Optimization of IoT Service Deployment
In Multi-Layered Cloud-Fog Environment

Do Dang, XuanTung Hoang, Mai Tran
dept. Communication and Computer Network
VNU University of Engineering and Technology, Vietnam

{dodv, tunghx, mai.tran} @vnu.edu.vn

Abstract—Recently, fog computing, which can be done in prox-
imity to data sources, has emerged as a solution to provide low-
latency Quality-of-Service (QoS) for IoT services in complement
to centralized cloud with unlimited computing resources. Opti-
mized service deployment on both cloud and fog environments
is challenging due to their heterogeneity. Prior works mainly
focus on mapping service functions and dependencies directly
to physical network. In this paper, we propose a multi-layer
mapping mechanism that efficiently deploys multiple IoT services
to the appropriate virtual networks in physical infrastructure.
We design greedy-based algorithms for solving this NP-hard
problem with two phases executed sequentially. Experimental
results show our proposed solution can reduce upto 80% of the
total service cost compared to the state-of-the-art solutions.

Index Terms—IoT service deployment, fog computing, energy
efficiency, optimization, virtual machine consolidation.

I. INTRODUCTION

New IoT services with low latency, location-awareness and
mobility support requirements are raising issues facing the
current centralized cloud paradigm which tend to concentrate
computing and storage resources in a few large data centers.
Fog computing has recently emerged as a new computing
paradigm which takes advantage of the extensive resources
in the cloud while being able to expand computing power to
the edge of the network, close to end-users [1].

Fig.1 illustrates the architecture of a Cloud-Fog system with
three hierarchical layers where Virtual Network Functions
(VNFs) are deployed to implement service functions. At the
edgemost of the network is the device layer which contains
several sensory nodes. They can be widely distributed at var-
ious public infrastructures to monitor their condition changes
over time. Data generated by IoT devices can be sent to and
augmented by the VNFs deployed at the fog nodes near the
data sources before being sent to cloud for further processing.
Each fog node is connected to and responsible for a group
of IoT devices, performing data analysis in a timely manner.
Thanks to the virtualization technology, the fog nodes with
heterogeneous resources can provide the ability to implement
IoT service functions, providing the ability to reduce network
load as well as ensure service QoS constraints including
latency and location-awareness. On top of the architecture is
cloud layer consists of a number of powerful servers allocated
in a few data centers. With its unlimited resource capacity,
the cloud will analyze data, process computational-intensive

Kim-Khoa Nguyen
dept. Electrical Engineering
University of Quebec, Canada
Kim-Khoa.Nguyen @etsmtl.ca

Qwnr

@ Sensor
Data Center

Sensor Network Fog Nodes

Fig. 1. IoT service in multi-layered Cloud-Fog environment

tasks, store a massive amount of data and also provides the
interfaces to end-users who request for a service.

While the basic ideas and theoretical foundations of fog
computing have been established, optimal deployment of IoT
services onto Cloud-Fog environment is still facing many
challenges. While IoT service functions prefer to be hosted at
the nearby fog nodes instead of cloud to obtain the low latency
and location tracking, a fog node can only host a limited
number of the service functions due to its limited resource
capabilities. On the other hand, the cloud is far from IoT
device networks. Therefore, deploying IoT service functions
onto cloud increases network load and service latency.

The problem of finding optimal deployment for virtual
network requests onto a substrate network is known as virtual
network embedding (VNE). [2] proposes algorithms to effec-
tively perform generic VNE with coordinated node and link
mapping. However, it doesn’t take into account the nature of
IoT services and multi-layered computing system. [3] presents
an optimization model for VNF placement and chaining in
consideration of the input traffic of VNF and specifications
of connection between clouds and IoT gateways. The works
in [4], [5] also introduce a mathematical formulation for
the IoT services deployment in the Fog computing system
and propose two approximation approaches to find the near-
optimal solution for the problem. The work in [6] presents
a mathematical formulation of the optimal distribution of
generic IoT services over the IoT-Cloud network problem.
However, the authors do not consider the problem of server
sprawl and under-utilization, which is considered a major
cause of energy inefficiency in data centers. Besides, all the
works above had mainly focused on two-layer mapping, which

maps virtual nodes and virtual links of a VN request directly
to substrate network resources.

Unlike previous studies that embed a service graph to a
substrate network graph [2], [3], [6], in this paper, we formu-
late the problem of IoT service deployment as a multi-layer
mapping. Our goal aims at minimizing energy consumption
and maximizing resource utilization in both fog and cloud
layers. Our contributions are as follows:

« We formulate the problem of optimizing the IoT service
deployment in the Cloud-Fog environment as a mixed
integer linear program (MILP), and devise a multi-layer
mapping mechanism that efficiently deploys IoT services
to the optimal virtual network in physical infrastructure.

« We propose a greedy-based solution for the aforemen-
tioned problem which solves each phase of the de-
ployment process sequentially. We evaluate the solution
in an illustrative Cloud-Fog environment with the joint
orchestration of device, access and cloud layers. Our
results show that the proposed solution outperforms by
reducing upto 80% of the total service cost compared to
the state-of-the-art solutions.

The rest of this paper is organized as follows: Section II
describes the system model. Section III introduces the IoT
service deployment problem in the Cloud-Fog environment.
Experiment results are presented in Section IV. Finally, Sec-
tion V draws conclusions and presents the future works.

II. SYSTEM MODEL
A. Physical layer model

We model a Cloud-Fog system as a directed graph G =
(VP EP) with VP and EP is the set of physical nodes and links
in the system, respectively. Each node v € VP is characterized
by its processing capacity c,, (in MIPS), processing efficiency
ay, (in MIPS/W) and its location loc(u) on a globally under-
stood coordinate system. Nodes are interconnected via links,
each characterized by their transmission capacity, unit energy
cost and transmission delay. We use cyy, auy and by, to
denote the capacity (in bps), the unit energy cost (in Watts per
bps) and the transmission delay (in ms) of the link (u,v) € EP.

B. Service model

A service is presented as a directed graph S = (F, A)
where F is a set of VNFs and A is a set of dependencies
between the VNFs. A VNF f € F can capture environment
information or process the information in order to create final
meaningful information for the service’s end users. For ex-
ample, the traffic monitoring service shown in Fig. 3 contains
the following VNFs: Video Capturing, Video Compressor,
Vehicle Recognition, Road Condition Detection, Congestion
Detection, and Visualization. Each VNF f € F is associated
with a processing complexity Ay (in millions instructions per
bit) and a non-negative value Dy expressing how far the
VNF f can be deployed from its preferred location loc(f).
The dependency between two VNFs f; and f; is presented
through virtual link (f;, f;) € A. The link carries the output
data of VNF f; to be processed by f;. Therefore, the set of

VNFs which generate data required by VNF f is presented
as children of f in the service graph S.

C. Virtual layer model

The virtual layer built on top of the substrate network
layer consists of virtual machines (VMs) and virtual links
G¥ = (V,€"). A VM can host multiple VNFs depend on its
capacity. However, one VNF can have many replicas deployed
to different VMs. For example, with the traffic monitoring
service, if there are no more than 10 surveillance cameras
and each camera generates a video of 4 Mbps, we only need
to deploy the Video compressor module to one VM which has
a capacity of 50,000 MIPS. If the number of camera increases,
the Video compressor module will need more computing
power and it will exceed the capacity of a VM, so we have to
create replicas of the module and deploy those replicas into
the other’s VMs. We assume that there is a limited number
of VM types. We denote T as the set of available VM types
e.g. flavors. Each flavor ¢ € 7 has a predefined processing
capacity ¢(t). A VM type t has a processing capacity c(t).

IIT. PROBLEM FORMULATION
A. MILP formulation.

We define the optimal services deployment in Cloud-Fog
environment as a problem of finding emplacement of VNFs
and routing of network flows that minimizes the overall energy
consumption. The problem consists three phases:

o Function assignment: consists selecting an appropriate VM
on a specific physical node for each VNF. Each VNF will
be deployed onto a VM which created based on the VM
flavor ¢t € T. It is formalized as a mapping Mp : F' — V"
from VNFs to VMs such that: Mp(f) € V¥, Vf e F.

o Node assignment: Each VM is deployed to a substrate node
by a mapping My : V¥ — VP from VMs to physical nodes
such that: My (w?) € VP, Vw’ € V".

In order to maximize the resource utilization, we have
considered virtual machine consolidation when deploying
VMs to a physical node.

In Fig. 2, the service has the function mapping {f1, fo —
VM1 on PSl, f3 — VM3 on PSQ, f4 — VM4 on PS4}

o Link assignment: Each virtual link is mapped to a substrate
path (unsplittable flow) or a set of substrate paths (splittable
flow) between the corresponding substrate nodes that host
the end VNFs of that virtual link. It is defined by a mapping
Mg : £Y — PP from virtual links to substrate paths such
that: Mg (u,v) C PP(My(u), Mn(v)), V(u,v) € &Y
The capacity and transmission delay of substrate links
are taken into account in this phase. The summation of
transmission delay on substrate path must less than or equal
to the latency requirement of the virtual link. If the source
and destination functions of a virtual link are mapped
to the same physical node, the link will be ignored. For
example, service in Fig. 2 has been assigned link mapping
{(fo, f1) — 0,(fz,fa) — (PSo, PS1),(fa, f2) —
(PS4, PSy) }

[f) Service Virtual Function

T
oy

Virtual Machine

PS | Physical Server

)
() (1 <

U
My

(M)

e
< VM1

¥

PS{ «—— *

PS,

»\ '>(r
PSg PS,

Fig. 2. Three-layer service deployment

In this paper, we assume that the number of replicas is
predefined for each VNFs and we add these replicas to the
service graph as individual VNFs.

To quantify the resource usage of substrate node, we use
a cost function s,» is defined as the total amount of CPU
capacity allocated to maintaining the operation node u” € V?
satisfying the resources requirements of VMs deployed on it.

Sup = Oyp + § Cyv

uv —uP

where o, denotes the amount of CPU capacity occupied by
node uw when it is doing nothing but power on and x — y
denotes that the VM =z is hosted on the substrate node y.

Similarly, the cost of a link s(e) is defined as total amount
of bandwidth reserved for the virtual links whose substrate
paths pass through the link e € EP

where x — ¥y denotes that the substrate path of the virtual
link x passes through the substrate link y.

The residual or the available capacity of a node 7,» is
defined as the available CPU capacity of the node u? € VP.
Similarly, the residual of a link e? € EP is r.» defined as the
available bandwidth capacity of the link.

Tur — Cyp — Syp Tep = Cep — Sepr

According to [2], in order to coordinate the function
mapping and link mapping phases, we extend the substrate
network using the location requirements of VNFs to create
augmented substrate network. Each VNF f € F has a set of
substrate nodes Q(f) which contains all of the substrate nodes
that the VNF can be embedded in.

Q(f) = {u? € VP|dis(loc(f),loc(uP)) < D(f)} (1)

For each VNF f € F, we create a meta node pi(f) and
connect u(f) to all the substrate nodes in (f) using meta
edges with infinite bandwidth and zero cost. We combine all
the meta nodes and meta edges with the substrate network

TABLE 1

NOTATIONS

Name | Description

%3 Set of physical nodes

EP Set of physical links

F Set of VNFs

A Set of virtual links between VNFs

% Set of nodes in augmented graph

E° Set of links in augmented graph

T Set of virtual machine’s flavors

ct Processing capacity of virtual machine type ¢

Pu Energy consumed by node u € VP

Puv Energy consumed by link (u,v) € VP

Oy Amount of processing capacity occupied by node u when it’s
doing nothing but power on

Q, Processing efficiency of node u

Cu Processing capacity of node u

Af Processing complexity of VNF f

Qf Set of substrate nodes that VNF f can be deployed to

Cuv Transmission capacity of link (u,v) € VP

huv Transmission delay of link (u,v)

Qv Transmission cost of link (u,v)

€; The ith virtual link (s;,¢;) € A with source and destination
VNFs s; and t;, respectively.

Tho A variable denotes the fraction of ith virtual edge in A
embedded in link (u,v)

piIw Binary variable denotes VNF w is deployed to the jth virtual
machine of flavor ¢ on physical node u

bf] Binary variable denotes the jth virtual machine of flavor ¢ is
run on node u

dy Binary variable denotes physical node w is in used

GP to create the augmented substrate network G* = (V*, %),
where

Ve =VPUulu(f)lf € F} 2
£ =& U{(u(f), u")|f € F,uP € Q(f)} 3)

The services deployment problem now can be formulated
as a mixed integer multi-commodity flow (MCF) problem. We
consider each virtual link e; € A as a commodity with source
and destination nodes s; and t; (s;,t; € V*\VP), respectively.
In this setting, each flow starts from a meta node and ends
in another meta node. By introducing restrictions on the meta
edges, each meta node p(f) can be forced to choose only
one meta edge to connect itself to the actual substrate node in
Q(f). This effectively selects a substrate node for each meta
node, i.e. maps the virtual node corresponding to that meta
node to a substrate node. At the same time, all the virtual links
(i.e. flows) are also mapped efficiently inside the substrate
network. We present the MILP formulation in the following.

Our objective function tries to minimize the overall running
cost of Cloud-Fog system by taking into account the VM
consolidation:

minimize Z Do + Z Puv “4)
u€VP (u,v)€€P
Constraints:

e Power consumption constraints: Every physical node
consumes a certain amount of energy even it’s doing
nothing but power on. The total energy consumed by

a physical node is defined in (5) which contained of the
consumed energy when it is doing nothing but power on
and the consumed energy when processing computing
tasks.

Pu = (duou + Y _bc)on, Yue VP (5)
t,j

The equation (6) defines the energy consumed by a link
to transmit data between nodes.

Puv = Z ‘T:Lq;ceq, Ay VU, RS Vp (6)
e, €A

Flow-related constraints: Constraint sets (7)-(9) refers to
the flow conservation conditions, which denote that the
net flow to a node must be zero except for the source
node s; and sink node ;.

> ah = Y @ =0 Ve € AVu eV \{siti)

veVs veVs
4 ' (7
Z T — Z Tys, =1 Ve, € A 8)
weys weys
Z xiw — Z a:iut =—-1 Ve, e A)
weys weys

Capacity constraints: The summation of flows on the link
(u,v) has to remain within its available bandwidth.

7 S
g ToypCei < Tuy YUu,v €V
e, €A

(10)

Constraint sets (11) and (12) enforce the capacity bounds
of nodes and VMs on node. The constraint (12) shows
that virtual functions deployed in the VM are provided
with its required computing power. The constraint (11)
ensures that total computing resource required by all
VMs on a physical node remains within its computing
capacity.

S bl <ry Vue W (11)
[2%)

Db, < Vut,j (12)
weF

QoS constraints: Latency: Constraint (13) refers to the
latency requirement of each virtual link. The total delay
of substrate links that the virtual link passes through has
to less than or equal to the virtual link latency constraint.

> hupl, <he, Vei€ A (13)
u,veEVYS
Deployment restrictions:
The set guarantees that only one substrate node is se-

lected for each VNF and all the VNFs will be deployed
to appropriate substrate node.

S ov=1 YwerF (14)
u,t,g
S Obv > al,, Vei€e AVue VP Vwe F (15)

t,j

Ve; € A, Vu € VP Yw € F

y A
Db > i,

t,j

(16)

biJ >l Vit Yue VP YweF (17)
The node u is known as power on if there is any VM is
running in it.

dy > b9Vt §,Yu € VP (18)

e Domain constraints:
zt €0,1] Vi,Vu,v € V* (19)
biIw bt d, € {0,1} Vt,5,Yu e VP, w e F (20)

« We remark that the solution for IoT service deployment
in Cloud-Fog system is centralized. It requires collecting
information about services requirements and network
resources at a centralized network controller and dissem-
inating the solution to all network nodes.

B. Algorithmic solutions.

Since solving the problem of simultaneous function and
link mapping using MILP is practically infeasible, we propose
two greedy-based strategies for solving each phase of the
deployment process sequentially. The first one is presented in
Algorithm 1 which tries to deploy each of service functions
into appropriate VMs first and then embed the network of
the VMs onto physical network. The second strategy tries to
map service functions to the satisfied physical nodes first and
then applies the consolidation mechanism to pack the service
functions in each node into VMs presented in Algorithm 2.

The Algorithm 1 takes service deployment request as input
and creates a virtual network that hosts the service. For each
VNE, the algorithm create a VM based on a flavor in the list
of VM flavors that has minimum processing capacity while
satisfying the CPU capacity required by the VNF. Next, for
each VM, the algorithm checks whether there are any possible
substrate nodes within its €2 set that remaining with enough
available CPU capacity. If any of the €2 sets are empty, the pro-
cedure rejects the request and stops immediately. Otherwise,
for each VM w, the algorithm calculates a value ¢, for each
substrate node u € Q,,. €, is calculated as the fraction of the
available CPU capacity r,, and the product of total capacity ¢,
and the processing cost a,, of the node u. Then the substrate
nodes will be sorted by ¢,,. The algorithm maps the VM w to
the node with minimum ¢,, value while satisfied with resource
requirements of w to archive the minimum cost when running
the VM. Once all the VMs have been mapped to suitable
substrate nodes, the algorithm solves the MCF problem to
map the virtual links in £ onto substrate paths. Finally, it
updates the residual capacities on system resources.

The Algorithm 2 tries to map the VNFs to the substrate
nodes first and then to pack the VNFs in each node into VMs.
It takes the service deployment request as input. For each
VNEF, it checks whether there are any substrate nodes within
its () set that remaining with enough available CPU capacity.
If any of the () sets are empty, the algorithm rejects the

Algorithm 1 Service deployment with function-to-vm map-
ping first

Algorithm 2 Service deployment with function-to-node map-
ping first

1: procedure SERVICEDEPLOYMENT(F, A)
2: VD, EV+ O

3 for all f € F do

4 Let t,in = arg min,c{ci|c; > Ar}
5: Create VM w belong to type t,,in
6: pf—w; V4= w

7 for all ¢; € A do

8 Create Virtual link (s, , ¢y;)

9 &Y += ((psi?gpti)

10: for all w € V¥ do

11: if Q,\{u € Qulry < cy} == 0 then
12: Reject the request

13: return

14: for all u €), do

15: €y — C:—gu

16: Let Upin = arg min, cq {€u|ru > cu}
17: My (w) + Umin

18: Update residual capacities of node iy,

19: Solve MCF to map virtual links in &Y
20: if MCF succeeded then

21: Update residual capacities of system resources
22: else
23: Reject the request

request and stops immediately. Otherwise, for each substrate
node v within the set {2y, it calculates value ¢, as defined in
procedure 1. Next, the VNF f will be mapped to the node with
minimum value e while satisfied with resource requirements
of f. Once all the VNFs have been mapped to suitable nodes,
the algorithm iterates over the substrate nodes and tries to
pack the mapped VNFs in the node to appropriate VMs. The
algorithm uses Iterative best-fit decreasing mapping algorithm
proposed in [7] to deploy the unmapped VNFs to appropriate
VMs. After that, the algorithm solves the MCF problem to
map the virtual links in €Y onto substrate paths. Finally, it
updates the residual capacities on system resources.

IV. EXPERIMENT RESULTS

We compare the efficiency of our solution with:) the IoT-
Cloud solution from [6] which optimizes the placement of
IoT service functions based on the flexibility of the IoT-Cloud
infrastructure, and ii) the VNE model which minimizes the
cost of embedding VN request, and balances the load across
the substrate network resources [2].

A. Experimental configuration

We consider a Cloud-Fog system architecture composed
of three main layers: ¢) a cloud layer with nodes located
in large data centers (DC), #¢) an access layer, composed of
base stations (BSes) hosting fog nodes, and 7i7) a device layer
that contains sensors and smart devices. The configurations of
these nodes and links are presented in TABLE II.

1: procedure VIRTUALNETWORKDEPLOYMENT(F, A)
2: for all f € F do

3 if Q/\{u e Q|r, <A} == then
4: Reject the request
5: return
6: for all u € Qf do
7: €y & T
8: Let Upin = arg min, cq {eu|ru > As}
9: MF(f) += Umin
10: for all v € V? do
11: Iterative best-fit decreasing mapping.
12: Update residual capacities of node wu.
13: Solve MCF to map virtual links
14: if MCF succeeded then
15: Update residual capacities of system resources
16: else
17: Reject the request
TABLE II
CLOUD-FOG SYSTEM RESOURCES
Capacity Efficiency
Cloud node 53.5 Million MIPS 500 MIPS/W
Fog node 6.5 Million MIPS 100-500 MIPS/W
Smart Device 5000 MIPS MIPS/W
Sensor 1000 MIPS MIPS/W
Optical link 4480 Gbps 12.6 nJ/bit
Wifi link 150 Mbps 300 nJ/bit
4G link (Down/Up) 72/12 Mbps 76.2/19 pJ/bit

The traffic monitoring service in which users request infor-
mation about the real-time traffic status in the city illustrated
in Fig. 3. In particular, we assume that there is a video
of 4 Mbps generated in each of surveillance cameras. The
Video Compressor module requires a computing capacity of
4000 instructions per bit to compress the input video with
a compression ratio of 3:1. Both of Vehicle Recognition
and Road Condition Detection modules require a capacity
of 8000 instructions per bit to process the data from the
Video Compressor module. The Congestion Detection module
is the highest demanding component which requires 15000
instructions per bit to generate the real-time traffic status,
which requested by users. The Visualization module which
data from the Congestion Detection module and creates a
visual map for users requires 1000 instructions per bit. In
terms of network access technologies, we assume the half of
the users use WiFi and the other half use 4G.

Vehicle

Recognition
VidHESﬁOH
Compressor Detection
Road Condition

Detection

Visualization

Fig. 3. Service model example: Traffic monitoring service.

Solutions
mm ViNEYard
B loT-Cloud
BN Cloud-Fog 1
B Cloud-Fog 2

300 -

250 A

200 4

150 +

Avg. power consumption
=
(=]
[=]
!

50

10% 20% 30% 40% 50%
Percentages of energy consumption in idle state of node

Fig. 4. Average power consumption of the traffic monitoring service for
different amount of energy consumed by server nodes in idle state.

B. Simulation scenarios

1) The change of energy consumed by edge nodes in idle
state: Fig. 4 shows the average energy consumption of Cloud-
Fog system regarding various idle states of the server nodes.
In this scenario, the fog nodes efficiency is constant (400
MIPS/W). We change the amount of energy consumed by
server nodes according to different idle states from 10% to
50% of the node capacity. For the cost sufficiently high, our
solution allocates the functions of the service at the edge
nodes instead of cloud nodes to reduce the overall energy
consumption. Otherwise, our solution tends to consolidate the
functions to cloud node to reduce the number of nodes being
used. There is a slightly different between the results of Cloud-
Fog 1 and Cloud-Fog 2 due to the consolidation mechanism.
The Cloud-Fog 1 finds the appropriate VM for each VNF
first, then deploys them to the physical network. It creates
an unused space in each VM and increases the energy con-
sumption while the Cloud-Fog 2 algorithm has a consolidation
mechanism that consolidates VNFs into VMs reducing the
unused space in VMs. We also observe that the ViNEYard
solution yields the highest overall energy consumption over
the solutions. This is because the ViNEYard solution tries to
balance the load over the infrastructure resulting in the most
servers being used. The IoT-Cloud solution tends to deploy
the service functions at the lost-cost, nearby nodes to reduce
the transmission cost. However, the cost to run a server is
significantly high compared to the transmission cost over the
network.

2) Different edge node efficiencies: In Fig. 5, we show the
average energy consumption for different edge node efficien-
cies. In this scenario, the simulation results show that our
solution chooses to consolidate the service functions in cloud
data center to take advantages of high processing efficiency
of cloud server and reduce the number of running nodes. The
reason for the difference between the results of Cloud-Fog
1 and Cloud-Fog 2 is the same as in the scenario above.
The ViNEYard solution produces the highest overall energy
consumption one more time due to its deployment strategy.

500 1
Solutions

mm ViNEYard
m loT-Cloud
I Cloud-Fog 1
B Cloud-Fog 2

400

300 4

200 4

Avg. power consumption

100

100 200 300 400 500
Edge node efficiency

Fig. 5. Average power consumption of the traffic monitoring service for
different edge node efficiencies.

The IoT-Cloud solution adapts the offloading decisions ac-
cording to the processing efficiency of edge nodes. With
the sufficiently high of edge nodes efficiency, the IoT-Cloud
offloads some functions from cloud nodes to the edge nodes
resulting the increasing in number of nodes being used.

V. CONCLUSION

In this work, we study the problem of optimizing the
IoT service deployment in Cloud-Fog environment, which is
known as a NP-hard problem. We formulate the problem with
three layers including the physical layer, virtual layer, and
service layer. We also propose two greedy-based strategies for
solving each phase of the deployment process sequentially.
Numerical results show our solution outperforms the prior
work which considers only two-layer mapping.

In the future, we plan to improve the model for dynamically
deploying services according to the change in the number of
users over time.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pp. 13-16, ACM, 2012.

[2] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking (TON), vol. 20, no. 1, pp. 206—
219, 2012.

[3] D. T. Nguyen, C. Pham, K. K. Nguyen, and M. Cheriet, ‘“Placement
and chaining for run-time iot service deployment in edge-cloud,” IEEE
Transactions on Network and Service Management, 2019.

[4] C.Pham, K. K. Nguyen, and M. Cheriet, “An approximation mechanism
for elastic iot application deployment,” in 2018 9th IEEE Annual Ubiq-
uitous Computing, Electronics & Mobile Communication Conference
(UEMCON), pp. 159-165, IEEE, 2018.

[5] D.T. Nguyen, C. Pham, K. K. Nguyen, and M. Cheriet, “Virtual network
function placement in iot network,” in 2019 15th International Wireless
Communications & Mobile Computing Conference (IWCMC), pp. 1166—
1171, IEEE, 2019.

[6] M. Barcelo, A. Correa, J. Llorca, A. M. Tulino, J. L. Vicario, and
A. Morell, “Iot-cloud service optimization in next generation smart
environments,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 4077-4090, 2016.

[7] J. Kang and S. Park, “Algorithms for the variable sized bin packing
problem,” European Journal of Operational Research, vol. 147, no. 2,
pp. 365-372, 2003.

