
978-1-6654-0435-8/21/$31.00 ©2021 IEEE

A Hypercuboid-Based Machine Learning Algorithm

for Malware Classification

Thi Thu Trang Nguyen
VNU University of Engineering and

Technology

Dai Tho Nguyen1
VNU University of Engineering and

Technology

1 Contact Author: nguyendaitho@vnu.edu.vn

Duy Loi Vu
VNU University of Engineering and

Technology

Abstract— Malware attacks have been among the most

serious threats to cyber security in the last decade. Anti-

malware software can help safeguard information systems and

minimize their exposure to the malware. Most of anti-malware

programs detect malware instances based on signature or

pattern matching. Data mining and machine learning

techniques can be used to automatically detect models and

patterns behind different types of malware variants. However,

traditional machine-based learning techniques such as SVM,

decision trees and naive Bayes seem to be only suitable for

detecting malicious code, not effective enough for complex

problems such as classification. In this article, we propose a new

prototype extraction method for non-traditional prototype-

based machine learning classification. The prototypes are

extracted using hypercuboids. Each hypercuboid covers all

training data points of a malware family. Then we choose the

data points nearest to the hyperplanes as the prototypes.

Malware samples will be classified based on the distances to the

prototypes. Experiments results show that our proposition leads

to F1 score of 96.5% for classification of known malware and

97.7% for classification of unknown malware, both better than

the original prototype-based classification method.

Keywords— Malware classification, machine learning, k-

nearest neighbors algorithms, prototype-based learning,

hypercuboids

I. INTRODUCTION

Malware, also known as malicious code, refers to a
program covertly inserted into a system with the intent of
compromising the security of the victim’s data, applications,
or operating systems. There are many types of malware such
as Trojan, worm, spyware, rootkit... Along with the rapid
development of the Internet, the number of malware is
increasing day by day. Although significant improvements
have been made in anti-malware solutions, more and more
sophisticated propagation technology and detection evasion
techniques have been used. Therefore, malware is still a
significant threat to computer systems. Detection and analysis
of the malware behaviors are critical to the minimization of
the consequential damages.

Malware analysis refers to the process of determining their
purposes, behaviors, payload methods, and propagation
mechanisms. The analysis is usually performed manually by
domain experts. Recently, the research community seeks to
automate parts of the process to aid the domain experts in their
work and reduce the time required. According to [1], an
automatic malware analysis aims to achieve one of the
following objectives: malware detection, similarity detection,
and category detection. Some examples of malware detection
include [2], [8], and [9]. Refer to [3], [5], and [10] for
examples of similarity analysis. Malware classification is
studied in [4], [6], [11], [14], and [16].

In this work, we focus on solving the malware
classification problem by using specifically widely known
supervised machine learning methods. According to [13],
there exist two distinguished approaches to supervised
learning: model-based learning and instance-based learning.
The model-based learning algorithms such as SVM (support
vector machine), Naive Bayes, and decision trees seek to
construct a model that generalizes the training data. If the
input data is too complex, it can become very difficult to find
an appropriate model for representing the data instances.
Meanwhile, the instance-based learning algorithms such as k-
NN (k Nearest Neighbors), radial basis function networks, and
kernel machines make the classification decisions by
comparing the new malware instances with the representative
instances extracted from the training dataset during the
training phase. Each representative instance, also called
prototypes, belongs to a malware family and is considered as
a representative of that family. Each malware family can have
more than one representative instance. As there can be more
flexibility in the selection of individual representative
instances compared to construction of a single model, we opt
for instance-based learning for malware classification.

In particular, our work is inspired by the instance-based
classification methods proposed in [4], [6], and [12]. The
method in [6] uses information about the n-grams of system
calls to embed the behaviors of malware samples into a vector
space called feature space. Each component of a feature vector
is a value 0 or 1 that denotes the presence or absence of the
respective system call n-gram. The proposed algorithm
includes a prototype extraction phase for finding the
prototypes representing the clusters/classes of malware
samples; a clustering phase that uses the prototypes to group
unknown samples into clusters; and a classification phase that
uses also the prototypes but this time to predict class labels for
known malicious codes, and detect novel malicious codes.
The method in [4], called Dendroid, classifies malware
instances by using text mining and information retrieval
techniques. Each malware family is represented by a family
feature vector, a concept similar to prototypes but while each
prototype must correspond to malware instance, it is not
necessarily so for the family feature vectors. After the family
feature vector extraction phase, a 1-NN (One Nearest
Neighbors) algorithm is used for classification. In [12] the
authors also construct family feature vectors for representing
malware families. Then, unknown malware are classified
based on the similarities with the family feature vectors.

In this paper, we propose a new prototype extraction
method for the above process. During the training phase, we
extract prototypes only from the labeled malware samples
instead of all the samples in the dataset. Then a hypercuboid
is constructed for each malware class, each hypercuboid
surrounds all the samples of a malware class. We choose the

data points on the hyperplanes as prototypes. We evaluate the
performances of our proposed method for classifying known
classes and rejecting unknown classes by using the F1-
measure metric computed from precision and recall. The
experimental results show F1-mesures of 96.5% for
classification of known malware and 97.7% for classification
of unknown malware, both better than Rieck et al.’s method.

II. PREVIOUS PROTOTYPE-BASED MALWARE CLASSIFICATION

METHODS

The work in [6] concerns open-world classification as the
proposed prototype-based method can detect and classify
instances of unknown malware classes. The compression of
each malware family into a small set of prototypes
representing the whole family allows to reduce the volume of
data to be processed and the classification time. Another
advantage is the possibility of incremental learning, where the
the sets of prototypes can be easily updated when new training
data is added, without the need for retraining from scratch.

The classification process goes through the following
steps:

• Running in sandbox

• Embedding of behaviour

• Prototype extraction

• Classification using prototypes

• Clustering using prototypes

During the first step, the malware sample to be classified
is run and monitored within a sandbox environment to collect
the generated sequence of system calls. At the next step, the
sequence of system calls is represented as a binary feature
vector of n-grams. Each component of the feature vector is a
value 0 or 1 that denotes the presence or absence of the
respective system call n-gram. Then, the feature vector is
normalized by dividing it by its Euclidean length to create a
vector of length 1. During the classification using prototypes
step, the current malware sample is classified based on the
geometric distances between of its feature vector and the
existing prototype vectors. The shortest Euclidean distance
from the unknown malware sample to an existing prototype is
computed. The sample is put into the corresponding malware
class if this distance is less than a predetermined threshold dr.
Otherwise, it serves as an input to the next prototype
extraction phase, the purpose of which is to find new
prototypes for representing the remaining malware classes.
The prototypes are extracted from the set of unclassified
malware samples using an algorithm adapted from the linear-
time algorithm proposed by Gonzalez in [15]. The first
prototype can be predefined or randomly chosen. All data
points near each prototype will be grouped together into a
cluster. "Near" here means the distances from those data
points to the given prototype must be smaller than a
predetermined threshold dp. Then, the farthest point from the
current prototypes is chosen as a new prototype. The
procedure is repeated until each data point belongs to a cluster.
Following the prototype extraction phase is the clustering
phase, during which the prototypes are regrouped together to
create large enough clusters. The idea behind the merge
procedure is that the smaller the distance between the two
prototypes is, the more likely they belong to the same family.
The extracted prototypes will be used for the classification of
the next malware sample.

In [4] Suarez-Tangil et al. propose a malware
classification method based on the so called family feature
vectors, using text mining and information retrieval
techniques for Android malware classification. The method
contains three phases:

• Modeling phase

• Classification phase

• Analysis phase

During the modeling phase, for each malware family, a
family feature vector is calculated from all its instances.
Consequently, each family has only one representative feature
vector. If there are for example 12 malware families, then 12
family feature vectors will be constructed and used. A family
feature vector can correspond to a virtual data point or a real
data point. They are used as references when classifying
malware samples. At the classification phase, each malware
sample is modeled as a feature vector, then it is assigned to a
certain family if its feature vector is the nearest to that family’s
representative feature vector. In the final analysis phase,
hierarchical clustering and linkage analysis techniques are
used to recognize the relationships between the different types
of malware instances. Dendroid method is not an open-world
classification as every input malware sample is sure to be
assigned to a known family, but the concept of representative
feature vectors is quite similar to prototypes.

In [12], Shrestha et al. also use prototypes to represent
malware families. Each family of malware is represented by
only one feature vector, just like Suarez-Tangil et al.’s
method. In order to build prototypes, all the files belonging to
a same malware family are merged to form a new one. The
authors compute the tf-idf value of each printable string in this
file. Then, they construct a prototype vector from the printable
strings and the corresponding tf-idf values for representing the
malware family. The procedure is repeated for each of the
malware families in the training dataset. The assignment of a
family label to a malware sample is made based on the
comparison results of the cosine similarities between its
feature vector and the prototype vectors. The malware sample
will get classified into the family that has the highest similarity
score with it.

Dendroid [2] and the method proposed by P. Shrestha et
al. [3] have quite different training methods compared to [6].
For each malware family, a single representative feature
vector is built only from the training data belonging to that
family instead of several instances being chosen from the
whole training dataset.

III. OUR HYPERCUBOID-BASED PROPOSITION FOR PROTOTYPE

EXTRACTION

We find that the previous prototype extraction methods
exhibit the following problems.

First, the prototypes in [6] are extracted from all malware
samples in the training dataset. That can lead to mistakes such
as grouping samples that are not in the same malware family
into the same cluster or choosing as the representative
prototype for a group a sample that is not in the same malware
family as the majority of samples in the group. The methods
in [4] and [12], which construct a prototype by using only the
samples in the same malware family can overcome this
problem of the first method. However, they only use one point

to represent a family, this might lead to loss of too much
information.

The second problem is that prototypes in the distance–
based prototype extraction method are selected purely based
on distances, without using any information on directions, this
might lead to directional bias in the multi-dimensional space.
In case a sample to be classified should belong to a certain
family, but in the direction to this sample there are not any
prototypes, the malware may be classified wrongly to another
family.

We propose a method for better representing the malware
families with a novel concept of prototypes constructed based
on hypercuboids. For each malware family, we build a
hypercuboid that surrounds all its data points. The faces of the
hypercuboid represent the directions in the feature vector
space. We choose as prototypes the closest points to the
hyperplanes of the hypercuboid. Using this technique we can
obtain prototypes in all directions, thus break the directional
bias that may occur with the previous prototype extraction
methods. Additionally, as the number of prototypes extracted
from a malware family somehow corresponds to its size and
variety in the feature vector space, we can expect to have
enough prototypes for representing it.

Figures 1, 2, and 3 illustrate the differences in prototype
extraction between our proposition and the previous methods.

Note:

Δ: class 1, O: class 2, ☐: class 3

Bold points are prototypes (or family feature points) in the
training data set

Fig. 1. Prototype extraction in [6]

Fig. 2. Extraction of family feature points/prototypes in [4] and [12]

Fig. 3. Our proposition for prototype extraction

Figure 1 illustrates the probable situations that the points
of class Δ are clustered in the same group as the prototype of
class O, and that the prototype of class Δ represents many
points of class O.

In Figure 2, each family feature point is aggregated from
all data points in the same family. A family feature point can
be a real data points or a virtual point that does not exist in the
corresponding family. All data points of a family are
represented by only one family feature point.

Figure 3 shows that all prototypes of the class ☐ are data
points of this class, and the same goes for classes O and Δ.
Although there is a point not belonging to any clusters, it
represents itself, instead of falsely representing other classes.
All points in each cluster are characterized by the prototypes
belonging to the cluster itself. Moreover, each family is
represented by many prototypes so we do not lose much
information.

a) Prototypes are biased in
direction

b) Our prototypes are not biased in
direction

Fig. 4. Comparison of our prototypes and the prototypes in [6]

Figure 4.a illustrates a directional bias in prototype
extraction. The sample data point to be classified (circle with
cross symbol) is located in the direction where there are no
prototypes, so it can be easily misclassified.

Figure 4.b illustrates the prototypes that are the closest to
the faces of a hypercuboid (for the two-dimensional space, the
hypercuboid is a rectangle). We can find prototypes in all
directions. For any malware family, there is always a
prototype near any sample data point belonging to it (circle
with cross symbol) in any direction.

The idea of our algorithm is as follows. For each family,
build a hypercuboid around all its data points. The
hypercuboid is constructed from two initial points, one with
the minimum coordinates in all dimensions and the other with

the maximum coordinates. Then, from these two outmost
vertices, we draw the lines parallel to the coordinate axes, the
lines intersect creating new vertices, from new vertices, we
continue to draw new lines parallel to the coordinate axes, and
so on. Finally, we obtain a hypercuboid surrounding all the
given elements in the malware family. Once constructed, the
data points on the hyperplanes of a hypercuboid will be chosen
as prototypes for the corresponding malware family.

Figure 5 shows the pseudocode of our prototype extraction
algorithm.

Algorithm for prototype extraction

prototypes ← Ø

for l ∈ families

 prototypes[l] ← Ø

 for i ∈ dimensions in the feature space

 min[l] = the minimum value in dimension i of
data points in family l

 max[l] = the maximum value in dimension i
of data points in family l

 for x ∈ data points in family l

 if x[i] = min[l] or x[i] = max[l]

 prototypes[l] += x

 break

Fig. 5. Prototype extraction using hypercuboids

IV. EXPERIMENTS AND EVALUATION

A. Dataset

We use the dataset referenced in Rieck et al.’s work [6] for
our experiments. This dataset contains the malware samples
extracted from the large malware database maintained at the
CWSandbox website and labeled by 6 different well-known
anti-virus products. After removing classes with too few (less
than 20) samples and too many (more than 300) samples, 3133
behavioral samples were obtained. The malware samples are
grouped into 24 classes. Some typical malware families in the
dataset are Bancos with 48 samples, Podnuha and Rotator with
300 samples, Posion with 26 samples, Sality with 85 samples,
and Virus with 202 samples. As we focus on malware
classification rather than detection, the used dataset contains
only malicious samples, no benign samples.

B. Feature extraction

From the dataset, we extract the level 1 system call
sequences (only the names of the system calls, no argument
information) and find that there are overall 85 system calls.
With the sequence of system calls obtained from each
malware sample, we proceed to the extraction of the
corresponding binary vector of 2-grams (2-grams mean 2
consecutive system calls), each component of which is a value
0 or 1 denoting the presence or absence of the respective
system call 2-gram.

For example, let A = {a1, a2} be a set of all possible system
calls, then S = {a1a1, a1a2, a2a1, a2a2} is the set of all possible 2-
grams. Suppose we have a system call sequence a1a2a1a1a1.
Table I shows the presence or absence of each 2-gram in this

call sequence. Then, the corresponding feature vector is x =
(1, 1, 1, 0). We normalize the vector x so that it has unit length.

 |x| = √1� + 1� + 1� + 0� = √3

The normalized version of x is x = (
�

|�|
,

�

|�|
,

�

|�|
,

�

|�|
) =

(
�

√
,

�

√
,

�

√
, 0)

TABLE I. THE PRESENCE OR ABSENCE OF 2-GRAM

2-gram a1a1 a1a2 a2a1 a2a2
presence 1 1 1 0

The normalized feature vector is used to represent each
malware sample.

The reason for the choice of binary vectors is that through
experiments, we found that it allows to obtain higher
efficiency than the use of frequency vectors. As there are
totally 85 different system calls in the dataset, the size of the
feature vector space is 85×85. But since there are many zero
components, it is possible to extract and compare the feature
vectors in linear time. Refer to [7] for a detailed discussion of
the linear time algorithms for comparison of sequential data.

C. Evaluation

We evaluate our proposed hypercuboid-based prototype
extraction method in terms of the abilities to classify known
classes of malware and recognize new classes, using the F1
score metric, which is a mix of two standard measures
Precision and Recall. The Precision indicates how many of the
predicted positive cases are actually positive. The Recall
shows how many of the actual positives are labeled as
positives. F1 score balances Precision and Recall. For
example, a classifier with Precision = Recall = 0.5 is better
than another classifier with Precision = 0.2 and Recall = 0.8
according to the F1 score measure.

Following are the definitions of the metrics:

• Number of true positives for class i

TPi = The number of samples belonging to class i that

are correctly assigned to class i

• Number of false positives for class i

FPi = The number of samples not belonging to class i

that are incorrectly assigned to class i

• Number of true negatives for class i

TNi = The number of samples not belonging to class i

that are correctly not assigned to class i

• Number of false positives for class i

FNi = The number of samples belonging to class i but

are incorrectly not assigned to class i

• Average precision:

! =
∑ #!$

∑(#!$ + &!$)
 (1)

• Average recall:

(=
∑ #!)

∑(#!$ + &*$)
 (2)

• F1 score:

&1 =
2 ∗ ! ∗ (

! + (
 (3)

 The F1 score varies in the range from 0 to 1. The higher
the value is, the better the classification is. We evaluate the
following F1 score metrics.

• F1 score for classification of known malware classes

Fk = F1 score on a dataset with known labels

• F1 score for rejection of unknown malware classes
(not appearing in the training phase)

Fu = F1 score on an unlabeled dataset

 Both the ability to identify novel malware (Fu) and the
ability to classify known malware (Fk) depend on the choice
of a distance threshold (dr) for separating unknown malware
samples from known malware classes. The bigger we choose
dr, the lower Fu will be and the higher Fk, because the less
malware samples will be rejected. On contrary, the smaller dr
is, the higher Fu will be and the lower Fk. In the training phase,
we determine the optimal value for dr such that both Fk and Fu
are the highest possible.

 The overall 24 class dataset is divided in the ratio of 70%
for training and 30% for testing. But only 18 of the 24 classes
are used in the training phase and for evaluating Fk. The
remaining 6 classes in the testing part are used for evaluating
Fu. The training part of the dataset doesn’t contain any
instances of these 6 classes. We do not divide the total number
of classes into two halves as in [6], as the number of new
malware families is usually small in comparison with the
number of old known malware families. We perform each
experiment 10 times and take the average of the results for our
proposed method and the distance–based prototype extraction
method in [6]. Table II show the obtained average results for
dr varying from 0 to 1.

TABLE II. CLASSIFICATION PERFORMANCES WITH VARIED DR VALUES

dr
Fk-

proposed
Fu-

proposed
Fk-[6] Fu-[6]

0 0 1 0 1

0.1 0.473 0.983 0.133 0.994

0.2 0.743 0.983 0.251 0.994

0.3 0.931 0.983 0.831 0.994

0.4 0.965 0.977 0.890 0.992

0.5 0.977 0.880 0.932 0.910

0.6 0.987 0.805 0.940 0.804

0.7 0.991 0.743 0.943 0.716

0.8 0.994 0.685 0.941 0.716

0.9 0.994 0.499 0.942 0.544

1 0.995 0.420 0.942 0.496

Our goal is to choose a threshold value dr such that both
Fk and Fu measures are the highest possible. The best dr value

for Rieck et al.’s method [6] is 0.5, which corresponds to Fk =
0.932 (93.2%) and Fu = 0.901 (90.1%). Meanwhile, the F1
score measures of our method are optimal at dr = 0.4 with Fk
increased to 0.965 (96.5%) and Fu increased to 0.977 (97.7%).
Therefore, we can conclude that our method is more efficient
than Rieck et al.’s method. Figure 6 shows the F1 score –
distance threshold graphs of the two methods.

Fig. 6. Comparison of the F1 scores

V. CONCLUSION

We presented a simple novel method for prototype
extraction in view of open-world malware classification.
Experimental results showed that our proposed method is
quite efficient, achieving F1-micro scores of 96.5% for
classification of know malware and 97.7% for detection of
new malware, overcoming the disadvantages of the original
prototype-based method. But our method of extracting the
prototypes using hypercuboids might be suitable only when
data points are clustered in distinct small areas. In these cases,
the data points nearest to the hyperplanes will properly
represent each malware family because the all its data points
are likely located in the vicinity of the prototypes. But in the
cases where data points of a malware family are distributed
over a large area, the data points in the center can be far from
the prototypes. Therefore, more careful considerations should
be carried out for our proposition to be effective for more
diverse datasets.

ACKNOWLEDGMENT

Nguyen Thi Thu Trang was funded by Vingroup Joint
Stock Company and supported by the Domestic Master/ PhD
Scholarship Programme of Vingroup Innovation Foundation
(VINIF), Vingroup Big Data Institute (VINBIGDATA), code
VINIF.2020.ThS.62.

REFERENCES

[1] Daniele Ucci, Leonardo Aniello, Roberto Baldoni: Survey of machine
learning techniques for malware analysis. Computers & Security 81:
123-147 (2019).

[2] F. Ahmed, H. Hameed, M. Z. Shafiq, M. Farooq, Using spatio-
temporalinformation in api calls with machine learning algorithms for
malwaredetection, in: Proceedings of the 2nd ACM workshop on
Security andartificial intelligence, ACM, 2009, pp. 55–62.

[3] G. Liang, J. Pang, C. Dai, A behavior-based malware variant
classificationtechnique, International Journal of Information and
Education Technol-ogy 6 (4) (2016) 291.

[4] Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-Lopez, Jorge
Blasco: Dendroid: A text mining approach to analyzing and classifying
code structures in Android malware families. Expert Systems with
Applications,Volume 41, Issue 4, Part 1, 2014, Pages 1104-1117, ISSN
0957-4174.

[5] J. Upchurch, X. Zhou, Variant: a malware similarity testing
framework,in: 2015 10th International Conference on Malicious and
Unwanted Soft-ware (MALWARE), IEEE, 2015, pp. 31–39.

[6] K.Rieck, P.Trinius, T.Holz: Automatic Analysis of Malware Behavior
using Machine Learning. Journal of Computer Security (JCS), 19 (4)
639-668, 2011.

[7] K. Rieck and P. Laskov: Linear-time computation of similarity
measures for sequential data. Journal of Machine Learning Research,
9(Jan):23–48, 2008.

[8] M. G. Schultz, E. Eskin, F. Zadok, S. J. Stolfo, Data mining methods
fordetection of new malicious executables, in: Security and Privacy,
2001. SP 2001. Proceedings. 2001 IEEE Symposium on, 2001, pp. 38–
49.

[9] M. Kruczkowski, E. N. Szynkiewicz, Support vector machine for
malwareanalysis and classification, in: Web Intelligence (WI) and
Intelligent AgentTechnologies (IAT), IEEE Computer Society, 2014,
pp. 415–420.

[10] P. Khodamoradi, M. Fazlali, F. Mardukhi, M. Nosrati, Heuristic
metamor-phic malware detection based on statistics of assembly
instructions usingclassification algorithms, in: Computer Architecture
and Digital Systems(CADS), 2015 18th CSI International Symposium
on, IEEE, 2015, pp.1–6.

[11] P. M. Comar, L. Liu, S. Saha, P. N. Tan, A. Nucci, Combining
supervisedand unsupervised learning for zero-day malware detection,
in: INFOCOM,2013 Proceedings IEEE, 2013, pp. 2022–2030.

[12] Prasha Shrestha,Suraj Maharajan,Gabriela Ramirez de la Rosa, Alan
Sprague, Thamar Solorio and Gracy Warner: Using String Information
for Malware Family Identification. @Springer International Publishing
Switzerland 2014, A.L.C.Bazzan and K.Pichara(Eds.): IBERAMIA
2014, LNAI 8864,pp.686- 697, 2014.DOI:10.1007/978-3-319-12027-
0_55.

[13] Quinlan, J. Ross. “Combining Instance-Based and Model-Based
Learning.” ICML (1993).

[14] S. Attaluri, S. McGhee, M. Stamp, Profile hidden markov models
andmetamorphic virus detection, Journal in Computer Virology 5 (2)
(2009)151–169,

[15] T. Gonzalez: Clustering to minimize the maximum inter cluster
distance. Theoretical Computer Science 38, pages 293–306, 1985.

[16] Z. Chen, M. Roussopoulos, Z. Liang, Y. Zhang, Z. Chen, A. Delis,
Malwarecharacteristics and threats on the internet ecosystem, Journal
of Systemsand Software 85 (7) (2012) 1650–1672.

