
A Low-Cost Implementation of Advance Encryption Standard
Tien-Luan Vu, Van-Quy Quach, Duy-Hieu Bui, Xuan-Tu Tran

SIS Laboratory, VNU University of Engineering and Technoglogy, 144 Xuan Thuy, Hanoi, Vietnam

E-mail: {luanvt 56, quyqv 56, hieubd, tutx}@vnu.edu.vn

Abstract The fast development of the Internet raises the concerns about the secure of the sensitive information such as pass-

words, bank accounts, personal information... Advanced Encryption Standard (AES) is currently considered as best symmetric-

key block cipher which can be used to protect these data. AES has been proved to takes years to break. However, AES im-

plementations in software require more computations and time to encrypt and decrypt the data. To improve the throughput and

reduce the power consumption of the AES crypto system, in this work, we proposed a combined and low-cost AES encryption

and decryption hardware architecture supporting all key-lengths as specified in the AES Standard [6]. The design was modeled

in VHDL and successfully synthesized using Xilinx Virtex 5 FPGA Chip 5VSX50TF with maximum frequency of 92MHz and

the maximum throughput of 300Mbps.

Keywords AES, DES, FPGA

1. Introduction

Since the early days of communication, humans had been inter-

ested in how to secure information among parties especially in the

field of military. This leads to the advent of many security meth-

ods and the most popular way is encrypt the messages with a secret

key. Only the parties having the correct key can access the mes-

sage. There are many cryptography systems based on this model,

for example, substitution cipher, transposition cipher, Caesar crypto

system and Affine crypto system... However, with the fast develop-

ment of the computer systems, these weak cryptography systems

are easily broken.

Nowadays, with the popularity of the shared network and the

Internet, the confidentiality of the information is even more impor-

tant. The sensitive data such as passwords, bank accounts, bank

transaction, personal information, confidential documents... should

not be exposed to untrusted parties. That’s why in 2001, AES was

standardized by US National Institute of Standard and Technology

(NIST) and then included in ISO/IEC 18033-3 to replace the DES

crypto system with the more secure algorithms and to utilize the

feature of modern processors. AES has the block-size of 128-bits

(doubled the block size of DES) and it supports the key length of

128-bits, 192-bits, and 256-bits. AES is now used in a wide variety

of applications including HTTPS protocol, disk encryption, smart-

card and so on. With the correct usage, AES has been proven to be

secure for a wide range of applications. However, because of its big

block size and its long key length, AES implementations in software

are insufficient and lead to the reduction in the system throughput

especially in the embedded environment. This also increases the

power consumptions of the system.

In this work, we proposed a combined and low-cost AES encryp-

tion and decryption architecture which supports all the modes spec-

ified in the AES standard. In this architecture, the encryption and

decryption procedures are integrated into one single module. The

proposed architecture is modeled in VHDL and it is successfully

synthesized into hardware using Xilinx ISE 14.7 and the Xilinx

FPGA chip XC5VSX50T with the maximum operating frequency

of 92MHz and the maximum throughput of 300Mbps.

2. Introduction to AES

2.1. Block Cipher
Block cipher is a symmetric key cipher operating on a fixed-

length group of bits, so called blocks. The modern design of the

block cipher is based on the concept of the iterated product cipher

which carries out encryption in multiple rounds, each of which uses

a different sub-key derived from the original key. Block cipher

has outstanding advantages such as simplicity, high speed and ef-

ficiency. In addition, in block cipher, the transmission in one cipher

text block have no effect on other blocks. For these reason, block

cipher is widely used in application sensitive with delay and mobile



application.

Nowadays, there are a number of block ciphers which were de-

veloped and applied in many different fields, for examples, Lu-

cifer (1969), DES (1977), Madryga (1984), NewDES (1985), AES

(2001)... In most of them, the round transformation uses the Feis-

tel network, therefore, typical part of the bits of the immediate state

are simply transposed (unchanged to another position). However, in

AES algorithm, substituted-permuted network is used, so every bit

of the state is treated in the similar way and they are permuted and

substituted together. Hence, the non-linearity and diffusion of AES

is increased. In addition, the large key-length with a large number

of the round functions also improves the safety of this algorithm.

2.2. AES algorithm

2.2.1. The overall structure of AES

AES is a symmetric block cipher which has the block size of 128

bits. It supports three key lengths of 128, 192, and 256 bits and

contains respectively 10, 12, and 14 rounds for each type of the key

lengths.

Figure 1: The AES algorithm.

As shown in Figure 1, the AES algorithm is described in both

the encryption and decryption procedures. Each of the encryption

or decryption procedures consists of Nr rounds depending on the

key length. A typical round function processes the state matrix in

four main transformations: SubBytes, ShiftRows, MixColumns and

AddRoundKey (in the encryption) or InvSubBytes, InvShiftRows, In-

vMixColumns and AddRoundKey (in the decryption). At the start

of the algorithm, the plain text or the cipher text and the cipher

key are XORed together by executing the AddRoundKey transfor-

mation. In addition, the last round of the algorithm does not contain

MixColumns or InvMixColumns as the typical rounds. KeyExpan-

sion recieves cipher key, then expands throughout the Nr rounds in

the algorithm. The decryption procedure is executed in the reversed

order in comparison with the encryption procedure. The details of

these transformations are explained in the following sub-sections.

2.2.2. Round Function

SubBytes and InvSubBytes

Each byte in the state matrix is replaced with its corresponding

byte value in a look-up table called S-box or Inverse S-box de-

scribed in the AES Standard [6]. The S-box (or the Inverse S-box)

values for each byte is obtained by determining the multiplicative

inverse over GF(28) followed by an affine transformation.

ShiftRows and InvShiftRows

The bytes in each row of the state matrix are cyclically shifted

by a certain offset. Row n is cyclically shifted by n− 1 bytes. The

first row is left unchanged. Each row is shifted to the left in the

encryption or to the right in the decryption.

MixColumn and InvMixColumn

In this transformation, each 4-byte column of the state matrix is

considered as a four-term polynomial over GF(28) and multiplied

modulo x4 + 1 with a fix polynomial c(x) or d(x) in the encryption

or the decryption respectively. Note that c(x) and d(x) are multi-

plicative inverse.

AddRoundKey

Each byte in the state matrix is added to the corresponding byte

of the Round Key in GF (28). The Round Key is the processed key

matrix corresponding to the current round.

2.2.3. Key Expansion

The implementation of the Key expansion procedure is illustrated

in Algorithm 1. The Subword function is similar to SubByte func-

tion. The Rotword function performs a cyclic permutation to the

left. Rcon is the round constants defined in the AES Standard [6].

The first Nk words of the expanded key are filled with the Cipher

Key. After that, each word w[i] is equal to the XOR of the pre-

vious word w[i-Nk] and the word of Nk position earlier, w[i-Nk].

If the expanded sub-keys are in position that is multiple of Nk, a

transformation is applied to w[i-1] followed by an XOR with an

Rcon[i] (the round constant, which are defined in the AES Standard



Algorithm 1: Pseudo code for Key Expansion

begin

word temp

i = 0

while (i < Nk) do
w[i] = word(key[4*i], key[4*i+1], key[4*i+2],

key[4*i+3])

i = i + 1

i = Nk

while (i < Nb*(Nr+1) do

temp = w[i-1]

if (i mod Nk = 0) then

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

else if (Nk > 6 and i mod Nk = 4) then

temp = Subword(temp)

else

temp = temp

w[i] = w[i-Nk] xor temp

i = i + 1

[6]). This transformation consists of a cyclic shift of the bytes (Rot-

word), follow by a substitution of all four bytes (Subword). Other-

wise, Subword is applied to w[i-1].

3. Related works

Because of the secure properties, AES has gained a great deal

of attention with many researcher to implement it securely. Nowa-

days, there are two main trends to implement the AES standard in

hardware which is the high performance applications and the low

cost design.

The high performance applications focus on maximizing the

speed of the overall system which can be achieved at the cost of the

hardware resources. Following this trend, in [5], Trang et al used

the lookup tables to implement the S-Box function with 128-bit data

path. This architecture obtains a very high speed (1188Mbps) with

very low latency (13-clock cycle for encryption and 25 clock cycle

for decryption). In addition, Wang and his colleagues in [7] pro-

pose a multi-core AES architecture which can achieves an through-

put of 1830 Mbps with 3-AES cores. It supports the original AES

algorithm and also provides flexibility to configure the parameters

of each of the four transformations defined in the AES algorithm.

However, this architecture has a large occupied area (27561 slices).

Hernandez in [4] uses a true bit-serial approach, incorporate most

of the AES algorithm complexity in a controller, components are

reused. Therefore, this design can obtain a small area and a through-

put of more than 7Gbps.

The low cost design aims at minimizing the usage of hardware

resources at the cost of execution speeds. The low cost designs are

useful in small devices such as mobile phones, smart card etc. Some

typical works in this trend are the work in [2] by Chodowiec et al

and the work in [1] by Adib et al. The design in [1] uses Dual-

Port RAMs to storing all the results of the fix operations and Digital

Clock Manager to optimize the execution time. In addition, this

works uses 32-bit words that helps to decrease the memory cost and

the area of this design. This architecture only consumes 326 slices

plus 3 Block Random Access memories. However, its throughput

is only 270Mbps. In [2], Chodowiec et al use new way to im-

plement MixColumns and InvMixColumns transformations using

shared logic resource to decrease the cost of memory usage. In

addition choosing 32-bit data path to perform AES algorihm also

optimize the area of the system. By following this methods. this

work only uses small resources of 222 Slices and 3 Block RAMs,

but it can encrypt and decrypt data of 160Mbps which satifisfies the

needs of most embedded application.

In this paper, we decided to design a low cost application with all

cases of the key length specified in the AES standard. Our design

uses 32-bit input, and RAMs in SubByte and InvSubByte transfor-

mation. The proposed architecture will be presented in the next

section.

4. Proposed Architecture

In this work, we propose an combined AES architecture which

can do both encryption and decryption with all key lengths spec-

ified in the AES Standard. Our proposed architecture uses 32-bit

data path and the iterative loop method to save the hardware re-

sources. There are three main components in our architecture: the

state transformation module, key expansion module and the control

module. The proposed architecture are described in Figure 2.

The inputs to the system are the plain text for the encryption or

the ciphered text for the decryption (input), the secrete key (key in),

the key mode (which indicates the different length of the encryption

key key mode), the operating mode (enc/dec) and the enable signal

(enable). The output is the encrypted messages (in the encryption

mode) or the plain text (in the decryption mode). The inputs and the

secrete key are further divided into 32-bit blocks. The system will



Figure 2: Our proposed architecture.

process each 32-bit block at a time. Based on the operating modes

and the key length, the control module will create the correct oper-

ation for the state transformation and the key expansion modules.

The secrete key is expanded on the fly in the encryption mode, but

in decryption mode, expanded keys are stored in a RAM before be

sent to the round functions. Along with the expanded key, the input

will be encrypted/decrypted using the round function.

4.1. Round Function implementation

The round function is implemented such that it can be used for

both encryption mode and decryption mode. Because of that, each

pair of the forward and inverse transformations is implemented in

the same stage of the state functions. In the encryption mode,

ShiftRows, SubBytes, MixColumns are executed respectively. Oth-

erwise, the data is brought through InvShifRows, InvSubBytes, and

InvMixColumns to get the plain text. The detailed data flow of the

round function is described in Figure 3.

Figure 3: The Round Functions Architecture.

In the encryption mode, comparing with the standard algorithm,

ShiftRows and SubByte are reordered. This modification does not

affect the correctness of the algorithm because both ShiftRows and

SubBytes operate on single byte. The details of each state round

function will be shown as follows.

ShiftRows and InvShiftRows implementation

In the standard alogrithm, ShiftRows and InvShiftRows require

128-bit state for transformations, but our data path is only 32-bit,

therefore, the storage for 128-bit intermediate processing is needed.

To implement the ShiftRows and the InvShiftRows, we use two 16×

8 RAMs. The state information of the AES algorithm will be stored

in these two RAMs. The ShiftRows and InvShiftRows are done by

reading the first RAM by the diagonal and writing to the second

RAM by column. After each round of transformations, the data

will be read from the previously written RAM in the previous round

and the new transformed data are written to the RAM which has just

been read from.

SubBytes and InvSubBytes implementation

SubBytes and InvSubBytes transformations typically substitute a

single byte by applying a multiplicative inverse and affine transfor-

mation in GF(28). In this design, four 512 × 8 ROMs are used to

implement both SubBytes and InvSubBytes transformations. Each

ROM stores a pre-compute substitution value of the 8-bit data in

both SubBytes and InvSubBytes transformations. This takes advan-

tages over the on-fly calculation technique to decrease the latency

and the complexity of the design. Because there are four bytes are

substituted at a time, our architecture needs 4 ROMs for this stage.

MixColumns ann InvMixColumns implementation

In these transformations, the state’s column represented in the

form of four-term polynomial will be multiplied with the polyno-

mial c(x) or the polynomial d(x). These polynomials are predefined

in the AES Standard: the polynomial c(x) for MixColumns and the

polynomial d(x) for InvMixColumns. Both of the polynomial c(x)

and the polynomial d(x) are multiplicative inverse. The equations

of c(x) and d(x) are described in Equation 1 and Equation 2. All

the coefficients are in the hex format in the Galois Field GF (28).

c(x) = {03}x3 + {01}x2 + {01}x+ {02} (1)

d(x) = {0b}x3 + {0d}x2 + {09}x+ {0e} (2)

The implementation of MixColumns is fairly simple because all co-

efficients of the polynomial c(x) are small. In contrast, the InvMix-

Columns implementation is far more complex because d(x)’s coef-

ficients are much larger than c(x)’s coefficients. Chodowiec et al. in



[2] proposed a method to utilize the resource sharing technique for

these functions. It derives as follow:

c(x)⊗ d(x) = {01} (3)

Multiplying both side of above equation with d(x), obtain:

c(x)⊗ d2(x) = d(x) (4)

where

d2(x) = {04}x2 + {05} (5)

Figure 4: Sharing logic in MixColmns and InvMixColumns.

Two coefficients of the polynomial d2(x) is much smaller than

the coefficients of the polynomial d(x). In addition, two other coef-

ficients are equal to zero. Figure 4 shows the implementation of the

MixColmns and the InvMixColumns in our design.

4.2. Key Expansion
Our design supports all three key lengths in both the encryption

mode and the decryption mode. Thus the key expansion imple-

mentation needs to flexibly adapt to these features. The expanded

key values are computed by combining both the on-the-fly and pre-

computed methods. In encryption mode, the on-the-fly computation

of the round key paralleling with state transformation is efficient be-

cause it takes the advantage of changing key fast with low delays.

On the other hand, in the decryption mode, round keys are applied

for state transformation in reverse order, from the final expanded

key value to the first original value. Therefore, in the decryption

mode, the pre-computed round keys are used.

Figure 5: The Key Expansion Block.

The structure of the Key Expansion module is shown in Figure

5. This consists RotWord and SubWord implementations. RotWord

is simply a circular right shift operation. SubWord is similar to

the SubBytes transformation so four additional S-box ROMs are re-

quired. Additionally, a shift register of length 7 is used to store 3, 5

or 7 previous words depending on the key length. These words are

used to compute the next round key as specified in the AES Stan-

dard. In the worst case of the decryption mode, we will need to store

the 256-bit key and fourteen 128-bit expanded key of it. This leads

to the need of 64 32-bit words to store the expanded key and the

original key. The key words are sent directly to the state transfor-

mation module in encryption mode, while, in the decryption mode,

the key words are pre-computed and stored in a 64×32 RAM before

it is used by the state transformation module.

5. Implementation results

Table 1: Utilization result

Logic utilization Used Available Utilization(%)

Number of occupied slices 1134 8160 13

Number of slice registers 2544 32640 7

Number of LUTs 3820 32640 11

The proposed architecture is modeled in VHDL, simulated using

ModelSim, and synthesized by Xilinx ISE 14.7. The implementa-

tion results are presented in Table 1. Our architecture occupies 13%

(1134 slices) of the resources of the FPGA chip XC5VSX50T with

about 2607 slice registers and about 3820 LUTs. The maximum op-

erating of the design is about 92MHz and its maximum throughput

is nearly 300Mbps.

Table 2 shows the comparison of our architecture with the works

in [1], [2] and [7]. It is clear that our implementation is not the best

one in term of the hardware cost when compared with the works

in [1] and [2]. However, these two designs partly support the AES

Standard. Our implementation have the highest operating frequency

among four works. The maximum throughput of our work is ap-

proximately 300Mbps which is much higher than the works in [1]

and [2], however, it is much smaller than the one in [7] which is a

multi-core architecture. Our implementation takes the least number

of cycles to complete the encryption among these works.

6. Conclusion
The Advanced Encryption Standard (AES), from its announce-

ment in 2001, has become the de-facto data encryption standard.

It is used in a wide variety of applications including security for

communication, disk encryption, files and data encryption and so



Table 2: Implementation result

Design [1] [2] [7] Our

Device
XC3S XC2S XC2V XC5V

500E 3000 6000 XS50T

Mode Enc Enc/Dec Enc/Dec Enc/Dec

Keylength
128 128 128/192/ 128/192/

256 256

Slices
326 + 222 + 27561 1134

3 BRAM 3 BRAM

Frequency

(Mhz)

60 49.75 92

Cycles 80 40 41/45/49 40/44/48

Througput

(Mbps)

270 166 1830 300

Efficiency

(Mbps/Slice)

0.828 0.747 0.06 0.265

on. In this work, we have designed a low-cost AES encryption and

decryption architecture. This design supports both encryption and

decryption in a single data path with all key lengths specified in the

AES standard. It uses a 32-bit data path, reordered processing in

the round function and the share resources and some on-fly calcu-

lations to minimize the hardware cost and increase the execution

speed. Our design is modeled in VHDL, simulated and verified us-

ing ModelSim from Mentor Graphics, and then synthesized and im-

plemented using Xilinx ISE 14.7 on the FPGA chip XC5VSX50T.

The implementation results show that the proposed AES architec-

ture has a small area footprint of nearly 1134 slices and the max-

imum frequency of 92MHz. This leads to the maximum system

throughput of nearly 300Mbps. In the near future, we would like to

integrate our AES encryption and decryption modules into a com-

plete system-on-a-chip to fully evaluate the performance of the pro-

posed architecture.

References

[1] Samir El Adib and Naoufal Raissouni. Aes encryption algo-
rithm hardware implementation architecture: Resource and ex-
ecution time optimization. International Journal of Information
and Network Security (IJINS), 1(2):110–118, 2012.

[2] Pawe Chodowiec and Kris Gaj. Very compact fpga implemen-
tation of the aes algorithm. In ColinD. Walter, etinK. Ko, and
Christof Paar, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2003, volume 2779 of Lecture Notes in
Computer Science, pages 319–333. Springer Berlin Heidelberg,
2003.

[3] Chih-Peng Fan and Jun-Kui Hwang. Implementations of high
throughput sequential and fully pipelined aes processors on
fpga. In Intelligent Signal Processing and Communication Sys-
tems, 2007. ISPACS 2007. International Symposium on, pages
353–356, Nov 2007.

[4] Orlando J. Hernandez, Thomas Sodon, Michael Adel, and
Nathan Kupp. A Low Cost Advanced Encryption Standard
(AES) Co-processor Implementation. Journal of Computer Sci-
ence & Technology, pages 8–14, 2008.

[5] Trang Hoang and Van Loi Nguyen. An efficient fpga imple-
mentation of the advanced encryption standard algorithm. In
The 2012 IEEE International Conference on Computing and
Communication Technologies, Research, Innovation, and Vi-
sion for the Future (RIVF), pages 1–4, Feb 2012.

[6] National Institute of Standards and Technology. Ad-
vanced encryption standard. http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf,
2001.

[7] Mao-Yin Wang, Chih-Pin Su, Chia-Lung Horng, Cheng-Wen
Wu, and Chih-Tsun Huang. Single- and Multi-core Config-
urable AES Architectures for Flexible Security. IEEE Trans.
Very Large Scale Integr. Syst., 18(4):541–552, April 2010.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	Introduction
	Introduction to AES
	Block Cipher
	AES algorithm
	The overall structure of AES
	Round Function
	Key Expansion


	Related works
	Proposed Architecture
	Round Function implementation
	Key Expansion

	Implementation results
	Conclusion

