
An Autoencoder-based Method for Targeted Attack
on Deep Neural Network Models
Duc-Anh Nguyen

VNU University of Engineering and Technology
nguyenducanh@vnu.edu.vn

Pham Thi To Nga
Dai Nam University

ngaptt@dainam.edu.vn

Do Minh Kha
VNU University of Engineering and Technology

17020827@vnu.edu.vn

Pham Ngoc Hung
VNU University of Engineering and Technology

hungpn@vnu.edu.vn

Abstract—This paper presents an autoencoder-based method
for a targeted attack on deep neural network models, named
AE4DNN. The proposed method aims to improve the existing
targeted attacks in terms of their generalization, transferability,
and the trade-off between the quality of adversarial examples
and the computational cost. The idea of AE4DNN is that an
autoencoder model is trained from a balanced subset of the
training set. The trained autoencoder model is then used to
generate adversarial examples from the remaining subset of the
training set, produce adversarial examples from new samples,
and attack other DNN models. To demonstrate the effectiveness of
AE4DNN, the compared methods are box-constrained L-BFGS,
Carlini-Wagner ||L||2 attack, and AAE. The comprehensive
experiment on MNIST has shown that AE4DNN can gain a
better transferability, improve generalization, and generate high
quality of adversarial examples while requiring a low cost of
computation. This initial result demonstrates the potential ability
of AE4DNN in practice, which would help to reduce the effort
of testing deep neural network models.

Index Terms—robustness, adversarial example generation, tar-
geted attack, white-box testing, transferability, generalization.

I. INTRODUCTION

Deep learning [1], known as a subset of machine learning,
has been used widely in solving many problems related
to classification, ranging from speech processing [2], image
processing [3], to medical diagnosis [4], etc. A deep neural
network (DNN) model is commonly built using Pytorch,
Tensorflow, Scikit-learn, Keras, and Caffe. In most of the
cases, if DNN models are trained carefully with appropriate
hyperparameters, the accuracy of these models usually outper-
forms the traditional machine learning methods such as Naive
Bayes [5], K-nearest neighbours (KNN), etc. However, it is not
simple to explain the properties of DNN models such as the
value of weights, or the role of neurons in different layers, etc.
Due to the unexplainable characteristic of DNN models, the
testing of DNN models should be taken into account carefully
to ensure the robustness of these models.

Targeted adversarial example generation (or targeted adver-
sarial attack) in the white-box approach is a new trend to

test the robustness of DNN models by generating adversarial
examples for these models [6]. An adversarial example is a
slight modification of an input vector in the training set to
make the model label this adversarial example as a specific
class [7]. A targeted adversarial generator needs to know the
training set, the architecture, and the weights of the attacked
model [6]. The general problem of targeted adversarial ex-
ample generation is stated as follows. Given a training set
consisting of input vectors, an attacked DNN model trained
on this training set, and a target label, every original input
vector is modified slightly to generate adversarial examples
which would be classified as the target label. There are many
popular metrics such as ||L||2 norm and neuron coverage [8],
etc. used to evaluate the robustness of a targeted adversarial
example generation method.

However, in terms of ||L||2, the targeted adversarial example
generation methods in the white-box approach usually have
three main problems. The first problem is the transferable rate.
The generated adversarial examples from a DNN model should
be reused to check other DNN models to reduce the cost of
DNN testing. The second issue is related to generalization.
Specifically, the result of previous attacks on a DNN model
should be reused for future attacks on that model, which
contributes to the decrease in the cost of targeted attack.
Although adversarial autoencoding ATN [9] provides this
capability, this method still seems to work less effectively. The
last problem is the trade-off between the quality of adversarial
examples and the computational cost. Some other ||L||2 attack
methods can generate high quality of adversarial examples but
they usually consume high computational cost such as Carlini-
Wagner ||L||2 attack [10] and box-constrained L-BFGS [11].

Therefore, this paper proposes a targeted adversarial ex-
ample generation method in the white-box approach, named
AE4DNN, to mitigate the problems mentioned above. The
objective study is the popular training set MNIST [12]. The
generated adversarial examples should be close to its input
vector under ||L||2 distance metric. The key idea of AE4DNN
is that given a balanced subset of the training set and a target
label, an autoencoder will be trained to find out the best
matrix of weights. Here, the objective function includes two978-1-6654-0435-8/21/$31.00 ©2021 IEEE

parts, in which each has its weight. The first one minimizes
the sum of squared ||L||2 distances between input vectors
and their corresponding reconstructed vectors. The second
part takes responsibility for minimizing the sum of cross-
entropy between the prediction of reconstructed vectors and
their corresponding target vectors. We propose a formula to
specify the good range of the weight between these two
parts, which might reduce the effort of configuration selection.
The trained autoencoder is then used to generate adversarial
examples from the remaining subset of the training set or new
input vectors (i.e. generalization ability) with high quality of
adversarial example while requiring low computational cost
(i.e. trade-off mitigation). Additionally, this autoencoder could
be used to attack other DNN models (i.e. transferability).

The rest of this paper is organized as follows. Section II
provides the background of DNN and well-known targeted
adversarial example generation methods in the white-box ap-
proach. The overview of AE4DNN is shown in Sect. III. Next,
Section IV presents the experiment to prove the effectiveness
of AE4DNN in terms of generalization, transferability, and
trade-off mitigation. Section V then gives the overview of
related research about adversarial example generation for DNN
model. Finally, the conclusion and future work are described
in Sect. VI.

II. BACKGROUND

A. Deep Neural Network

Deep neural network (DNN). A deep neural network is
a 3-tuple M = (L,W,θ), where L = [l0, l1, ..., lh−1] is
a matrix of layers and h is the number of layers. W =
[w0,1,w1,2, ..,wl−2,l−1] is a matrix of weights, in which wi,i+1

represents the weights between the ith layer and the (i+1)th

layer. θ = [θ0,θ1, ...,θh−1] is a matrix of activation functions
in which each activation belongs to a layer.

For simplicity, a set of neurons on the layer li (i ∈ [0, .., h−
1]) is denoted with ni. According to this convention, a set of
neurons on the input layer and on the output layer of a DNN
are denoted with n0 and nh−1, respectively. The paper denotes
the number of input vectors by s, the number of input features
by d, the number of classes by k, and hyper-parameters by ζ.
Based on the characteristics of the output layer of DNN, the
number of neurons on the output layer nh−1 is equal to k.

Denote an input vector by x ∈ Xs×d, where X is the training
set. For a specific neuron, let nji (x) ∈ R denote the value of the
jth neuron on layer li of the attacked DNN with input vector
x. The true probability vector of x is denoted by ytrue ∈ Rk.
The prediction vector of x is one dimensional array, denoted
by y = [n0h−1, n

1
h−1, .., n

k−1
h−1]

T ∈ Rk. The predicted label of
x is denoted by cx, where cx = argmaxi∈[0..k−1]{nih−1}.

Given x, let f(x, ytrue, ζ) ∈ R denote the objective function
of a DNN used for the training purpose.∇xf(x, ytrue, ζ) ∈ Rd
is the gradient of the objective function with respect to x.

B. Adversarial Example

In the white-box testing approach, adversarial example in
targeted attack is defined as follows. Given a DNN M =

(L,W,θ), an input vector x, and a target label y∗, a modified
vector x′ from x is an adversarial example iff it satisfies all
the following requirements:
(i) x is classified correctly,
(ii) y∗ is different from cx,
(iii) the classification of x′ is equal to y∗, and
(iv) the distance between x and x′ is less than or equal to b,
where b is a positive real number which is small enough to
prevent the large modification of x.

The neuron corresponding to the target label y∗ is called
target neuron. The true probability vector and the predicted
probability vector of adversary x′ are denoted by y∗ and y′.

C. Targeted Adversarial Example Generation

AAE. Baluja et al. introduced AAE to generate adversarial
examples based on autoencoder [9]. AAE attempts to recon-
struct an input vector x in order to obtain an adversarial
example x′. The adversarial example x′ is a reconstructed
vector from x, where the prediction label of x′ is the target
label y∗. The authors suggested using ||L||2 norm to compute
the distance between x′ and x. Given a dataset X, their
objective function is as follows:

lossAAE(X) =
1

|X|
∑
x∈X

φ · ||x−x′||2+ ||y′− rα(y, y∗)||2 (1)

, where rα(.) is a reranking function, φ is the weight between
the two terms of the objective function, ||y′ − rα(y, y∗)||2 is
the ||L||2 distance between y′ and the expected probability
vector rα(y, y∗).

Box-constrained L-BFGS. Szegedy et al. proposed box-
constrained L-BFGS to generate adversarial examples [11] by
solving the following constraint:

Minimize c · ||x− x′||2 + f(x′, y∗, ζ)
subject to x, x′ ∈ [lower, upper]d

, where c is the weight between the distance ||x − x′||2 and
the objective function f(x′, y∗, ζ). upper and lower are the
upper bound and lower bound of input features, respectively.

Carlini-Wagner ||L||2 Attack. The author suggested using
the following objective function, denoted by f6(.):

f6(x′) = max(

(i)︷ ︸︸ ︷
max{Z(x′)i : ∀i 6= y∗}−

(ii)︷ ︸︸ ︷
Z(x′)y∗ ,−K)

, where Z(.) returns the pre-softmax value of the output layer.
Part (i) is the largest pre-softmax value except the target
neuron. Part (ii) is the pre-softmax value of target neuron.
The initial adversarial example x′ is equal to x, and then is
updated: x′ = x′ − η ∗ ∇xf6(x′), where η is learning rate.

III. THE PROPOSED METHOD

The proposed method, named AE4DNN, starts with four
types of inputs including (i) the attacked DNN model (denoted
by M), (ii) a balanced subset of the training set (denoted by
S ⊆ X), (iii) the architecture of autoencoder (denoted by g),

Fig. 1: The main process of AE4DNN.

and (iv) the target label (denoted by y∗). The main process of
AE4DNN is presented in Fig. 1.

The balanced subset S ensures that the class distribution
is uniform among the labels except for the target label y∗.
The suggestion is that the size of S should be large and its
characteristics of features should be various enough. There are
several main reasons for selecting such a subset. Firstly, the
selected autoencoder model can learn all the important features
from the samples of S among all classes. As a result, for a
target label y∗, we just need an autoencoder model to conduct
the targeted attack from an input vector belonging to any label.
Secondly, using a subset of X could reduce the cost of training
the autoencoder. If S is X, in case of large datasets such as
Tiny-Images (i.e. 79 million images) [13], it might take high
computational cost to train an autoencoder model. This cost
might not suitable for the urgent testing of DNN models. For
simplicity, AE4DNN selects random samples on the training
set X to create such a subset S.

The architecture of autoencoder g is defined by machine
learning testers. The autoencoder should be complex enough
to deduce necessary important features of S in an intermediate
representation and can reconstruct this representation.

After defining the architecture of g and selecting the subset
S, AE4DNN suggests using the following objective function
to train g:

lossg(S) =
1

|S|
∑
x∈S

1− β
d
· ||x− g(x))||22 + β · ce(yg(x), y

∗) (2)

, where ce(.) denotes the cross-entropy function, d is the
number of features, g(x) is the reconstructed vector generated
from the input vector x, yg(x) is the predicted probability vector
of g(x). Two parameters 1−β

d and β are the weights between
the ||L||2 distance and the cross-entropy, respectively.

In order to produce adversarial examples which are classi-
fied as target label y∗, AE4DNN uses cross-entropy function
in Formula (2) to compare the difference between the true
probability vectors y∗ and predicted probability vectors yg(x).

This differs from AAE, which applied ||L||2 distance instead.
The main reason for using cross-entropy is that AE4DNN
would have a better generalization and transferability than
AAE. Using cross-entropy makes the generated adversarial
examples are less dependent on the predicted probability of
input vector.

In the Formula (2), choosing the best value of β is a
challenging issue. Choosing a good value of β helps to produce
adversarial examples which are modified slightly from its input
vectors and classified as target label. To address this issue,
AE4DNN suggests using an equation to specify a good range
of value of β. Specifically, choosing β should ensure that the
value of the term 1−β

d · ||x− g(x))||
2
2 is greater than the value

of the term β · cross entropy(yg(x), y∗). In other words, the
autoencoder must satisfy that the reconstructed vector and its
input vector should be close to each other, which is considered
the most important criterion. The less important criterion is
that the prediction of the reconstructed vector is the target
label y∗. Given an autoencoder g after initializing its weights,
the value of β should be chosen as follows:

β <=

∑
x∈S

1
d · ||x− g(x))||

2
2∑

x∈S(
1
d · ||x− g(x))||

2
2 + cross entropy(yg(x), y∗))

(3)
After training an autoencoder, the adversarial example gen-

eration from an input vector by using this autoencoder is as
follows. The input vector can be on the remaining subset of X
or a new input vector. Initially, the autoencoder tries to recon-
struct this input vector, which results in a candidate adversarial
example. This candidate adversarial example is then checked
if it is valid. If the candidate adversarial example is classified
as the target label y∗, this example is a valid adversarial
example, and otherwise, then the algorithm terminates. Note
that each target label requires that a corresponding autoencoder
is trained. If the attack performs with k labels, the number of
autoencoder models is k models, in which each model is used
to attack a target label.

IV. EXPERIMENT

In order to show the effectiveness of AE4DNN, the exper-
iment addresses the following research questions:
• In the objective function of AE4DNN, is the proposed

formula (3) useful to provide a good range of weight β?
(denoted by RQ1)

• Compared to AAE, is AE4DNN more effective in dealing
with a set of new input vectors? (generalization ability)
(RQ2)

• Compared to AAE, is AE4DNN more effective in attacking
other models? (transferable ability) (RQ3)

• Compared to Carlini-Wagner ||L||2 attack and box-
constrained L-BFGS, does AE4DNN mitigate the trade-
off between the quality of adversarial examples and its
computational cost? (RQ4)

The first research question aims to show that the proposed
formula (3) would help to specify the good value of β

in formula (2). Based on the answer of the first research
question, the second and third research questions show the
generalization ability and transferable ability of AE4DNN. The
compared method in these two questions is AAE, which is
based on autoencoder as AE4DNN. The final research question
shows how the proposed method mitigates the trade-off be-
tween the quality of adversarial example and its computational
cost, which still remains in Carlini-Wagner ||L||2 attack and
box-constrained L-BFGS. To answer these above questions,
a tool has been implemented in python 1. The experiment is
carried out on Google Colab2.

A. Dataset and attacked model

Dataset MNIST. The research chooses MNIST [12] which
is a popular publicly-available dataset for evaluation. The
training set contains 50,000 samples. The test set has 10,000
samples. Each sample on the dataset is an image with 28 pixels
in width and 28 pixels in height. The value of each pixel is in
range of 0 and 255, which indicates the lightness or darkness
of that pixel. Adversarial example in this experiment is called
adversarial image for simplicity.

Attacked model. MNIST dataset is trained with the CNN
architecture described in [14]. The main reason why this exper-
iment chooses this architecture is that this CNN architecture
is proven the robustness against adversarial attack. The CNN
model achieves 99.5% accuracy on MNIST, comparable to the
state-of-the-art models.

The architecture of autoencoder. It is challenging to
choose the best architecture of autoencoder which attacks well
with all DNN models in general and CNN models in particular.
Instead, the architecture of the autoencoder should be defined
manually based on the expertise of machine learning attackers.
In this experiment, the architecture of autoencoder is (input
-> conv2d -> maxpooling2d -> conv2d -> maxpooling2d -
> conv2d -> upsampling2d -> conv2d -> upsampling2d ->
conv2d). This selected autoencoder is a CNN model, which
is complex enough to reconstruct an output image from an
original image while ensuring that this output image tends to
be adversarial.

Each target label requires a separate training process. There-
fore, if machine learning testers want to perform targeted
attacks for k labels, these testers need to train k autoencoders.
For simplicity, this research performs a targeted attack with a
target label 7, but other target labels still give the same results.

Rather than training on the whole dataset MNIST, the exper-
iment selects 1,000 first images on MNIST, denoted by S, to
generate adversarial examples. There are two reasons leading
to this decision. Firstly, the statistical information on S satisfies
that the numbers of images belong to k labels are nearly
equivalent. Therefore, the autoencoder might learn enough
necessary transformation to convert an image classified as any
label to the target label. Secondly, the experiment aims to show
the generalization of the trained autoencoder to generate new

1https://github.com/ducanhnguyen/mydeepconcolic.git
2https://colab.research.google.com/

adversarial examples. Assume that the autoencoder is only
trained on S, which is a balanced subset of the training set X, it
still shows its usefulness to generate adversarial examples from
new input images which are never learnt by the autoencoder.

The proposed autoencoder is trained up to 400 epochs with
batch size = 256. We applied early stopping strategy to stop
the training process when there is no decrease in the loss over a
number of continuous epochs. After the training process, each
image of S would be put into this autoencoder to generate the
corresponding candidate adversarial example. This candidate
adversarial example is then predicted by the attacked CNN
model to detect if it is a valid adversarial example.

B. Comparison

Answer for RQ1. The conclusion of this research question
is that the proposed formula (3) might reduce the effort of β
selection. Initially, given the subset S, we observed that with
different initialization of weights, the value of β is not changed
too much (i.e. 0.015 +/- 0.002). This means that the value of β
might be less dependent on the weight initialization. Therefore,
for simplicity, the upper bound of β in the objective function
of AE4DNN is chosen 0.015. If β = 0.015, the importance of
the distance of the adversarial examples and the input vectors
is the same as the importance of cross-entropy between the
original predictions and the expected predictions.

The experiment tries with different values of β in the range
of [0, 0.015]. It is expected that this range might contain good
values of β, which leads to the high quality of adversarial
examples. The quality of adversarial examples is defined as
the average of ||L||2 distance and the number of adversarial
examples. A value of β is considered good when the average of
||L||2 distance is small and the number of adversarial examples
is large enough. Empirically, the average of ||L||2 distance
should be less than 6.5, which ensures a slight modification
of input vectors.

TABLE I: The average ||L||2 distance and the corresponding number
of adversarial examples with different values of β in AE4DNN. Good
values of β are marked in bold.

β 0.0005 0.001 0.002 0.003 0.004 0.005 0.006
Avg
||L||2 3.2 4.56 4.71 4.98 6.47 6.34 7.01

#adv 12 62 75 101 492 661 482

Table I shows different values of β, in which good values
of β are marked in bold. In this table, β = 0.0005 is not
good because the number of adversarial examples is too small
(i.e. 12 out of 1,000). In addition, β = 0.006 is also ignored
since the generated adversarial examples contain much noise
(i.e. the average of ||L||2 distance is greater than 6.5), which
easily make the attacked model predict incorrectly.

In contrast, if machine learning testers have no idea about
a good range of value of β, they usually use the strategy try-
and-check until they find out such a good range. This strategy
might be time-consuming.

Answer for RQ2. This part evaluates the generalization of
AE4DNN to generate adversarial examples from a new set of

input vectors compared to AAE. A new input vector is not
used to train these autoencoders. The experiment shows that
AE4DNN is able to produce a better rate of generalization.

The methods Carnili-Wagner ||L||2 attack and box-
constrained L-BFGS are not included in this comparison. The
main reason is that these methods are not designed to generate
new adversarial examples from new input vectors with low
computational cost. Instead, these methods generate adversar-
ial examples from the beginning and each input vector requires
a separate training process, which lead to high computational
cost.

In order to answer this research question, we need to specify
good values of φ in the objective function of AAE firstly,
then use these results to compare with AE4DNN. Specifically,
we run AAE with different values of φ. Table II illustrates
the result of AAE in terms of average ||L||2 distance and its
corresponding number of adversarial examples with different
values of φ. The range [0, 0.002) and (0.02, +∞] are ignored
because these ranges do not produce a good set of adversarial
examples.

TABLE II: The average ||L||2 distance and the corresponding
number of adversarial examples with different values of φ (AAE).

φ 0.02 0.01 0.005 0.003 0.002
avg ||L||2 4 4.81 6.2 6.8 8.8
#adv 47 66 340 522 696

There is a problem that AE4DNN and AAE use different
configuration (i.e. β in AE4DNN and φ in AAE) to generate
adversarial examples. Therefore, in order to make a com-
parison, the experiment grouped equivalent configurations by
analyzing Table I and Table II, in which a configuration is
defined as a pair (β, φ). A pair of configuration (β, φ) is
equivalent when AE4DNN and AAE produce approximate
values of ||L||2 distance. There are five pairs of configuration
satisfying this requirement, including A = (0.001, 0.01),
B = (0.002, 0.01), C = (0.003, 0.01), D = (0.004, 0.005),
and E = (0.005, 0.005).

This experiment then used three sets of new input vec-
tors with the size 10,000 images (denoted by 10k-attack),
20,000 images (20k-attack), and 40,000 images (40k-attack)
for evaluation. Because the result of 10k-attack, 20k-attack,
and 40k-attack are nearly the same, we compute the average
of comparable criterion for simplicity, which is shown in Table
III. Here, average adversarial rate ∈ [0, 1] is the average
proportion of the number of adversarial images to the number
of input images (i.e. higher value is better). As can be seen,
AE4DNN produces a better average adversarial rate compared
to AAE for all pairs of configuration because of the usage of
cross-entropy in Formula (2).

Answer for RQ3. This part examines the transferable
ability of AE4DNN compared to AAE. The procedure of
transferable attack is as follows. Initially, adversarial examples
would be produced by attacking the trained CNN model
previously with 1,000 first images of MNIST. After that,
these adversarial examples are put into different DNN models
including VGG-13 model, VGG-16 model, LeNet-5 model,

TABLE III: The comparison between AE4DNN and AAE in terms
of generalization. Target label is 7. Better values are marked in bold.
The total time to perform 10k-attack, 20k-attack, and 40k-attack are
approximate to 1.6 seconds, 3.1 seconds, and 6.3 second, respectively.
These attacks do not need to train the autoencoder.

Config Average |||L||2 Average adversarial rate (%)
AE4DNN AAE AE4DNN AAE

A 4.65 4.76 7.5 7.1
B 4.69 4.76 8.5 7.1
C 4.99 4.76 11.7 7.1
D 6.49 6.28 53.5 39
E 6.38 6.28 67.7 39

and AlexNet model. If an adversarial example makes the
new model predict as the target label y∗, this adversarial
example could be used to attack this new model. The detail of
comparison is shown in Table V. As can be seen, AE4DNN.
produces better transferability rate for all pair of configura-
tions, compared to AAE.

Answer for RQ4. This part shows how AE4DNN mitigates
the trade-off between the quality of adversarial example and
its computational cost, compared to Carlini-Wagner ||L||2
attack and box-constrained L-BFGS. For each method, we
empirically choose good ranges of configuration to make a
comparison. By ignoring the unusual adversarial examples,
Table IV gives a summary comparison with different config-
urations. Some numbers rounded to increase the readability
of this table. Configuration represents the range of parameters
which is used for the comparison. Min/Max ||L||2 distances
are the minimum distance and the maximum distance between
an input image and its corresponding adversarial example,
respectively. Time is the total time to generate adversarial
examples for a specific configuration. For AE4DNN and AAE,
time is computed from the two steps including (i) the training
process of an autoencoder and (ii) adversarial example gener-
ation from the trained autoencoder. As can be seen, AE4DNN
works better than Carlini-Wagner ||L||2 attack in terms of
min/max ||L||2 distances and time. Although AE4DNN and
box-constrained L-BFGS have approximate min/max ||L||2
distances, AE4DNN spent less computational cost to generate
adversarial examples (around 1 minute).

TABLE IV: The comparison between AE4DNN with different state-
of-the-art adversarial example generation techniques. The experiment
is carried out on the subset S of the training set of MNIST. All
unusual adversarial examples are ignored. We re-implement box-
constrained L-BFGS and re-run Carlini-Wagner ||L||2 attack3.

Criteria AE4DNN box-constrained
L-BFGS

Carlini-Wagner
||L||2 attack

Configuration [0.001, 0.005] [0.001, 0.0035],
iter = 20 -

Min ||L||2 3.85 2.34 13.43
Max ||L||2 6.34 7.4 15.08
Time (minute) ∼1 ∼3 ∼30

V. RELATED WORKS

Currently, some works have been proposed for testing DNN
models by several research groups. Focusing only on the most
recent and closest ones, we can refer to [7], [9]–[11], [15].

TABLE V: The transferable rate between AE4DNN and AAE with different DNN models. Better values are marked in bold.

Config VGG-13 (%) VGG-16 (%) LeNet-5 (%) AlexNet (%)
AE4DNN AAE AE4DNN AAE AE4DNN AAE AE4DNN AAE

A 6.3 4.9 3.7 3.6 1.2 0.9 7.3 6.1
B 7.4 4.9 6 3.6 1.2 0.9 8 6.1
C 31.8 4.9 27.7 3.6 10 0.9 20.4 6.1
D 46.4 38.5 47.1 39.1 18.1 6.4 39.4 31.1
E 46.4 38.5 47.1 39.1 18.1 6.4 39.1 31.1

Goodfellow et al. proposed targeted/untargeted fast gradient
sign methods (FGSM) [15] for ||L||∞ distance. Every pixel
of an image would be calculated its corresponding derivative
firstly. These pixels are then moved by a distance simultane-
ously which is the multiplication of a constant and derivatives.
Their proposal can apply in practice because it has a low
computational cost.

Szegedy et al. introduced a targeted attack to generate
adversarial examples using box-constrained L-BFGS [11]. The
authors defined an alternative objective formula to address the
problem of constrained minimization. The alternative objective
formula has two terms in which the first represents the ||L||2
distance between the original image and its corresponding
adversarial example. The second term minimizes the distance
between the prediction of the original image and its adversarial
example.

Inspired from the work of Szegedy et al. [11], Carlini et al.
presented a ||L||2 attack [10] to generate adversarial examples.
The authors suggested using approximate objective functions
to alter the probability comparison of original/target prediction
in box-constrained L-BFGS [11]. The alternatives are chosen
to be better suited for optimization, so adversarial examples
are found out more easily.

Baluja et al. presented an autoencoder-based method to
generate adversarial examples [9]. Given a labelled dataset, an
autoencoder will be built in such a way that the reconstructed
outputs are the adversarial examples. Their proposal is proved
to be fast with a small ||L||2 distance.

Szegedy et al. proposed l.l. class to generate adversarial
examples [7]. This method applies FGSM multiple times with
a small step size. At each step, pixel values are clipped to
ensure that the images over iterations are valid.

VI. CONCLUSION

We have presented an autoencoder-based method to gen-
erate adversarial examples for DNN models, which is called
AE4DNN. The proposed method is compared with the state-
of-the-art adversarial example generation methods including
box-constrained L-BFGS, Carlini-Wagner ||L||2 attack, and
AAE. As a result, the comprehensive experiment on MNIST
has shown that AE4DNN can obtain a better transferable rate
and generalization. Furthermore, AE4DNN is able to mitigate
the trade-off between the quality of adversarial examples and
the computational cost of state-of-the-art adversarial example
generation techniques. Therefore, AE4DNN has a potential
advantage to be used in practice, which might reduce the
cost of DNN testing significantly. In the future, AE4DNN

will be extended to support other distance metrics such as
||L||0 and ||L||∞. In addition, the research will make a more
comprehensive comparison with other well-known datasets.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
Press, 2016.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 82–97, Nov 2012.

[3] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, June 2012, pp. 3642–3649.

[4] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber,
“Deep neural networks segment neuronal membranes in electron
microscopy images,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2012, pp. 2843–2851. [On-
line]. Available: http://papers.nips.cc/paper/4741-deep-neural-networks-
segment-neuronal-membranes-in-electron-microscopy-images.pdf

[5] A. McCallum and K. Nigam, “A comparison of event models for naive
bayes text classification,” in Learning for Text Categorization: Papers
from the 1998 AAAI Workshop, 1998, pp. 41–48. [Online]. Available:
http://www.kamalnigam.com/papers/multinomial-aaaiws98.pdf

[6] H. B. Braiek and F. Khomh, “On testing machine learning
programs,” CoRR, vol. abs/1812.02257, 2018. [Online]. Available:
http://arxiv.org/abs/1812.02257

[7] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” CoRR, vol. abs/1607.02533, 2016. [Online].
Available: http://arxiv.org/abs/1607.02533

[8] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” CoRR, vol. abs/1705.06640, 2017.
[Online]. Available: http://arxiv.org/abs/1705.06640

[9] S. Baluja and I. Fischer, “Adversarial transformation networks: Learning
to generate adversarial examples,” 2017.

[10] N. Carlini and D. A. Wagner, “Towards evaluating the robustness
of neural networks,” CoRR, vol. abs/1608.04644, 2016. [Online].
Available: http://arxiv.org/abs/1608.04644

[11] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2014.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, 1998, pp.
2278–2324.

[13] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 11, pp. 1958–1970, 2008.

[14] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami,
“Distillation as a defense to adversarial perturbations against deep
neural networks,” CoRR, vol. abs/1511.04508, 2015. [Online]. Available:
http://arxiv.org/abs/1511.04508

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2015.

