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ABSTRACT

With the rapid growth of Internet media, content tagging has be-

come an important topic with many multimedia understanding

applications, including efficient organisation and search. Neverthe-

less, existing visual tagging approaches are susceptible to inherent

privacy risks in which private information may be exposed un-

intentionally. The use of anonymisation and privacy-protection

methods is desirable, but with the expense of task performance.

Therefore, this paper proposes an end-to-end framework (SGTN)

using Graph Transformer and Convolutional Networks to signif-

icantly improve classification and privacy preservation of visual

data. Especially, we employ several mechanisms such as differential

privacy based graph construction and noise-induced graph transfor-

mation to protect the privacy of knowledge graphs. Our approach

unveils new state-of-the-art on MS-COCO dataset in various semi-

supervised settings. In addition, we showcase a real experiment

in the education domain to address the automation of sensitive

document tagging. Experimental results show that our approach

achieves an excellent balance of model accuracy and privacy preser-

vation on both public and private datasets. Codes are available at

https://github.com/ReML-AI/sgtn.
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1 INTRODUCTION

The advent of smartphones and cloud services has led to the growth

explosion of multimedia contents with the intertwinement of dif-

ferent types of information. Therefore, content tagging has become

an increasingly important task in multimedia, computer vision,
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Figure 1: Knowledge graph built using object labels tomodel

inter-object correlations. The graph typically depicts both

common nodes (e.g., hot dog, dining table, and chair) and un-

common data patterns (e.g., hot dog and boat). Local correla-

tions based on data-driven adjacency construction hence is

susceptible to privacy attacks such as re-identification and

link retrieval.

and information retrieval [30]. In 2015, one trillion photos were

captured among a massive pool of multimedia documents [16]. As a

result, it is imperative to automatically annotate visual objects with

comprehensive textual semantics for accurate and efficient multi-

media understanding and sharing. Nevertheless, this automated

document annotation process is prone to inherent privacy risks;

because the use of visual information typically conveys sensitive

data to a certain degree. For example, personal information such as

faces and license plates may be accidentally exposed in Web media.

The key motivation of this paper is to develop an approach for vi-

sual content tagging, which has to be aware of privacy preservation

with state-of-the-art performance. The early strategies for visual

content tagging, including Scale-Invariant Feature Transform (SIFT)

[24] or Histogram of Oriented Gradients (HOG) [9], are typically

limited by hand-crafted concept representation. With the recent ad-

vancement in deep learning, multi-label classification using neural

networks has been effectively used for image tagging [37] to achieve

much better performance. Nonetheless, privacy issues need to be

addressed at different levels, including sensitive visual information,

associated multimedia semantics, and deep learning regime.
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First, visual understanding tasks such as image tagging, facial

recognition, or visual search entail the learning of patterns and

representations, in which input data privacy plays a vital role in

personal data protection. There have been many privacy incidents

documented in the literature [10], in which the authors used a

hill-climbing algorithm on the output probabilities of a computer-

vision classifier to reveal individual faces from the training data.

It is, therefore, intriguing to investigate a deep learning approach

to perform multi-label tagging effectively on privacy-protected

visual data. We apply a General Data Protection Regulation (GDPR)

compliant method to obfuscate sensitive information such faces

and plate numbers in images. This paper describes a multi-label

visual classification to assign textual tags to censored inputs.

Second, as objects are typically co-occurred in visual data, the use

of inter-object correlations in classification tasks has been explored

to improve significant performance in visual classification tasks

[4, 40]. We posit that local knowledge can be derived from data

observations including label semantics or multimedia content se-

mantics (e.g., optical character recognition); whereas, global knowl-

edge can be drawn from publicly available corpora (e.g., Wikidata

[35] or Common Crawl [5]). The local knowledge is often useful

for knowledge graph construction and machine learning; however,

it is prone to the disclosure of private data patterns. Figure 1 raises

an interesting observation, in which uncommon correlations hint

to a potential privacy breach. The co-occurrence of person, chair,
dining table, and book may appear together in an intuitive way. On

the other hand, person, hot dog, and boat is less observable in a

dataset; hence, such a relationship may lead to re-identification of

concerned objects. Furthermore, the combination of local correla-

tions such as person, skies, and hot dog also enables the possibility

of privacy attacks. Therefore, we propose several techniques in-

cluding noise-added mechanism and differential privacy approach

to protecting the use of inter-relationships among tagged objects.

Third, modelling the object dependencies, hence, is the core

challenge in multi-label classification problems. One of the early

approaches developed by Wang et al. [38] combined convolutional

neural networks (CNN) with recurrent neural networks (RNN) [32]

to learn the semantic relevance and dependency of multiple labels in

order to boost the classification performance. Nevertheless, this ap-

proach is prone to the high computational cost and the sub-optimal

reciprocity between visual and semantic information. In reality,

objects are inter-connected which reflect as the network nature of

object label dependencies. Kipf et al. [18] proposed semi-supervised

learning on network data using graph convolutional network (GCN)

unveiled spectral graph convolutions for classification tasks. The

graph-based approach was adopted with visual data by Chen et

al. [4] to get the state-of-the-art performance for multi-label image

recognition. Furthermore, Li et al. [20] and [40] proposed several

topological and architectural changes to enhance the learning ca-

pabilities with minor performance improvements. We propose a

novel privacy-preserving graph transformer networks to achieve

novel performance with our privacy-preserving mechanisms.

We apply our framework on the COCO dataset (MS-COCO) and

an EU Education dataset (EDU-MM). Automating the task of classi-

fying contents on arrival has a potential impact on saving thousands

of labour hours and makes it more efficient for information process-

ing. In education, application documents from students are very

sensitive (e.g., passport, education records, education transcripts).

Given the main task is building a good multi-label image classifier,

one could argue that it did not necessary have to be aware of pri-

vacy. However, any algorithms running on personal data should

be aware of the case, where the adversary observes outputs from

the model to infer side knowledge regarding user information in

the training data (e.g., membership attack [23]). In general, the

same requirements would exist in other parties such as in hospital,

finance department, and the like. Therefore, the requirement for

having a kind of model that performs effectively the task and be

aware of privacy preservation is in high demand.

Compared with existing visual content tagging studies, our pro-

posed SGTN has the following contributions:

• We develop SGTN, a privacy-preserving visual tagging frame-

work that leverages global knowledge to perform the visual tagging

task with new state-of-the-art performances. Meanwhile, it uses

less local information of the task to preserve user privacy by avoid-

ing the use of sensitive information (e.g., faces, passport numbers,

vehicle license plates).

• We propose two approaches to construct graph information

from label embeddings with privacy guarantee under differential

privacy theorem. These constructed graphs help SGTN avoid to use

private sensitive information from local data.

• We evaluate the effectiveness of SGTNwith comprehensive ex-

periments on a public bench-marking dataset - i.e., MS-COCO, and

a real-world education dataset with personal sensitive information.

The remainder of this paper is structured as follows. In Section 2,

we discuss related work in visual classification, privacy-preserving

graph. Section 3 presents our proposed neural architecture to ad-

dress the issue that our education partner faced in the reality. In

Section 4, we evaluate to show that SGTN performs effectively not

only on private dataset EDU-MM but also on MS-COCO- i.e., the

public benchmark dataset, and achieves new state-of-the-art results.

Lastly, we conclude this paper in Section 5.

2 RELATEDWORK

Privacy preservation is a complex topic and has been studied for

decades. Among all requirements for privacy preservation, the right
to be left alone is the most essential requirement. It is “the capac-

ity of an individual or group to stop opinion about themselves

from becoming known to people other than those they give the

information to” [15]. To fulfil this requirement, to protect data

donors from re-identification problem, any algorithms that run

on personal data, must not give adversaries any chance to infer

any side information by observing outputs of the algorithms. The

techniques of anonymization [3] and sanitization [39] have been

widely applied. Differential privacy later emerged as the key pri-

vacy guarantee by providing rigorous, statistical guarantees against

any inference from an adversary [6]. Differential privacy has been

applied in many research on different types of data including im-

ages [1, 42], network [26], text [29, 46], and general neural network

architectures [28]. Therefore, it raises a potential need to consider

differential privacy in algorithms that learn from personal data.

With the increasing use of graph-based techniques in multime-

dia research, privacy-preserving graph aims to create or modify

graphs for privacy control based on graph statistics such as nodes,
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edge distribution, distance, subgraphs etc. The big challenge is its

high sensitivity due to graph features (e.g., cluster coefficient). The

survey [48] investigates a few studies on anonymisation techniques

for privacy preserving publishing of social network data, espe-

cially graph modification approaches. They categorised the graph

modification methods into three sub-categories: the optimisation

configuration based approach [41], perturbation based modification

approach [22], and greedy graph modification approach [47]. [41]

generates privacy-preserving graphs for releasing by calibrating

noise based on smooth sensitivity. They developed private dK-graph

generation models that enforce rigorous differential privacy while

preserving utility. [22] makes a trade-off of protection of sensitive

weights of network links and some global structure utilities (e.g, the

shortest path length) by applying two perturbation strategies on

social network data. The authors in [47] addressed the l-diversity

problem in social network data where they associated each vertex

with some non-sensitive attributes and some sensitive attributes.

Multimedia tagging has been recognised as an interesting prob-

lem in computer vision research. With the rapid development of

the Internet, online media is typically created with multiple tags to

supplement visual data with semantic information. Early solutions

for such classification task were developed based on the combina-

tions of single-label classifications, which decomposed the task into

multiple sub-problems for learning. Tsoumakas et al. [33] defined

the multi-label nature of datasets and proposed the use of multiple

classifiers. However, this approach ignored the inter-object corre-

lations among various labels in visual data. Label co-occurrence

dependencies were recognised as essential in multi-label classifica-

tion problems [43]. Kipf et al. [18] proposed the encoding of graph

structures using Graph Convolutional Networks (GCN) to learn

representations for multi-label image classification [18]. Chen et

al. (2019) employed this spectral graph convolution approach to

model object label relationships for recognising multiple objects in

images [4]. Knowledge such as semantic label embeddings and data-

driven adjacency matrix have also effectively employed perform

multi-label image tagging.

3 APPROACH

Visual content tagging is to generate descriptive textual comprehen-

sion on visual data. In computer vision, visual data often conveys

meaningful relationships, where objects appear to be in correlated

patterns. Recognising these patterns, therefore, lay the foundation

for improving the tagging performance. Nevertheless, the exploit

of object correlations is susceptible to privacy issues as such infor-

mation may reflect the true nature or habitat of concerned objects.

We propose a novel approach that captures concurrently visual

features and correlated semantic associations among objects under

the privacy-preserving constraint. Inspired by Wang et al. [37], the

visual content tagging task is formed as a multi-label classification

problem. We develop an end-to-end privacy-preserving learning

framework, which employs various neural network components

to classify anonymised data inputs. Specifically, convolutional neu-

ral networks are utilised to extract visual features whilst graph

transformer and graph convolutional networks are to exploit se-

mantic and topological knowledge graphs of inter-correlated tags

(i.e., labels). Next, we will thoroughly describe each component

3.1 Learning Architecture

Figure 2 illustrates the network architecture of our proposed model

named SGTN for the multi-label classification task on a set of C
tags. It is built upon three main components namely: (1) a graph

transformer network (GTN), (2) a graph convolutional network

(GCN); and a convolutional neural network (CNN).

Firstly, various inter-correlation views between labels, i.e., lo-

cal and global knowledge, are transformed into privacy-preserved

graphs in the form of a tensorA of multiple adjacencymatrices (sub-

section 3.3). The tensor is fed into the graph transformer component

(subsection 3.2) to leverage the most important connections, which

are expressed via the representative adjacency matrix Â ∈ RC×C :

Â = GTN (A) (1)

Subsequently, the matrix Â is aggregated with a pre-trained

embedding E (e.g., Glove) in the graph convolutional network

component [18] to produce the privacy-preserving representation

W ∈ RC×D of the local and global information as follows:

W = GCN (Â,E) (2)

Finally,W is fused with the visual representation extracted F ∈

RD from the convolution neural network component to generate

tag prediction scores as: ŷ =WT F .

The objective function is defined as follows:

L = −
1

C

C∑
c=1

yc log(σ (ŷc )) + (1 − yc ) log(1 − σ (ŷc )) (3)

where σ (·) is the sigmoid function, and y is the ground-truth vector.

3.2 Graph Transformer Network

The advantage of topological information is verified in improving

the multi-label classification performance [4, 40]. Using a data-

driven correlation matrix, the correlation among nodes is leveraged

to favour the prediction of correlative labels. In these approaches,

usefulness and privacy are but a screen away, especially for the case

that the connectivity is exploited to violate people’s privacy. Instead

of using the data-driven matrix directly, Li et al. [20] construct the

correlation matrix based on a global knowledge, i.e., pre-trained

semantic embeddings of labels. Inspired by this idea, we seek to

build the matrix by aggregating multiple pre-trained embeddings

via Graph Transformer Networks [45].

Let us denote E as the set of pre-trained embeddings. For each

embedding E ∈ RC×DE
, we build the respective similarity matrix

S ∈ RC×C with Si j = cos(Ei ,Ej ); and an adjacency matrix A ∈

RC×C , where Ai j = 1 if Si j ≥ τ , the different of the mean and

standard deviation of S’s values, 0 otherwise. Subsequently, A is

normalised as follows:

Ai j = α ∗Ai j/Di (4)

where D is the degree matrix (Di =
∑
k Aik ), and ϱ is α is 0.25.

The adjacency tensor A ∈ RK×C×C consists of K adjacency

matrices, in which A1 is the identity matrix I , and the remaining is

constructed as Eq(4) from the respective (K − 1) embeddings.

Following to Yun et al. [45], the two softly chosen adjacency

matrices Q1,Q2 ∈ R
C×C

are computed via two 1 × 1 convolutions
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Figure 2: The network architecture of SGTN. It consists of (1) a graph transformer, (2) a graph convolutional network; (3) a
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multiple adjacency matrices detailed in Figure 3, to enhance and guide the learning process for the visual classification task.
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Figure 3: Local and global knowledge inputs of SGTN

as follows:

Q1 = ψ (A, softmax(W 1

ψ )) (5)

Q2 = ψ (A, softmax(W 2

ψ )) (6)

whereψ is the convolution layer, andW 1

ψ ,W
2

ψ ∈ R
1×1×K

are learn-

ing parameters. The final transformed matrix Â ∈ RC×C is by:

Â = η(Q1Q2 + I ) (7)

where η(A) = D
−1
2 AD

−1
2 is the Laplacian normalisation [18].

3.3 Privacy Preservation

The above classification model successfully discriminates between

different classes using categorical information. However, user data

is not directly protected within the model. For example, to dif-

ferentiate a car from a motorbike, the model may memorise the

numbers on the license plates of vehicles. Therefore, anonymis-

ing sensitive visual content is desirable, but with the expense of

classification performance. Motivated by the challenge to achieve

the trade off between privacy preservation and model accuracy,

we present to apply privacy-guaranteed label embeddings to

mask sensitive links (using differential privacy) to preserve pri-

vacy. Moreover, to leverage the local correlation information of the

task without privacy leakage, we propose a privacy-guaranteed

graph construction to leverage non-sensitive local knowledge for

maintaining classification performance.

Label embeddings

To protect user privacy, we apply differentially private represen-

tations based on dpUGC [36]. The main intuition behind dpUGC

is that, when the embedding is trained on sensitive text corpus,

it injects noise to the word vectors to guarantee privacy at the

highest level. Especially to address the common out-of- vocabulary

(OOV) issue (i.e., a certain word might be missing from the pre-

trained embeddings), dpUGC proposes character-level differential

private embeddings. Thus, by applying dpUGC on the captions of

MS-COCO dataset and the extracted texts of EDU-MM, we learn

the differential private embeddings (dp-embeddings) for label rep-

resentation of each dataset accordingly.

Let us denote the label set C = {l1, l2, . . . , lC }, which each label

li might consist of multiple words {w1,w2, . . . ,wk }. The represen-

tation of li is inferred as the mean vector of these word embedding

vectors. Obviously, vecli is also differential private due to any oper-

ation on the output of differentially private vectors (i.e., word-level

vectors), its output is also differentially private [6].

Character-level dp-embeddings: As mentioned above that

the out-of-vocabulary (OOV) issue is a common problem. In the

case of EDU-MM dataset, it is simply because of the extracted text

corpus is small and in multiple languages, hence, there is no repre-

sentation for certain words in label names can be found after the

training using dpUGC. Therefore, we introduce a character-level dp-

embeddings to address the issue. Based on word-level embeddings,
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Algorithm 1 Laplace Mechanism [8] for generating a differentially private

adjacency matrix.

Require: Adjacency matrix A ∈ RC×C , noise-level ϵ .
Ensure: return a differentially private adjacency matrix Adp
1: function DP_ADJACENCY_MATRIX(A, ϵ)
2: Initialize a zero matrix Adp ∈ R

C×C

3: ∆ = GS(A) ▷ Calculate the global sensitivity
4: for all i ← 0, . . . ,C do

5: for all j ← 0, . . . ,C do

6: ỹi ∼ Lap(∆ϵ ) ▷ Get the noise based on the ϵ and sensitivity from the

Laplace distribution

7: yi = A(i, j)
8: yi ← yi + ỹi ▷ Add the noise to the weight.

9: Adp (i, j) = yi
10: end for

11: end for

12: return Adp
13: end function

character-level embeddings can be easily calculated by averaging

all vectors where a character occurred. Afterwards, vectors of miss-

ing words in a certain labels are calculated based on character-level

dp-embeddings. Similarly to the word-level embedding, the averag-

ing vector based on character-level embeddings also preserves the

differentially private property.

Privacy preservation for graph construction

Most of data-driven methods try to learn as much information as

possible from the data, which is the main cause of privacy leakage.

Hence, we investigate into a different approach - i.e., leveraging

global information to guide the optimisation process. The adjacency

matrix in ML.GCN [4]’s variants is basically a graph to model the

correlation between labels in the task. However, it might reveal

sensitive information from the training data in case of unique links.

Therefore, we propose Algorithm 1 to mask sensitive links in the

adjacency matrix by injecting Laplace noise. Its effectiveness is

further proofed in our experiments.

4 EXPERIMENTS

This section describes our experimental procedure, including im-

plementation details and benchmarking metrics. A large number of

experiments are investigated and we report the relevant empirical

results on two datasets: MS-COCO (public) and EDU-MM (private).

4.1 Experiment Settings

The multi-label property has been seen in many publicly available

datasets such as Microsoft COCO [21] or Fashion550K [14]. In this

study, we seek to provide a fair comparison to the current state-of-

the-art (e.g., ML.GCN [4]); thus, MS-COCO and EDU-MM datasets

are selected for evaluation. asdfasdf

• MS-COCO dataset has been recognised as an important bench-

mark datasets with multiple features such as object segmentation,

recognition in context, and captions. It consists of 82,783 training,

40,504 validation, and 40,775 test images. We tested on two ver-

sions of COCO dataset: (1) regular one without anonymization (i.e.,

MS-COCO) and (2) PP-MS-COCO- an anonymized version of the

Figure 4: Examples of anonymised images, where faces and

license plates were blurred in PP-MS-COCO.

MS-COCO dataset, in which images having faces and license plates

of vehicles are blurred using detection algorithms.

• EDU-MM dataset: the education dataset from an education

partner consists of 130,362 images in 23 different categories of

document types. The used documents came from applications sub-

mitted by students applying for postgraduate programmes in an EU

country. It contains a great variety of documents, ranging from ID

documents to academic merits, curriculum vitae (CV), professional

certification, and proof of proficiency in languages. The proof of

proficiency in languages is often in the form of proofs of passing

language tests, such as the International English Language Testing

System (IELTS). The documents are protected under the General

Data Protection Regulation (GDPR) and cannot be made public or

shared. Therefore, all experiments were performed within the origi-

nated infrastructure of the education partner. We split the EDU-MM

dataset into subsets of 20% for testing and 80% for training (using

stratified selection on labels [25]). In numbers, it has 104,290 images

for training, 26,072 images for testing.

Preprocessing

Table 1: Data statistics of PP-MS-COCO created from MS-

COCO by removing sensitive visual contents (e.g., faces).

Dataset Set #images Anonymised Ratio

PP-MS-COCO Training 82,783 52,043 (62.9%)

PP-MS-COCO Validation 40,504 25,299 (62.5%)

• MS-COCO: Removing sensitive visual features from images:

face and id numbers (e.g., id on passport or plate number of vehicles)

via pre-trained models provided by [34].

• EDU-MM dataset: In order to retrieve text features from doc-

uments, the Optical character Recognition (OCR) program called

Tesseract [31] is used together with some preprocessing of the im-

age, such as thresholding to reduce noise. These extracted texts are

then being used to train a differentially private embedding.

Pre-trained embeddings for label representation

There is a number of pre-trained embeddings which were trained

on public corpus such as Wikipedia or Common Crawl (common-

crawl.org). These text corpuses capture the semantic meaning of the
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global knowledge. Here we investigated into four different models

including (1) GloVe, (2) Bert, (3) Char2Vec, and (4) dpUGC.

• GloVe [27] stands for “Global Vectors”, it captures both global

statistics and local statistics of a corpus, in order to learn word

vectors. GloVe has been used in ML.GCN [4], therefore, we also use

it to extract label embeddings for our proposed model.

• Char2Vec [17] is a neural language model, which relies only

on character-level inputs. It employs a convolutional neural net-

work (CNN) [19] and a highway network over characters. Then the

output is given to a long short-term memory (LSTM) [13] recurrent

neural network language model (RNN-LM). After training on a

large text corpus, it has the ability to deal with the texts containing

abbreviations, slang, words with unusual symbols and the like. In

this work, the Char2Vec model was trained on English Wikipedia

corpus with embedding dimension of 300.

• dpUGC [36] is a differentially private word embedding (dp-

embedding) used for learning word representation of sensitive

datasets such as medical records, or in this case are recognised

texts from document images (e.g., education records, passport) of

student applications.

• BERT [7] makes use of Transformer, an attention mechanism

that learns contextual relations between words (or sub-words) in a

text. The Transformer encoder reads the entire sequence of words

simultaneously, therefore, it allows the model to learn the context

of a word based on all of its surroundings. Here we use BERT_Base

pre-trained model. To get the label embeddings, for a given label,

we average all vectors of its subwords from the last layer provided

by Akbik et al. [2]. Regarding Bert-Finetune, we reload the pre-

trained weights of Bert-Base, and add a softmax layer for the text

classification task on 80 categories of the COCO dataset. Then

we run the finetune for 4 epochs to have a fine-tuned language

model (i.e., Bert-Ftune) specifically for the MS-COCO dataset. It

is noted that we only use captions in the training data of the MS-

COCO dataset for this fine-tuning process. Our tendency in this

work is to avoid the use of data-driven information, which is Bert-

Finetune model in this case. Therefore, Bert-Ftune is only used

as a comparison to see the differences in the signals of multiple

adjacency matrices based on different language models.

Implementation

Our proposed SGTN framework is developed using PyTorch (ver-

sion 1.3.1). We employ a ResNeXt-50 backbone [12] for visual fea-

ture extraction with a semi-weakly supervised pre-trainedmodel on

ImageNet [44]. The concentration of visual presentations amounts

to a tensor F of 2048 features.

For data augmentation, we adopt the same approach from Chen

et al. [4] and Wang et al. [40] as follows. Firstly, all input images

are resized to 512 × 512 and randomly cropped regions of 448 ×

448 with random horizontal flips. SGD optimiser is used with the

momentum of 0.9. Weight decay is 10
−4
. The learning rate is 0.03

for all datasets. For all experiments, we only run 80 epochs in total

without fine tuning learning rate. The experiments were run on an

Nvidia Titan RTX 24GB and Tesla V100 32GB for MS-COCO and

EDU-MM datasets, respectively. It is noted that, the experimental

results can also be reproduced on less memory GPUs. The two

given GPUs were used because of their availability, not because of

their high memory capacity. In fact, our proposed model has less

trainable parameters in comparison to ML.GCN [4].

Evaluation metrics: this paper employs the mean average pre-

cision (mAP), average per-class precision (CP), recall (CR), per-class

F1 (CF1), average overall precision (OP), overall recall (OR), and the

overall F1 (OF1) for benchmarking with the most recent state-of-

the-art models [4, 40].

5 RESULTS AND DISCUSSIONS

This section presents our comparisons with the existing state-of-

the-arts on MS-COCO to show the effectiveness of the proposed

approach for the multi-label classification task. We then present

the performance that the proposed model was applied to solve the

given issue of the education partner in an anonymous European
country (i.e., EDU-MM dataset).

Classification performance

We tested our approach with several settings as shown in Table 4.

Our Graph Transformer and Convolutional Networks work as de-

sired to produce significant results on the MS-COCO dataset. In the

original datasets, the tendency of using global knowledge has supe-

rior impact compared to the utilisation of local correlations. The

noisy-induced graph transformation has shown some advantages

over other models. Most importantly, our differential privacy graph

construction (based on dpUGC) has achieved significant results in

comparison to other settings.

In details, our approach outperformed the state-of-the-art tech-

niques of multi-label image classification. Table 2 demonstrates the

significant improvements of 9.3% and 4.2% compared to the baseline

and ML.GCN respectively.

Comparison of ML.GCN and SGTN on PP-MS-COCO. In

Table 2, it is obvious that the precision has been improved while the

recall has been decreased due to the lack of local knowledge; It hints

that by removing sensitive visual information from the data, the

model was forced to learn other information (e.g., size and shape

of objects, instead of detailed but sensitive features). However, due

to the lacks of sensitive but unique features (e.g., license plates), it

has lower recall.

Performance in comparison on both PP-MS-COCO and

MS-COCO datasets. For privacy-preserving, we propose the use

of global knowledge; therefore, it is a clear trend that the recall has

been much improved while the precision has been decreased due

to the lack of local knowledge. In numbers, it is actually in reverse:

precision gets higher and recall gets lower, see Table 2. This obser-

vation supports our novel idea to reduce uncommon inter-object

links, which would potentially lead to privacy breach.

Performance on EDU-MM dataset. For automated document

classification, we applied our model on EDU-MM. In both original

and anonymised datasets, we observe the adequate improvements

compared to ML-GCN. It is important to note that our model is

lighter and does not use the data-driven local correlations. The

private information in our graph convolutional networks, therefore,

is preserved with multiple privacy preservation mechanisms.

Privacy preservation

Taking privacy preservation strategies under consideration, we

reveal the following findings with qualitative analysis.

Poster Session H1: Deep Learning for Multimedia  MM '20, October 12–16, 2020, Seattle, WA, USA

2304



Table 2: Performance comparisons on MS-COCO. SGTN out-

performs baselines with large margins. PP denotes the use

of anonymised MS-COCO dataset.

Method mAP CP CR CF1 OP OR OF1

CNN-RNN [38] 61.2 - - - - - -

SRN [49] 77.1 81.6 65.4 71.2 82.7 69.9 75.8

Baseline(ResNet101) [12] 77.3 80.2 66.7 72.8 83.9 70.8 76.8

Multi-Evidence [11] – 80.4 70.2 74.9 85.2 72.5 78.4

ML-GCN [4] 82.4 84.4 71.4 77.4 85.8 74.5 79.8

SGTN 86.6 77.2 82.2 79.6 76.0 82.6 77.2

ML-GCN [4] (PP) 80.3 84.6 68.1 75.5 85.2 72.4 78.3

SGTN (PP) 85.6 85.3 75.3 79.9 85.3 78.7 81.8

Table 3: Performance comparisons on EDU-MM. PP denotes

the use of anonymised version of EDU-MMdataset, inwhich

faces, ID numbers were censored to protect user privacy.

Method mAP CP CR CF1 OP OR OF1

ML-GCN [4] 66.06 73.91 58.32 65.19 78.03 65.33 71.12

SGTN 66.70 73.89 61.59 67.18 74.07 70.63 72.31

ML-GCN [4] (PP) 66.52 74.51 57.08 64.64 80.25 64.72 71.65

SGTN (PP) 66.60 67.55 61.86 64.58 74.54 68.51 71.40

Here global knowledge is considered as public knowledge which

does not contain personal information, since the models (Glove,

Bert, C2V) were trained on, e.g., Wikidata [35] or Common Crawl

[5]. In Table 4, experiment#2 clearly shows that using the global

knowledge, SGTN can achieve better performance than ML.GCN

(as shown in Table 2) in terms of mAP scores from 4.14% to 5.19%

for MS-COCO and PP-MS-COCO respectively.

Given the fact that, one only takes the use of a privacy-guaranteed

information when it can help the task achieve better performance.

Otherwise, one might decide to not use the information at all. In Ta-

ble 4, experiment#4 actually shows that, the performance of SGTN

is the highest among different settings on both MS-COCO and PP-

MS-COCO datasets. The experiment shows that the use of local

knowledge with privacy guarantee is a good strategy for incorpo-

rating sensitive information to boost the performance. Because in

many downstream tasks, global knowledge from public corpora

might not always exist (e.g., medical data of patients).

Performance between privacy guaranteed adjacency ma-

trix (dpUGC-based) versus noisy adjacency matrix. Table 4

shows the comparison results between experiment#3 and experi-

ment#4. With privacy guarantee at the level of (ϵ = 0.125,δ = 0.81)-

dp, SGTN has the best performance in comparison to others, includ-

ing the noisy setting in experiment#3. However, the noisy setting

has its own benefit in the case of private text corpus does not ex-

ist. Then Algorithm 1 can be applied to protect privacy for the

adjacency matrix, while maintaining a good performance.

Investigation to different adjacency matrices

SGTN enables global knowledge being the guidance for performing

the downstream task via graph transformer. Therefore, we inves-

tigate into the adjacency matrices to see the similarity of signals

between adjacency matrices created using different language mod-

els. Figure 5 shows the heatmap of 5 different adjacency matrices.

(a) Glove_Adj_Matrix (b) Bert_Adj_Matrix (d) C2V_Adj_Matrix(c) Bert_Ftune_Adj_Matrix (e) dpUGC_Adj_Matrix

Figure 5: Heatmap of adjacency matrices for MS-COCO

based on different pre-trained embeddings. Bert_Ftune is

a fine-tuned variant of the pre-trained Bert model on the

text classification task with MS-COCO image captions. The

Bert_Ftune-based adjacency matrix is included as a refer-

ence only, and not used for the learning process of SGTN

due to the use of local information of the task.

The Bert_Ftune_Adj_Matrix is used as a representative standard

for using local knowledge from the training data. Here we have

some interesting findings by observing the signals:

• Given the fact that different pre-trained word embeddings

were trained on different public corpus, the according adjacency

matrices between them are significantly different. By introduc-

ing the graph transformer and the graph convolutional network

in SGTN, we can incorporate these signals to guide the learning

process of the task.

• The adjacency matrices (a), (c), and (d) of GloVe, Bert_Ftune,

and C2V possess similar signals. Here the global knowledge pre-

served in the adjacencymatrices fromBert and C2V is in fact, similar

to the local knowledge, i.e., the adjacency matric from Bert_Ftune.

• The pre-trained embedding of dpUGC preserves good trade-

off signals from the training data while guaranteeing data privacy

at (ϵ = 0.125,δ = 0.81)-dp. In fact, using dpUGC helps boost the

performance of the task ranked highest among all settings.

Performance analysis

Figure 6 shows the results in comparison of our proposed approach to

ML.GCN on MS-COCO and PP-MS-COCO. It presents the effectiveness

of SGTN in terms of leveraging global knowledge to classify anonymised

images. We have the following insights.

(1) The improvement of SGTN in comparison to ML.GCN is more sig-

nificant on MS-COCO than that of PP-MS-COCO. Especially, on the PP-

MS-COCO, the degradation is higher. It suggests that when the sensitive

visual features were censored, it affects the precision of the model. However,

in general, overall performance of SGTN is higher thanks to the global

knowledge embedded in multiple adjacency matrices (empowered by label

embeddings).

(2) Regarding the top of degradation labels, SGTN can help to reduce

the sensitivity of labels that are highly related to sensitive visual features.

In fact, baseball glove is no-longer on the degradation list, chair also reduces
the rank from top-4 to top-9. For the case of donut, statistic of the dataset
reflects that donut has a strong correlation with person. When the sensitive

visual features got censored (i.e., faces), it reduces the accuracy on the label

person and its related labels, which include donut and most of the labels in

the degradation list.

The above insights clearly shows that, in general, SGTN gets better

performance. However, when sensitive features got censored, it affects the

performance of relevant labels (e.g., donut)
Last but not least, we explore the patterns of different models on the PP-

MS-COCO data to understand the correlation between the performance of
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Table 4: The performance comparison of SGTN on various label embeddings based on four different pre-trained models in-

cluding GloVe, Bert, C2V, dpUGC. Noisy denotes the adjacency matrix construction based on the proposed Algorithm 1.

Experiment#

Adjacency Matrices in A

mAP

Local Knowledge Global Knowledge

Frequency-based dpUGC-based Noisy Glove-based Bert-based C2V-based PP-MS-COCO MS-COCO

1 85.54 86.47

2 85.49 86.54

3 85.57 86.60

4 85.58 86.64

(a) ML-GCN vs SGTN on MS-COCO.

(b) ML-GCN vs SGTN on anonymised MS-COCO (PP-MS-COCO).

Figure 6: Per-class improvement or degradation of F1 be-

tween ML-GCN and SGTN on MS-COCO (a) and PP-MS-

COCO (b). The top-10 improved classes from our SGTN are

indicated as blue, and the top-10 degraded classes as orange.

ML.GCN versus SGTN according to the amount of sensitive visual features.

Figure 7 visualises the differences in performance of ML.GCN and SGTN

in corresponding to the amount of sensitive visual features being censored

in PP-MS-COCO dataset. The first 10 labels have the highest number of

censored objects, and the last 10 labels have the least number of censored

objects in percentage (%). In general, for the both cases, the improvement

of SGTN outweighs the degradation of some labels, thereby leading to

state-of-the-art performance.

6 CONCLUSION

This paper presents SGTN, a privacy preserving multi-label classification

model for visual tagging task by applying the techniques of graph trans-

former and convolutional neural network. SGTN is designed to incorporate
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Figure 7: Per-class comparison of F1 between ML-GCN and

SGTN on PP-MS-COCO. For visibility, only the top-10 of the

most (and the least) sensitive visual labels are shown.

privacy-conscious knowledge to perform the downstream tasks with high

performance, and meanwhile prevent privacy breach by avoiding using the

sensitive knowledge from the data of the task itself.

SGTN showcases a new approach in dealing with several datasets. It

effectively performs better on both censored multimedia data (MS-COCO

and EDU-MM) by leveraging global knowledge into the learning process.

Moreover, the proposed algorithm for constructing the dp-adjacency matrix

is very efficient, which can guide the model to avoid using private rela-

tionships between labels in the downstream data. In the case that global

knowledge is not available for specific reason such as the case of EDU-MM

dataset, the dpUGC based graph construction is an advantage in helping the

task to boost the performance. We conducted extensive experimental studies

on a benchmark dataset (i.e., MS-COCO) and a real education dataset. The re-

sults show our proposed SGTN outperforms the state-of-the-art approaches

with various settings.

By introducing SGTN we enable a new way of applying visual tagging

tasks in multimedia data. For instance, it can be used for processing audio

tagging tasks with the use of spectrogram images and the transcript of

speech content. Especially, for the case of sensitive data such as medical

records and medical imaging tasks, SGTN can be applied without the need

to modify its architecture.
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