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Abstract— Phylogenetic trees inferred from protein 

sequences are strongly affected by amino acid evolutionary 

models. Choosing proper models are needed to account for the 

heterogeneity in evolutionary patterns across sites, especially 

when analyzing multiple genes or whole genome datasets. 

Partitioning is a prominent approach to combine sites 

undergone similar evolutionary processes into separated groups 

with proper models. The partitioning scheme can be defined by 

using structural features of the sequences, however, determining 

structural features of protein sequences is not always practical.  

Recently, methods have been proposed to automatically cluster 

sites into groups based on the rates of sites. The rate of sites is a 

good indicator; however, it is unable to properly reflex the 

complex evolutionary processes of sites along the protein 

sequence.  In this paper, we present a new algorithm to 

automatically determine a partitioning scheme based on the 

best-fit model of sites, i.e., sites belong to the same model will be 

classified into the same group. Comparing our proposed method 

with current methods on a set of empirical protein datasets 

showed that our method helped to build better trees than other 

methods tested. Our method will significantly improve protein 

phylogenetic inference from multiple gene or whole genome 

datasets. 
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I. INTRODUCTION 

Phylogenetic analysis is a powerful tool to study the 
evolutionary relationships among species [1]. Protein 
sequences are one of the main data types to construct 
phylogenetic trees. The accuracy of building phylogenic trees 
depends on a number of factors, in which choosing the right 
model of evolution significantly affects the constructed trees 
[2]. It is well known that the evolutionary processes among 
sites along the genome are not homologous, e.g., the 
evolutionary rates vary among sites and depend on the 
conservation of sites [3].   

New sequencing technologies allow us to obtain large 
datasets including multiple genes or even whole genomes for 
analyzing the relationships among species. Handling the 
heterogeneity in the large datasets is a challenging task 
because none of current evolutionary models is proper for all 
sites of the dataset containing multiple genes or proteins.  

Currently, two main approaches to model the 
heterogeneity among sites for protein sequences are mixture 
model approach [4], [5] and partitioning approach [6]–[8]. 
With mixture models, the likelihood value of each site is 
calculated under several models [4].  Meanwhile, each site in 
partitioning approach is assigned to one specific model [9]. In 
other words, sites assumed to have homologous evolutionary 
processes will be classified into one group (partition or subset) 
and follow the same amino acid evolutionary model. The 
partitioning approach is more realistic than the mixture model 
approach and therefore being used more frequently in practice.   

Different methods can be used to group amino acid sites. 
The first and intuitive gene-based method is grouping sites by 
protein [10]. Thus, sites belong to the same protein will be 
grouped together. The gene-based partition method provides a 
better alternative compared to “no partitioning” method. 
Although sites in the same protein might share some common 
features, the assumption that all sites in one protein evolve by 
the same model is not biologically realistic. The amino acid 
sites in one protein might evolve at different rates and follow 
different amino acid substitution models. 

Several studies have been proposed to automatically 
cluster amino acid sites [7], [8]. The methods use the 
properties of data, especially the evolution rates of amino acid 
sites in alignments.  They use TIGER (Tree Independent 
Generation of Evolution Rates [11]) to compute the evolution 
site rates and cluster sites into groups based on the assumption 
that sites have similar rates of evolution should be in the same 
partition.  

The k-means algorithm clusters sites based on their site 
rates. The k-mean algorithm groups all invariant sites into one 
partition that leads to an incorrect model selection [12]. To 
partly avoid the problem, the RatePartition  algorithm [8] uses 
a similar approach to calculate evolution rates of sites by 
TIGER, then applies a simple formula to distribute sites into 
subsets following the distribution of rates. In the RatePartition 
method, the first subset will include all the invariant sites and 
some other sites with the slowest rates in order to partly avoid 
the pitfalls of k-mean method. The rates of sites in the next 
subset are greater than that in the previous one.  The last subset 
consists of sites with the highest rates.  

In this paper, we develop a new likelihood-based method 
that automatically partitions protein alignments. Our method 
is based on rates of sites as well as amino acid substitution 
models. Experiments on 15 empirical protein datasets showed 
that in overall our likelihood-based method was better than 
other methods in building maximum likelihood protein trees 
based on information-theoretic metrics: the corrected Akaike 
information criterion (AICc) [13], or the Bayesian information 
criterion (BIC) [14].  

The rest of the paper is organized as follows: Our method 
will be represented in the section II (Methods). Section III 
(Experiment and Results) will describe the experiments and 
discuss results obtained from different methods. The last 
section will provide discussions, remarks, and 
recommendations. 

II. METHODS 

Let 𝐃 = {𝐷1, 𝐷2, … , 𝐷𝑛} be a set of protein alignments. As 
usual, we assume that the amino acid sites are evolved 
independently on the same tree T.  We use the term 
‘subset/partition’ to represent a set of sites that have the same 
evolutionary process. The term ‘partitioning scheme’ implies 
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a collection of subsets so that every site in the alignments D 
belongs to one and only one subset. Technically, let 𝐒 =
{𝑆1, 𝑆2, … , 𝑆𝑘}  be a partitioning scheme, where 𝑆𝑖 =

(𝑑𝑖
1, 𝑑𝑖

2, … , 𝑑𝑖
𝑙𝑖 ) is a subset of 𝑙𝑖  amino acid sites that are 

assumed to evolve under the same evolutionary model 𝑀𝑖 .  
Let 𝐌 = {𝑀1, 𝑀2, … , 𝑀𝑘} be the set of models corresponding 
to k subsets.  

The likelihood of a tree T is calculated as following: 

𝐿(𝑇) = 𝑃(𝐒|𝑇, 𝐌) =  ∏ 𝑃(𝑆𝑖|𝑇, 𝑀𝑖)

𝑘

𝑖=1

= ∏ ∏ 𝑃(𝑑𝑖
𝑗
|𝑇, 𝑀𝑖)

𝑙𝑖

𝑗=1

𝑘

𝑖=1

 

where 𝑃(𝑑𝑖
𝑗
|𝑇, 𝑀𝑖) is the probability of amino acid site 

𝑑𝑖
𝑗
given the tree T and model 𝑀𝑖. Our objective is to find a 

partition scheme S and corresponding model set M that help 
building the maximum likelihood tree T.    

An evolutionary model 𝑀𝑖  describing the amino acid 
evolutionary process of a partition includes two parts: the site 
rate model 𝑅𝑖 and the amino acid substitution model 𝑄𝑖 .  The 
amino acid substitution models are normally selected from 
existing empirical models that were already estimated from 
large datasets such as JTT [15], WAG [16] or LG [2].  If the 
dataset under the study is a domain-specific dataset such as 
viruses; models like FLU [17] or HIVs [18] can be employed. 

The site rate model 𝑅𝑖  is typically a combination of 
discrete Gamma distribution rate model [19] and invariant rate 
model. It consists of two parameters (i.e., one from the 
Gamma distribution rate model and another from the invariant 
rate model) will be directly estimated from the dataset.  

The model set M for the non-partition scheme (original 
data set D) consists of one partition with 2 free parameters. 
The model set M for a partition scheme S of k partitions will 
consists of 2 × 𝑘 free parameters. The AICc score [13] and 
BIC score [14] can be used to compare the fitness of different 
partition schemes based on likelihood values of constructed 
trees and the number of free parameters.  Note that a partition 
scheme with more free parameters will help increasing the 
likelihood of the tree, however, it will have to pay a higher 
penalty score for the additional free parameters.  

The underlying idea of partition method is grouping amino 
acid sites that share the same evolutionary patterns. We 
propose a likelihood-based (LLB) algorithm to cluster sites 
based on their model preferences including not only site rate 
models, but also amino acid substitution models. The LLB 
algorithm includes three main steps: initial step, model 
selection step, and partitioning step. The LLB algorithm is 
summarized in Fig. 1. 

At the initial step, the LLB algorithm determines a list of 
possible amino acid substitution models for the dataset under 
the study. The chosen models should be generally suitable for 
analysing the dataset. For general datasets, frequently-used 
general amino acid substitution models can be considered 
such as LG [20], JTT [15], WAG [16], BLOSUM62 [21]. This 
step can be reasonably accomplished by selecting potentially 
suitable models from a list of current existing models.  We 
denote Q the set of possible amino acid substitution models.  
The site rate models include the none rate model (NR) and 

combinations of discrete Gamma distribution model G and 
invariant model I. We denote R the set of four possible site 
rate models, i.e., NR, G, I, G+I.  All free parameters of site 
rate models will be directly estimated from the dataset under 
the study. Let cM be the set of possible models, each model 
M of cM consists of an amino acid substitution model Q from 
Q and a site rate model R from the R. 

The model selection step of the LLB algorithm will assign 
each site to a proper model of cM, and consequently cluster 
sites of the same model into one subset. For each alignment, 
the model selection step starts by quickly building |𝐜𝐌| trees 
based on |𝐜𝐌|  different models. The trees will be used to 
evaluate the model preference of each site of the alignment. 
To build trees, we can use distance-based tree reconstruction 
methods such as Neighbor-Joining [22], its improved version 
BioNJ algorithm [23], or very fast method STC [24].  For each 
site, the step will determine and select the most preferred 
model for the site based on its log-likelihood values calculated 
with different models from the model set cM. 

Finally, the LLB algorithm clusters sites in D based on 
their preferred models to create a partition scheme S. 
Specifically, sites which have the same preferred model will 
be clustered into the same subset. Some subsets might contain 
only few sites that add more unnecessary free parameters in 
inferring phylogenetic trees and might distort tree structures. 
To overcome this problem, the LLB algorithm will merge 
small subsets into their highest correlated larger subsets. In 
this study, a subset is considered as a small subset if it contains 

less than 10% of the total number sites. 

III. EXPERIMENTS AND RESULTS 

We examined our proposed LLB algorithm with other 
partitioning methods including (1) no partitioning (NP), i.e., 
the partitioning scheme has only one subset that includes all 
the sites; (2) partitioning by gene boundaries (GP), i.e., each 

 

Fig. 1. THE LIKELIHOOD-BASED PARTITIONING METHOD. 
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alignment is considered as a subset; (3) partitioning by 
RatePartition method (RP) [8].  We compared their 
performance on five protein benchmark datasets downloaded 
from https://github.com/roblanf/BenchmarkAlignments/. The 
five datasets contain protein alignments obtained from five 
evolutionary studies of mammals, animals, birds, jawed 
vertebrates, and metazoans. The number of taxa in the datasets 
ranges from 36 to 90 and each dataset contains thousands of 
loci (alignments). As it is computationally expensive to 
examine all partitioning methods on datasets with thousands 
of loci, for each dataset we randomly selected 10, 20, and 40 
loci to create three different datasets. Thus, in this study we 
examined partitioning methods on 15 different datasets (see 
TABLE I.). 

The initial step of LLB method will use four general amino 
acid substitution models LG [2], JTT [15], WAG [16], and 
BLOSUM62 [21] as possible amino acid substitution models 
for the general datasets. 

The maximum likelihood software IQ-TREE [25] was 
used to construct distance-based trees by the BioNJ algorithm, 
compute site likelihoods, and build maximum likelihood trees 
for different partitioning schemes obtaining from partitioning 
methods. We used the AICc [13] and BIC [14] scores to 
compare the performance of different  partitioning methods, 
i.e., the smaller AICc score (BIC score)  indicates the better  
partitioning method. 

TABLE II. presents the AICc and BIC scores of different 
methods. The results based on the AICc scores are similar to 
that based on the BIC scores. The LLB method resulted in best 
solutions for 10 out of 15 tests and the second-best solutions 
for the 5 other tests. The RP method was the second-best 
method. It produced the best solutions for 5 out 15 tests and 
the second-best solutions for the other 10 tests.   The NP (no 
partitioning) and GP (partitioning by genes) methods did not

 

TABLE I.  FIFTEEN DATASETS USED TO COMPARE PARTITIONING METHODS 

 

 

 

 

 

 

 

 
  

TABLE II.  AICC AND BIC SCORES OF DIFFERENT PARTITIONING METHODS FOR 15 DATASETS. THE NUMBER IN THE BRACKETS OF 

A DATASET INDICATES THE NUMBER OF LOCI. THE BEST SOLUTIONS ARE HIGHLIGHTED IN BOLD. LLB (LIKELIHOOD-BASED), NP (NO 

PARTITIONING), GP (PARTITIONING BY GENE) AND RP (RATEPARTITION) 

Datasets 
AICc  BIC 

LLB NP GP RP 
 

LLB NP GP RP 

Borowiec (10) 211699 215506 215526 211701  212217 216070 216084 212410 

Cannon (10) 244445 248142 247772 243961  245465 249059 249130 245067 

Chen (10) 140840 144673 143857 141138  141704 145426 144830 141940 

Ran (10) 111956 115336 115092 110952  112587 115808 115694 111460 

Wu (10) 187943 194667 194025 190758  189605 195864 195497 192026 

Borowiec (20) 561396 571739 570930 562392  562299 572410 572442 563302 

Cannon (20) 482289 488894 489029 482465  483635 490038 490947 483968 

Chen (20) 262497 269460 268279 263105  263444 270273 269805 263932 

Ran (20) 284004 602319 291872 281236  284733 603699 292715 282086 

Wu (20) 590263 602320 599822 590926  591959 603700 601935 592526 

Borowiec (40) 1111525 1133462 1132482 1113434  1112824 1134208 1134508 1114362 

Cannon (40) 915019 927756 928265 915079  916534 929044 931348 916827 

Chen (40) 720272 734939 733643 720539  721361 736005 735982 721613 

Ran (40) 600776 619515 618767 599479  601762 620274 620289 600450 

Wu (40) 1308500 1332075 1328103 1304664  1310375 1333757 1331805 1306733 

 

 

Datasets Clade #Taxa #Loci #Sites #Loci #Sites #Loci #Sites 

Borowiec [26] Mammals 90 10 5148 20 12225 40 24423 

Chen [27] Animals 78 10 2376 20 4084 40 7893 

Ran [28] Birds 52 10 3062 20 6897 40 14749 

Wu [29] Jawed 
vertebrates 

58 10 3967 20 6403 40 15278 

Cannon [30] Metazoans 36 10 2836 20 7618 40 15113 
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result in any best solution.  The results confirm that 
partitioning methods help constructing better phylogenetic 
trees in comparison to no partitioning or partitioning by genes 
methods. The results also show that partitioning based on the 
combination of both site rate models and amino acid 
substitution models is much better than that based on only the 
site rates. 

We summarized the number of subsets of partitioning 
schemes created from two partitioning methods LLB and RP 
in TABLE III. The LLB method produced partitioning 
schemes with fewer subsets than that produced by the RP 
method. It could be explained by the merging strategy of LLB 
method to merge small subsets into large subsets to avoid 
adding unnecessary free parameters when inferring the 
phylogenetic trees. 

TABLE III.  THE NUMBER OF SUBSETS IN PARTITIONING 

SCHEMES USING  LLB AND RP METHODS 

Dataset name LLB RP 

Borowiec (10) 6 13 

Cannon (10) 7 14 

Chen (10) 5 7 

Ran (10) 5 10 

Wu (10) 5 6 

Borowiec (20) 6 13 

Cannon (20) 6 14 

Chen (20) 5 5 

Ran (20) 5 9 

Wu (20) 5 7 

Borowiec (40) 6 13 

Cannon (40) 6 14 

Chen (40) 5 8 

Ran (40) 5 10 

Wu (40) 6 8 

We also measured the distances between trees constructed 
from different partitioning schemes to examine if partitioning 
schemes affect constructed trees. The average of Robinson-
Foulds distance [31] between phylogenies that constructed by 
four methods are present in TABLE IV. The results show that 
the trees constructed from four partitioning schemes are 
different. In other words, partitioning schemes considerably 
affect the tree structures.  

Invariant sites play an important role in partitioning 
methods. The k-mean partitioning method clusters all 
invariant sites into one subset that might significantly increase 
the likelihood value of the tree, however, seriously distort the 
tree structure [12]. As a result, the k-mean partitioning method 
has been suspended by the authors and no long for use.  The 
RP partitioning method tries to avoid the pitfall by adding 

some slowest rate sites into the subset of invariant sites. In our 
testing datasets, the Ran’s datasets with 10, 20, and 40 loci 
consist of 30%, 27%, and 22% invariant sites, respectively. 
Interestingly, our LLB method clustered the invariant sites 
into different subsets in the partitioning scheme (see TABLE 
V.). This will help avoiding the pitfall of grouping all invariant 
sites into one subset by the both k-mean and RP methods. 

TABLE IV.  NORMALIZED ROBINSON & FOULDS (RF) 

DISTANCES BETWEEN PHYLOGENIES BUILT WITH 4 

PARTITIONING METHODS 

 GP NP LLB RP 

GP 
 0.055974 0.048647 0.052734 

NP 
0.055974  0.055535 0.056771 

LLB 
0.048647 0.055535  0.067211 

RP 
0.052734 0.056771 0.067211  

 

TABLE V.  THE NUMBER OF INVARIANT SITES IN SUBSETS 

OF THE PARTITIONING SCHEME OBTAINED FROM THE LLB 

ALGORITHM 

 Subsets 

Dataset 1 2 3 4 5 

Ran (10) 102 34 340 239 208 

Ran (20) 473 652 79 566 88 

Ran (40) 1095 879 199 890 167 

 

IV. DISCUSSIONS AND CONCLUSIONS 

The number of large datasets including multiple genes or 
even whole genomes have been generated.  It is necessary to 
develop adequate methods to handle the heterogeneity in the 
large datasets. Partitioning data is being used as the most 
effective way to deal with the problem. In this paper, we 
present the likelihood-based algorithm LLB to automatically 
partition a given protein dataset into a partitioning scheme 
such that all sites in one subset have undergone the same 
evolutionary model. 

The results on empirical protein datasets confirmed that 
proper partitioning schemes helped building better trees than 
no partitioning or simply partitioning by genes. The LLB 
method was generally better than other partitioning methods 
tested in terms of both AICc and BIC criteria. The RP 
partitioning method produced solutions with higher likelihood 
values than LLB method on Ran’s datasets that include too 
many invariant sites. The higher likelihood values of RP 
method over LLB method on the Ran’s datasets might come 
from the big subset of all invariant sites that might lead to 
incorrect inference of phylogenetic trees. We note that the 
LLB method clustered the invariant sites into different subsets 
in the partitioning scheme and avoided the pitfall.  

In this paper, we tested different partitioning methods on 
empirical general protein datasets so the list of general amino 
substitution models such as JTT, WAG, LG were employed. 
The list of possible models should be modified when 
analyzing other datasets such that they can properly reflex the 
evolutionary processes of proteins in the datasets. For 
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example, if the alignment contains proteins from viruses, we 
can consider including virus models such as HIV[18], FLU 
[17], DEN [32] in the list. A proper list of possible models will 
improve the accuracy of partitioning schemes. 

In a nutshell, the LLB method provides a practical mean 
to deal with the heterogeneity in the large datasets. It enhances 
the quality of phylogenomic inference, especially when we do 
not know much about characteristics of the datasets to create 
proper partitioning schemes for building phylogenomic trees 
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