of the edge boundary.

In general, the cover image Ico of size NxN is split into
smaller blocks Ii,jb of size KxK. Fig 4 illustrates the building
of the right boundary region of the Ii,jb , using α and β
parameters.

Fig. 4: Given a block image Ib with length K defined by
vertical edge xi = iK, the left boundary region of Ib has
the width of βK and its gray level values adjusted by the
boundary region of the consecutive block image, using the
blending factor α.

The new value of a pixel in the block Ib of the edge image
is calculated by linear interpolate respect to the α value.

In general, any block has a maximum number of 4 boundary
regions depends on its position: right-vertical, left-vertical,
top-horizontal and bottom-horizontal region. We could for-
mulate the gray level value of Iedge(x, y) for a right-vertical
region with its corresponding edge xi = i*K as follow:

Iedge(x, y) = Ico(x, y) ∗ (1− α) + Ico(x
′, y) ∗ α (2)

with xi − β ∗ K ≤ x ≤ xi, x′ = 2xi − x. The pixel
(x′, y) is the pixel in the left-vertical boundary region of the
consecutive block Ii+1,j

b of Ii,jb . The equation for the right-
vertical edge could be applied to create other left-vertical, top-
horizontal, bottom-horizontal edges. The Iedge will then have
the boundary of each K x K block images modified by the
above procedure. Therefore, the difference at the boundary
regions of block size K could be learned by adding a new
loss.



Given the edge image, we create a new loss, LB to measure
how Ien is different from Iedge. More specifically, the new
loss LB asks the network to produce the image with smaller
differences in the edge boundary regions for each vertical edge
xi = iK and yj = jK. In our work, we select to optimize
the mean square error (MSE) loss of the encoded image Ien
and Iedge. The LB would be optimized together with the other
three losses, LI , LM and LG of HiDDeN pipeline. Because the
Iedge contains the information of the edge boundary regions,
by optimizing the LB , it would reduce the block artifacts.
In general, there is a correlation between the Iedge and Ico,
which affects the LI and LB in the training. The factor α
and β would control the variations between the two losses.
Our later experiments show that the adding loss LB would
not affect the convergence of the training procedure.

B. Adding Weight to MSE Loss based on Image Entropy

In the standard HiDDeN network, the entropy of an image
could affect the encoding and decoding hidden messages. It
is easier to embed/extract the hidden message into/from a low
entropy region than a high entropy region. In other words, the
low entropy region leaves more way to alternate the sub-pixel
level structures for hiding the message. However, in the low
entropy region, the encoded image is easier to discover. Given
the two image blocks which share a boundary xi = iK or yj =
jK, the entropy of each block could affect the way its pixels be
modified. It would lead to the block artifacts if the differences
are larger than a threshold to create edge-structures. In our
works, the threshold is defined by the constant G. The Fig.
5 illustrates our idea. There exists a correlation between the
entropy of the input cover image and the output block values
of the corresponding output encoded image. When the input
cover image Ico has high entropy, the output or the encoded
image Ien suffers more block effects.

Fig. 5: Correlation between the block values of the encoded
images and the entropy of the input cover images of size
128x128, calculating on 1000 gray-scale images.

Based on this observation, we add the entropy of the input
cover image as a weight of the standard MSE loss into the

TABLE I: The mean blocking values in the test images for
three approaches on COCO and BOSS dataset

Dataset Standard MSE Entropy-MSE
COCO 2014 0.0949 0.0902 0.0851

BOSS 0.0307 0.0254 0.0233

computation of LB . The purpose of this weight is to emphasize
the loss between the encoded image Ien and the edge image
Iedge when the image entropy value is high. Therefore, it
would reduce the block artifacts.

V. EXPERIMENTS AND RESULTS

For testing our approach, we use images from COCO [16]
and BOSS datasets [19]. In COCO dataset, we randomly chose
10000 images for training and 2000 images for testing. For
BOSS dataset, we select 2000 images for training and 500
images for testing. Each image is preprocessed by cropping
into 128x128 and converted into gray level. Image block size
is selected at K = 16, resulting 64 blocks in each image. With
each image block, the encoded message length is m = 52,
which results in an embedding capacity of 0.203, closed to
0.2 bit per pixel. For a full-size 128x128 image, the length of
message to be hidden in testing images is 52x64 bits in total.

The encoder and decoder are set up by using default configs
of HiDDeN [9]. The optimizer is Adam with learning rate
at 1e-5. The batch size is 32. We train the network with 50
epochs.

In the first experiment, the edge images for computing the
loss LB are created with the parameters of α = 1. and β =
0.2. Given the block size of K = 16, the config results in an
edge width w = 0.2 ∗ 16 ∼ 3 pixels.

For computing block value, the distinct gray level G in Eq.
1 is set at G = 1/8 of maximum gray level. The block values
are presented in Table I. We report the results on three configs:
the Standard shows the mean block values calculated from
encoded images by the HiDDeN pipeline in [9], the MSE and
the Entropy-MSE are two versions of our proposed method
with the additional loss training to match the edge images.

As we can see, both MSE and Entropy-MSE have lower
block values than Standard. This results from the fact that
two loss metrics are proposed to optimize block values. On
the COCO dataset, the relative improvement of our approach
is 5% and 10%, with MSE and Entropy-MSE respectively.
On the BOSS dataset, the relative improvement is increased
to 17% and 24%, with MSE and Entropy-MSE respectively.
The Entropy-MSE have a minor improvement than the raw
MSE loss.

An example of the output images from COCO dataset is
illustrated in Fig 6. Both the proposed MSE and Entropy-
MSE methods can reduce the artifacts in the encoded images
to some degrees. In terms of visual effects, our proposed
methods result in higher quality than the standard approach
of HiDDeN.

We also evaluate our model in other metrics of secrecy. At
epoch 50, MSE and Entropy-MSE has the bit decode errors



(a) Standard (b) MSE (c) Entropy-MSE

Fig. 6: The first row are the encoded images and the second
row are the PSNR images of each configs, with the same input
cover image and the same input hidden message.

TABLE II: The mean blocking values in the test images on
COCO dataset on different values of α and β with Entropy-
MSE loss

α β Entropy-MSE
α = 1.0 β = 0.1 0.0837
α = 1.0 β = 0.2 0.0851
α = 1.0 β = 0.3 0.0853
α = 0.5 β = 0.1 0.0828
α = 0.5 β = 0.2 0.0841
α = 0.5 β = 0.3 0.0856

under 1e-5, similar in the report of Standard approach [9].
For secrecy, by using the methods of [20] with embedding
capacity 0.2 and Discrete Cosine Transform Residual as the
feature extractor, it results in a detection rate of 50% for the
three configs. This indicates that adding loss functions does
not affect the secrecy of the pipeline.

In order to measure the effects of two parameters of α and
β on the performance of Entropy-MSE methods, the results
of block values with different choices of α and β are reported
in Table II. From Table II, we can see that the values of α and
β have effects on the block values. The lowest blocking value
is at 0.0828, which can be reached by selecting α = 0.5 and
β = 0.1.

VI. CONCLUSION

In this work, we study the block artifacts which come from
the process of encoding a long message into the cover image.
We introduce a blocking loss for reducing block artifacts
appeared on encoded grayscale images of HiDDeN method.
The proposed loss functions are computed on the modified
version of the cover images. An additional constraint is added
to these loss functions to allow the networks to mimic the
cover image itself on the boundary regions of block images.
We tested our approach on two alternative versions, mean
square loss and entropy-weighted mean square loss. Both
versions are tested on the COCO dataset and BOSS dataset and
compared with the baseline approach of HiDDeN. The visual

quality of output encoded images are improved compared to
the standard HiDDeN’s output stego images.
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