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Abstract—Molecular property prediction is a challenging task
which aims to solve various issues of science namely drug
discovery, materials discovery. It focuses on understanding the
structure-property relationship between atoms in a molecule.
Previous approaches have to face difficulties dealing with the
various structure of the molecule as well as heavy computational
time. Our model, in particular, utilizes the idea of message
passing neural network and Schnet on the molecular graph with
enhancement by adding the Node-aware Convolution and Edge
Update layer in order to acquire the local information of the
graph and to propagate interaction between atoms. Through
experiments, our model has been shown the outperformance
with previous deep learning methods in predicting quantum
mechanical, calculated molecular properties in the QM9 dataset
and magnetic interaction of two atoms in molecules approaches.

Index Terms—deep learning, quantum chemistry, graph neural
networks

I. INTRODUCTION

Density functional theory (DFT) [1], [2] plays an important
role in physics for molecular property prediction. Based on
DFT, many techniques have been developed to model the
interaction of molecules. However, since DFT simulations are
computationally expensive. These methods also hardly employ
large molecules with millions of atoms. These drawbacks
of DFT promote the development of a new research field,
named materials informatics which mainly applies Machine
learning methods to present molecular properties. Machine
learning, especially deep learning, has triggered a paradigm
shift in materials science study, when materials data, including
experiment and calculation data, can be accessed easily and
freely [3]–[6]. By using the Machine learning approach, one
expects to speed the process of discovery of new molecules
or materials, in which it requires to utilize the fast estimation
of molecular properties and to discover hidden chemistry and
physics from data. Despite certain advances, the Machine
learning approaches [3]–[6] still carry a weakness which is
the overdependence on the pre-processing input data.

To solve the problem of input data representation, many
recent studies focus on presenting, developing and improving
Graph Neural Networks (GNNs), the Deep Learning models
that handle the input data represented as a graph. Therefore,
it is possible to apply Graph Neural Networks to solve the
task of predicting properties in Quantum Chemistry. [8]–[12]
using Graph Neural Networks to solve the task of predicting

Fig. 1: The pipeline of using Graph Neural Networks for predicting
molecular properties. At the first step, molecule is represented as

graph format and then feedforwarded through Graph Neural
Networks to predict the molecule properties.

properties in quantum chemistry have shown significant im-
provements in speed and accuracy compared to other methods
such as DFT or traditional Machine learning [3]–[6].

In this paper, we focus on solving the drawbacks of some
state of the art models, MPNNs [10] and SchNet [11], on im-
proving the accuracy in predicting molecular properties tasks.
From that, we propose our model, NAGCN, and demonstrate
that it get better accuracy compared with the state of the art
model SchNet [11]. We summarize our contribution as follow:
• We generalize the continuous-filter convolution in [11] to

Node-aware Convolution and add it to the model, which
help to collect more high-level information especially
local features in the graph-based dataset.

• We introduce a new Edge Update layer which helps
to pass the interaction information in molecules more
efficiently.

• We modify the architecture of the Readout layer, allow-
ing our model to use more information from multiple
Interaction layer for aggregating output.

The paper is organized as follow: Section 2 describes Related
Works, followed by the Proposed Method in Section 3, Section
4 is the Results of experience, and Section 5 is the Conclusion.

II. RELATED WORKS

To predict molecular properties, Graph Neural To predict
molecular properties, Graph Neural Networks learns to model
molecular systems from molecular-input data. A common
approach to modelling molecular systems is to divide them
into local environments when the properties of the molecules
are considered to be the sum of all the contributions of
each atom. Based on these contributions, the original property
is reconstructed through a synthetic layer built on physical



knowledge [7]. As described in the Figure 1, Graph Neural
Networks receive input data as a molecular graph and learn
the node features vector of each atom in the molecule, then use
these feature vectors to calculate the desired properties output,
such as the molecular properties (potential energy, force) or
the interaction value of atom pairs (J coupling value). The
following, we briefly review the related works that will be
used in the evaluation of our experiment: Message Passing
Neural Networks [10] (MPNNs) and SchNet [11].

Message Passing Neural Networks: Recently, MPNN
family models [10] are known as some of the most popular
neural networks working efficiently with tasks of predicting
molecule properties. All of them have the same formulations,
which are: In the first phase, the message and update function
take the responsibility to learn features of molecule in high
levels feature. After that, the readout function integrates all
information in previous steps in order to make the final result
for molecule properties. However, these MPNN models [10]
have several drawbacks requiring much information in input,
leading to time-consuming for carefully choosing feature in
the input.

SchNet and Continuous-filter convolutions: The SchNet
model [11] was developed and published by Schutt and his
team in 2017. The SchNet model learns the hidden represen-
tation vectors of atoms showing local contributions by using
stacked Interaction layers and sum them up via the Readout
layer for calculating the desired output. [11] proposed a
continuous-filters convolution and uses this convolution in the
Interaction class to update the hidden representation vectors
hi. For a molecule consisting of a set of atomic represen-
tation vectors h1, h2, ..., hN has positions r1, r2, ..., rN , the
continuous-filters convolution updates the atomic representa-
tion vector hi at the update time t by the equation:

hti =
∑

j∈N(i)

htj ◦W (‖ rj − ri ‖) (1)

where ◦ denote element-wise multiplication, and the W (‖
rj−ri ‖) is the filter generating layer. Using continuous-filters
convolution for updating the atomic representation vector hi,
SchNet model can model the local interactions between atoms
in the molecule [11]. Through the experiments, SchNet has
been shown to achieve better results in predicting molecu-
lar properties than the previous MPNNs [10]. However, the
SchNet model still has weaknesses that need to be improved.
First, the convolution is used to update the atom-specific
vector hi only using information about the distance (spatial
information) between the atoms to initiate the weight that
allows multiplication. This may not be sufficient to update
features vector of atoms. Next, the SchNet model did not
mention the characteristic eij edge vectors between atoms, so
it did not update the edge vectors either. Finally, the SchNet
model only uses node vectors at the last Interaction layer
for the synthesis and prediction process (Readout) the output
properties of the molecule. This may cause the model to miss
some information from previous layers and make the model
not highly accurate.

III. PROPOSED METHOD

A. Definition

For simplicity, we describe a molecule as an undirected
graph G = (V,E), where V is the set of nodes, and E is the
set of edges. In graph G, we denote hi ∈ V is the node feature
that represents the i-th atom in the molecule, and eij ∈ E is
the edge feature, representing for the relationship between the
i-th and j-th atoms. The node i has the set N(i) containing
all neighbours of its.

B. Node-aware convolution

Using the idea of continuous-filters convolution [11], we
propose the generalized continuous convolution is Node-aware
convolution, and then use it in constructing our model.

Specifically, the hidden vector representation of the atom is
updated according to the Node-aware convolution:

ht+1
i =

∑
j∈N(i)

htj ◦ fij (2)

where the features vector fij indicates the relationship between
two nodes, i and j. In [11], fij is a filter generating layer W (‖
rj−ri ‖), which calculates the relationship between two nodes
i and j based on the distance between them. Meanwhile, the
Node-aware convolution shows that fij can describe a more
general relationship, not just based on the distance relationship
between two atoms i, j. Find that the interaction between two
atoms in a molecule is based not only on the distance between
them but also on the two atoms themselves, we using both
distance and relationship between two atoms to calculate the
features vector fij and use this features vector fij to update
atomic representation vector hi via Eq. 2. We also consider the
features vector fij as the edge vector of the molecular graph
and use a special Edge update layer to update them during the
model training. From now on, we consider two vectors fij
and eij as one. Details about the edge vector eij and the Edge
update layer will be presented in the sub-section III-C.

C. Architecture

In this section, we will introduce our model, named NAGCN
(Node Aware Graph Convolutional Network), for predicting
molecular properties tasks. The architecture of the proposed
model is presented in Figure 2, including the main parts that
will be discussed below. The input data for the model consists
of molecules with a set of nuclear charge z and position r.
The input vector initialization process, including Embedding
and Spatial generating layer, will initialize the node and edge
vectors for the model from the z charge and position r. These
vectors are then updated through T stacked representation
layers, Interaction layers and Edge update layers. Finally, the
output node vectors will be used to aggregate the desired
output properties of the molecule via Readout layer.

Constructing the molecular graph
In our model, to build a molecular graph, we use the cutoff

function to initialize weights for the edges of the graph model.
Using the input as the distance dij between the two atoms,
the cutoff function calculates the weight representing the edge



Fig. 2: The architecture of NAGCN. The figure on the left-hand side represents the overview of model and the figure on the right-hand
side shows the detailed architecture of each layer in NAGCN.

weight between the two atoms. The edge weight representing
the existence of an edge between two atoms is the value in
the segment [0, 1], with a value of 0 indicating that there
is no edge between the two atoms and the remaining values
represent the weight of the edge. This weight is then used to
calculate the edge vector during the process of updating vector
nodes and edge vectors. Based on suggestion of [14], we use
the cosine-cut function presented by the Eq. 3 to help model
learn the local interactions in the molecule in the best way.

fc (dij) =

{
1
2

[
1 + cos

(
πdij
dc

)]
, dij < dc

0, dij ≥ dc
(3)

Embedding and Spatial generating layers
To model the molecule with as little information as possible,

the model uses only the input as a molecular 3D model, with
the atoms and their positions in space, to initialize the node
and edge vectors.

Specifically, to initialize the atom representation vector in
the molecule, we use Embedding layer. An atom with atomic
charge z, through Embedding layer, will be initialized to a
node vector h0i , which is learnable embedding vector and
can be updated in training process. The atoms with the same
atomic charge will have the same initial representation h0i .

The space-specific vector sij of the molecule is initialized
via the Spatial generating layer. The distance dij between
atoms is passed through the RBF function to initialize the
vector which carries spatial information in the molecule. This
vector is then passed through a fully connected neural network
follow by activation function to help the spatial vector become
more nonlinear and robust. In our model, we use shifted
softplus ssp(x) = ln (0.5ex + 0.5) is activate function because
of suggestion in [14].

RBF function is used following suggestion of [11] to expand
spatial information between atoms is defined in Eq. (4):

RBF (dij) = exp(−γ‖dij − µ‖) (4)

where two hyperparameters γ and µ are selected so that the
output vector can carry information about the entire distance
between two possible atoms in the dataset.

After the spatial vectors and the node vectors are initialized,
the edge vectors are initialized based on the equation:

e0ij = α(W1sij) + (1− α)W2(h
0
i ‖ h0j ) (5)

where sij is a learnable vector that contains spatial information
between the atoms, W2(h

0
i ‖ h0j ) denotes the relationship

between two atoms i and j and α is a hyperparameter that
controls the contribution of the relationship between two atoms
to the edge vector. During our experiments, we set α with a
value of 0.8. By using Eq. (5), the initial edge vector carries
both information about the spatial relationship in the molecule
and the relationship between two atoms.

Interaction and Edge update layer
To model the molecule from the structural and spatial

information generated from the previous layer, we use stacked
Interaction and Edge update layers. These layers are used as
the crucial components of our model.

Using the convolution formula presented in the sub-section
III-B as a node vector update function, the Interaction layer
learns the hidden representation vector of atoms. Specifically,
at the t-th Interaction layer, the node feature vector is updated
via the Eq. 2 with eij edge vector that carries information
about both space and the relationship between two atoms i and
j. In our model, we also use Residual connection [18] liked
SchNet [11] for keep the model not overffiting. Besides, edge



vector eij is also updated via the Edge update function et+1
ij =

E(etij , h
t
i, h

t
j , sij). In our work, we use the Edge update class

shown in the equation below:

et+1
ij =W1e

t
ij + αW2

(
hti‖htj

)
+ βW3sij (6)

where that W2

(
hti‖htj

)
is learnable function that learn the

relationship between two atoms i and j, W3sij is the vector
that contains the spatial information and can be generated
by Sptatial generating layer, W1e

t
ij is the previous edge

vector, and α and β are the two hyperparameters control
the contribution of information about the relationship between
the two atoms and the spatial information of the molecule to
the feature vector. By using Edge Update layer, edge vectors
in our network can get more information about both spatial
relationship in the molecule and the relationship between
two atoms and make NAGCN become robust and get better
accuracy compared with the state of the art models.

Readout layer
After going through all the Interaction and Edge update

classes, we have atom representations at different levels. In
order to predict molecular properties, we use Readout layer
for aggregating features from all atoms. First of all, the final
atom representations are calculated following equation:

h∗i = σW
(
‖nk=0h

k
i

)
(7)

The idea of the Eq. 7 is that we not only use the atom
representations from last Interaction layer, but also use the
atom representations from previous layers for predict desired
properties. The effect of using many Interaction layers for
calculating output will be shown in sub-section IV-A1. After
that, node features vector of all atoms is sum up by using
sum pooling functions like the suggestion of [14] to calculate
output property. The sum pooling function is invariant to
premutations of the node so it makes our model to be invariant
to graph isomorphism.

IV. EXPERIMENTS

We conduct experiments on two predictive tasks. The first is
the task of predicting the J coupling constant between atomic
pairs in the molecule, organized by Kaggle [15]. After proving
the capabilities of our model on the new task, we conducted
experiments on the standard benchmark dataset in quantum
chemistry, QM9 [16], [17], to prove that NAGCN is also more
accurate than base model on predicting molecular properties
tasks.

A. Dataset

1) J coupling dataset: The J coupling dataset, provided by
Kaggle [15] with the aim to create the dataset for training the
models which can calculate the magnetic interaction between
every atom-pairs in molecular. The dataset includes data
on 7,164,264 J coupling pairs with eight types of 130,789
molecules along with their molecular structures. The J cou-
pling dataset is divided into two separate train and test sets,
with the corresponding dimensions of 4,659,075 J coupling
pairs of 85,012 molecules and 2,505,189 J coupling pairs of

45,777 molecules. Along with that, information about these
additional attributes is also provided in this dataset. Because
the values of J coupling pairs are only published in the train
set, we used the train dataset to conduct our experiments.

2) QM9: QM9 [16], [17] is a standard dataset, widely used
to evaluate various models for predicting molecular properties
tasks. The QM9 dataset consists of more than 130k organic
molecules with 13 properties, made up of up to 9 heavy atoms,
C, O, F, N, belong to the GDB 17 chemical universe including
more than 166 billion parts organic.

B. Experiment setup

In order to conduct training and evaluation of the model,
we split the data set into three smaller datasets train, test and
vaild, with the proportions of 8:1:1 for J coupling dataset and
110k:10k:10k for the QM9 dataset.

We choose the MSE function as the loss function for the
training, MAE, LogMAE for evaluation. To train the models,
we used a mini-batch stochastic gradient descent with ADAM
optimizer. Batch size is selected as 100 and learning rate is
initialized in the range of 1e-3 to 1e-5. We conduct training
specific models for each type of molecular properties.

C. Results

1) Predicting J coupling constant: In this subsection, we
will show the improvements of our model by comparing its
accuracy with the SchNet.

Model modifications for J coupling task
[13] indicates that each J coupling constant of an atomic

pair can be divided into the component contributions of each
atom in the molecule. Therefore, it is possible to use graph
neural network models to learn the features vector of each
atom, then use these vectors to synthesize the desired output
value - J coupling constant value.

To predict the J coupling pair, [13] uses the Pseudo Labeling
method to mark the two atoms containing the J coupling pair.
Different from the method of [13], we mark the atomic pair
with J coupling to predict with index 2 and the remaining other
atoms in the molecule with the index 1. Then, the indices of
each atom is passed through an Embedding layer to initialize
the vector that carries the information about the J coupling
pair to predict. This embedding vector is then concatenated
to the embedding vector initialized by nuclear charge z to get
the node initialize vector h0i .

In addition to separating the atomic charge and the number
of atoms (which belong to the J coupling pair or not) for the
process of initialization of the features vector of atoms, we
also use additional the two auxiliary branches for predicting
the properties related with the J coupling value are mulliken
charge and four J coupling contributions (fc, sd, pso, dso).
The use of two auxiliary branches serves as a regularization
method for the model. Due to the use of auxiliary branches,
the loss function used in the J coupling prediction task is a
combined loss function, given by Eq. (8):

L =MSEJcoupling + αMSEmul + βMSE4contrib (8)



TABLE I: Predictive performance of the two models in J coupling constant task prediction.

MAE LogMAE
Best

single model
Ensemble

model
NAGCN

+mul+4contrib
Best

single model
Ensemble

model
NAGCN

+mul+4contrib
1JHN 0.1315 0.1212 0.1161 -2.0286 -2.1101 -2.1529
1JHC 0.1896 0.1711 0.1879 -1.6620 -1.7657 -1.6721
2JHN 0.0526 0.0463 0.0525 -2.9420 -3.0734 -2.9473
2JHC 0.0817 0.0755 0.0675 -2.5043 -2.5842 -2.6961
2JHH 0.0404 0.0368 0.0365 -3.2102 -3.3013 -3.3107
3JHN 0.0486 0.0420 0.0417 -3.0230 -3.1702 -3.1772
3JHC 0.0940 0.0887 0.0841 -2.3643 -2.4227 -2.4755
3JHH 0.0406 0.0351 0.03699 -3.2033 -3.3486 -3.2972

TABLE II: Evaluation results of 3 models NAGCN1, NAGCN4
and NAGCN7.

NAGCN1 NAGCN4 NAGCN7
MAE 0.1336 0.1304 0.1969

LogMAE -2.0125 -2.0368 -1.6250

where α and β are two hyperparameters that control the trade-
off between model accuracy in predicting J coupling values
and predicting sub-properties values. In our works, we set α
is 2 and β is 1. Experiments bellow will show the efficient of
auxiliary branches to help the model achieve better accuracy.
Number of interaction and embedding layers used for
output aggregation

We conducted an experiment to test the idea of using the
additional output from the multiple Interaction classes shown
in the section. We compared the accuracy of the three NAGCN
models with the number of different Interaction layers used to
aggregate the output. The models in turn use 1 Interaction
layer (NAGCN1), 4 Interaction layers (NAGCN4) and all
Interaction and Embedding classes (NAGCN7) to synthesize
the output. As shown in Table II, NAGCN4 model has the
highest accuracy compared to the other two models. This
suggests that the use of additional vertices vectors from the
interaction layers near the end helps the model have more
information for the aggregate output. However, when using
both vector nodes in the first layers, the accuracy of the model
decreases. This is explained by the fact that the node vectors
in the first layers are not high-level features. Therefore, adding
these vectors is similar to adding noise to the model and
reducing accuracy.

Effects of auxiliary branch
To evaluate the effect of the auxilary branches on the

model’s results, we compared the performance of SchNet
[13], NAGCN4, NAGCN4 models with mulliken charge
(NAGCN4+mul) and NAGCN4 with Mulliken charge and
scalar distribution (NAGCN4+mul+4contrib). We selected the
data set of type J coupling 1JHN for experiment. Table
III shows that the NAGCN4 model achieves better perfor-
mance than the SchNet model. Besides, when using auxiliary
branches, the accuracy continues improving. This shows that
the auxiliary branches helps the model improves accuracy.
Predictive performance in all dataset

Because of the improvements of using multiple Interaction

TABLE III: Evaluation results of 4 models, SchNet baseline
model and three NAGCN models using various number of

auxiliary branches.

SchNet NAGCN NAGCN
+mul

NAGCN
+mul+4contrib

MAE 0.1510 0.1304 0.1279 0.1161
LogMAE -1.889 -2.0368 -2.0565 -2.1529

classes for predicting output and using auxilary branches for
Regularization, we compared NAGCN+mul+4contrib model
with SchNet model [13] experimented on predicting J coupling
constant task. [13] conduct training on many models and
conduct ensemble to be modeled with higher accuracy. Due
to hardware constraints, we do not conduct ensemble of re-
proposed models. Table I shows the results of the proposed
model with the SchNet best model and the Ensemble model
of [13]. Compared with the best single model, the NAGCN
model surpasses all J coupling types. Besides, when compared
to the ensemble model, NAGCN also achieved better results in
5 out of 8 J coupling types. This result shows the potential and
ability to improve the accuracy of NAGCN model compared to
SchNet model in J coupling prediction task. We believe that,
if there is enough hardware needed, the Ensemble NAGCN
model will outperform the Ensemble SchNet model.

TABLE IV: Predictive accuracy of NAGCN and baseline models
on the QM9 dataset.

Properties Unit enn-s2s SchNet SchNet
EdgeUpdate NAGCN

Cv Kcal/mol 0.0400 0.0310 0.0320 0.0307
zpve meV 1.5 1.47 1.49 1.49
gap eV 0.069 0.0711 0.058 0.0543
U0 eV 0.019 0.0105 0.0105 0.0091
H eV 0.017 0.0104 0.0113 0.0090
homo eV 0.043 0.0442 0.0367 0.0342
r2 Bohr**2 0.18 0.0713 0.072 0.0590
U eV 0.019 0.0106 0.0106 0.0092
G eV 0.019 0.011 0.0122 0.010
alpha Bohr**3 0.092 0.075 0.077 0.0725
lumo eV 0.037 0.0354 0.0308 0.0268
mu Debye 0.033 0.044 0.029 0.0169

2) QM9: The first experiment has shown that the model is
effective in predicting J coupling constant. In this section, we
evaluate the model on the QM9 dataset, that is the standard



Fig. 3: MAE loss of models in different molecular groups. On the
left-hand side is the loss of NAGCN and SchNet on homo property
and the right one is the loss of these models on internal energy at

0K.

dataset for the problem of predicting molecular properties.
Predictive performance
We compared the proposed model NAGCN to the base

models, including enn-s2s [10], SchNet [11], SchNet with
Edge update [12]. As illustrated in Table IV, NAGCN is more
accurate at 11 of the 12 properties predicted on the QM9
set than the baseline models. Specifically, compared with the
SchNet [11], NAGCN improves the MAE error from 3.3%
to 23.6%. This result shows that NAGCN improves accuracy
compared to the SchNet. In addition, compared to the SchNet
with Edge update [12], the NAGCN model also exhibits
superiority with lower MAE errors across all 12 properties.
This also demonstrates the use of spatial information at each
Edge update layer makes the model work more efficiently than
using only spatial information at the first layer like Jorgensen’s
model [12].

We also experimented with fault analysis of the model as the
number of atoms in the molecule increased. Figure 3 shows the
error comparison results of models on each molecular group.
We chose the state of the art model, SchNet and two molecular
properties (U0 and homo) to conduct experiments. The results
show that the NAGCN model has lower errors than the SchNet
model on most molecular groups. Along with that, when the
number of atoms increases, SchNet tends to increase errors
fast but NAGCN does not face with this problem.

Generalizability
The number of molecules in chemistry is huge, but the

amount of labeled data is limited. Therefore, generalizability
is an important factor when evaluate models. We compared
the accuracy of NAGCN and SchNet, when trained on data
sets with sizes of 50k, 100k and 110k molecules. Table V
shows that the NAGCN model achieves better accuracy than
the SchNet model even when trained with small datasets.
This shows a good generalization ability of NAGCN model
compared to SchNet.

TABLE V: The comparison performance on QM9 dataset with
different sizes.

50,000 100,000 110,000
SchNet 0.0668 0.0485 0.0442
NAGCN 0.0544 0.0342 0.0342

V. CONCLUSION

We have proposed the NAGCN - an deep architecture for
predicting molecular properties in Quantum Chemistry. Our
model is the extension of SchNet architecture with better
performance by integrating the Node-aware convolution, new
Edge update and some modification of Readout layer. Exper-
iment results on the both J coupling and QM9 dataset shows
significant improvement in comparison with other baselines,
SchNet [11] and MPNNs [10]. In the future, we wish to extend
NAGCN to other dataset, and apply it into another field, such
as some point cloud problems in Computer vision.
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