
Science of Computer Programming 193 (2020) 102439
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A framework for assume-guarantee regression verification of

evolving software

Hoang-Viet Tran a, Pham Ngoc Hung a,∗, Viet-Ha Nguyen a, Toshiaki Aoki b

a University of Engineering and Technology, Vietnam National University, Hanoi, E3 building, 144 Xuan Thuy st. Cau Giay dist. Hanoi, Vietnam
b Japan Advanced Institute of Science and Technology, Nomi-shi, 923-1292, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 May 2019
Received in revised form 16 February 2020
Accepted 29 February 2020
Available online 6 March 2020

Keywords:
Assume-guarantee reasoning
Model checking
Implicit learning
Component-based software evolution
Local weakest assumption

This paper presents a framework for verifying evolving component-based software using
assume-guarantee logic. The goal is to improve CDNF-based assumption generation method
by having local weakest assumptions that can be used more effectively when verifying
component-based software in the context of software evolution. For this purpose, we
improve the technique for responding to membership queries when generating candidate
assumptions. This technique is then integrated into a proposed backtracking algorithm to
generate local weakest assumptions. These assumptions are effectively used in rechecking
the evolving software by reducing time required for assumption regeneration within the
proposed framework. The proposed framework can be applied to verify software that
is continually evolving. An implemented tool and experimental results are presented to
demonstrate the effectiveness and usefulness of the framework.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the last three decades, component-based software engineering (CBSE) has emerged as one of the important approaches
in software engineering. This approach has shown a number of advantages such as increasing effectiveness and efficiency,
lowering cost, shortening product time-to-market, improving maintainability [52]. As a result, component-based software
(CBS) quality assurance plays a critical role in software production life cycles due to the increasing demand for high-quality
products. Due to the high-quality standard test procedure in software industry, the verification process in CBSs ensures that
certain properties are not violated at all times.

There are two approaches to the verification of modern software: theorem proving which is semi-automatic, requires the
interaction of domain experts [21,20,30,37,38,51], and costs a lot of effort [5]; model checking which is automatic and does
not require the interaction of domain experts [7,18]. Although the model checking has gained considerable attention due to
its fully automatic characteristic, the approach suffers from the problem of state space explosion [15,18,48,16]. The assume-
guarantee framework [17,19,24,46], which performs modular verification of CBS, has been considered a promising solution
for dealing with the state space explosion problem during model checking. The framework uses the “divide-and-conquer”
strategy to verify whether a given system satisfies a predefined property. Therefore, it can potentially be applied to large-
scale systems in practice. The key problem of the framework is to generate assumptions that satisfy the assume-guarantee
rules [19,29,33]. If such an assumption exists, the given system satisfies the required property. Although the framework

* Corresponding author.
E-mail addresses: 15028003@vnu.edu.vn (H.-V. Tran), hungpn@vnu.edu.vn (P.N. Hung), hanv@vnu.edu.vn (V.-H. Nguyen), toshiaki@jaist.ac.jp (T. Aoki).
https://doi.org/10.1016/j.scico.2020.102439
0167-6423/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2020.102439
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2020.102439&domain=pdf
mailto:15028003@vnu.edu.vn
mailto:hungpn@vnu.edu.vn
mailto:hanv@vnu.edu.vn
mailto:toshiaki@jaist.ac.jp
https://doi.org/10.1016/j.scico.2020.102439

2 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
can be applied to large-scale systems effectively, it does not consider the system under check in the context of software
evolution.

Modern software applications are continually evolving, and any verification has to be revisited repeatedly. A reduction
in the cost of this repeated verification would offer significant benefits for industry: improving the quality of software
through application of verification techniques in situations where this is currently infeasible. Progress has been made using
approaches such as labeled transition systems [12,19,31,33–35], implicit representation of transition systems [13,27], timed
transition systems [3,28,40–42]. The following two solutions have been used in reducing the verification costs for evolving
software.

The first solution is to generate a new assumption each time software evolves at a lower cost. For software modeled
by exploiting labeled transition systems, assumptions with small sizes (i.e., assumptions with small numbers of states) can
be used effectively to recheck modified software leading to reduced verification cost. In a series of papers, Hung et al.
proposed a method to generate minimized assumptions for CBS verification [31,34,35] and a framework to perform modular
verification of evolving CBS [33]. However, the cost for generating minimal assumptions can be high [34]. The reason is
that the investigated assumption generation problem [19,33–35,31] is formulated as an automata learning problem using
the L∗ algorithm [4]. As a result, it is difficult to apply this approach to large-scale systems. On the other hand, for the
faster assumption generation speed, another verification method, which uses CDNF (Conjunction of Disjunctive Normal
Form) algorithm [10] and implicit representation of software, was proposed in 2010 by Chen et al. [13]. Later, in 2016, this
method was improved by He et al. and applied in CBS regression verification [26] by introducing a fine–grained learning
technique. However, with modified software, some of the subpredicates of the new version of components can be different,
which requires the regression verification progress to regenerate the assumptions for every small change in the software
component.

The second solution to reduce the verification cost for modified software is to increase assumption reuse as much
as possible. This is because the software development cycle involves daily change. Therefore, the less time required to
regenerate assumptions, the greater the cost savings when verifying modified software. Moreover, from the analysis in
Section 5 below, weak assumptions (i.e., assumptions with large languages) can help to achieve this purpose and play a
key role in the verification of modified software. On the other hand, to our knowledge, no research has been conducted
on generating assumptions that have the weakest languages and use implicit specification. As a result, this research focuses
on improving the learning algorithm proposed by Chen [13] to generate local weakest assumptions that can be used more
efficiently to reduce the cost of software regression verification during software evolution.

To achieve the above goal, we first improve the technique to answer membership queries for the two ι (i.e., the initial
predicate) and τ (i.e., transition relation) CDNF learning instances. Based on this improved answering technique, we can
generate weaker assumptions than those generated by the algorithm proposed by Chen et al. [13] (hereafter, we refer to
as CBAG algorithm) using a proposed backtracking learning algorithm (referred to as LWAG algorithm). This leads to an
important result in the context of software evolution: LWAG algorithm can reduce the number of times assumptions must
be regenerated when verifying modified software. The improved answering technique and LWAG algorithm are integrated
into a framework to effectively reduce the number of times assumption regeneration is required for evolving software.

Using assumption generation algorithms which employ the implicit representation, we can not only benefit from the fast
learning process but we can also obtain several advantages of implicit software representation over explicit representation.
First, the contextual assumptions represented implicitly using Boolean functions have fewer states than do assumptions
modeled using deterministic finite automata because implicit representations are equivalent to nondeterministic finite au-
tomata, which are exponentially more succinct than deterministic ones. As a result, our generated assumptions can have an
exponentially smaller number of states than do assumptions generated from explicit representations. The second advantage
is the scalability of the verification method using implicit representations, which occurs because the L∗ algorithm requires a
polynomial number of queries in the number of states of the target finite automaton [4,49]. In contrast, the CDNF algorithm
requires a polynomial number of queries in the number of Boolean variables of the target Boolean function [10]. Because
implicit assumptions can be exponentially more succinct than explicit ones, the learning algorithms for implicit assumptions
can be exponentially better than automata-theoretic ones.

To our knowledge, the first paper that proposed using the L∗ algorithm to learn assumptions for the assume-guarantee
reasoning algorithm was Cobleigh et al. [19]. Following this paper, several studies improved the method, including adoption
of the assume-guarantee rules [6,26,39,45], symbolic implementation for assume-guarantee rules [8,9,45], several improve-
ments proposed in [1,2,12,14,25,50,53], and an extension to support liveness properties [22]. However, these papers all use
the L∗ algorithm to learn an automaton as the required contextual assumption. Hence, they all have the same disadvan-
tages as described above compared to the algorithm proposed in Chen’s paper [13]. Hence, we based our paper on Chen’s
algorithm [13] to verify modified software.

The remainder of this paper is organized as follows. Section 2 presents the background for this paper. We review CBAG
algorithm for generating assumptions using the CDNF algorithm in Section 3, followed by the proposed algorithms to im-
prove the answers to membership queries and generate assumptions in Section 4. Section 5 presents a framework for
verifying modified CBSs using assumptions generated by the proposed learning algorithm. Section 6 shows the preliminary
experimental results. Related papers are presented in Section 7. Finally, we conclude the paper in Section 8.

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 3
Table 1
Valuation functions for trace example.

Valuation x1 x2 x3 x4

v0 F F - -
v1 F T F T
v2 T F T F

2. Background

In this section, we present some basic concepts used in this paper. We use B to denote the Boolean domain, which is
a set that consists of exactly two elements whose interpretations are T (true) and F (false) (i.e., B = {T , F }). Given a set of
Boolean variables X, we call |X| the size of X, where |X| is the number of variables inside X.

Let X be a finite set of Boolean variables. Consider a function θ(X) over X, which is a function from B|X| to the Boolean
domain B, θ(X) is called a Boolean f unction. Let v : X → B be a function over X that maps each x ∈ X to one value in B.
We call v a valuation of X. The result of evaluating φ by replacing each x ∈ X with v(x) is denoted by φ[v]. We use “|”, “∧”,
and “¬” to denote the logical O R , AN D , and N O T operators, respectively. Let consider an example where φ(X) = ¬x1 ∧¬x2,
in which X = {x1, x2}. If v is a valuation where v(x1) = T and v(x2) = T , then φ[v] = ¬T ∧ ¬T = F ∧ F = F .

Consider a set of Boolean variables Y ⊆ X, we call v �Y the restriction of v on Y. That is, v �Y: Y →B and v �Y (y) = v(y)

for every y ∈ Y. As a result, for a finite sequence of valuations α = v0 v1... vt over X and Y ⊆ X, we call α �Y= v0 �Y v1 �Y
... vt �Y the restriction of α on Y. For the above example where X = {x1, x2}, if v is a valuation where v(x1) = T , v(x2) = T
and Y = {x2}, then v �Y (x2) = v(x2) = T .

Definition 1 (Transition system). A transition system M is a 3-tuple 〈X, ι(X), τ (X,X′)〉, where X is a finite set of Boolean
variables, ι(X) is a Boolean function (called the initial predicate) and τ (X,X′) is also a Boolean function (called a
transition relation). X′ is described as follows.

Let X be a finite set of Boolean variables. The next state of X is also a finite set of Boolean variables X′ = {x′ : x ∈ X}.
Let ψ(X, X′) be a Boolean function over X and X′ and v and v ′ be two valuations over X. The result of evaluating ψ

by replacing each x ∈ X with v(x) and each x′ ∈ X′ with v ′(x) is denoted by ψ[v, v ′]). Consider the case where ψ(X, X′) =
¬x1 ∧ x2 ∧ x3 ∧¬x4, X = {x1, x2} and X′ = {x3, x4}. If v and v ′ are the two valuations where v(x1) = T , v(x2) = F , v ′(x3) = T ,
and v ′(x4) = T , then ψ[v, v ′] = ¬T ∧ F ∧ T ∧ ¬T = F ∧ F ∧ T ∧ F = F .

A finite sequence of valuations α = v0 v1...vt is called a trace of M if and only if vi is a valuation over X such that ι[v0]
= T and τ [vi, vi+1] = T for 0 ≤ i < t . The number of valuations in α is called the length of α, denoted by |α|. The set of all
traces of M is called the language of M and denoted by L(M).

Consider a transition system M = 〈X, ι(X), τ (X, X′)〉, where X = {x1, x2}, X′ = {x3, x4}, ι = (¬x1 ∧ ¬x2), τ = (¬x1 ∧ ¬x2 ∧
¬x3 ∧ x4)|(¬x1 ∧ x2 ∧ x3 ∧ ¬x4). Consider a trace v = v0 v1 v2, where v0, v1, and v2 are defined in Table 1. Using these
valuation functions, we can see that the trace v = v0 v1 v2 is a trace of M because ι[v0] = ¬F ∧¬F = T ∧ T = T ; τ [v0, v1] =
(¬F ∧ ¬F ∧ ¬F ∧ T)|(¬F ∧ F ∧ F ∧ ¬T) = T ; and τ [v1, v2] = (¬F ∧ ¬T ∧ ¬T ∧ F)|(¬F ∧ T ∧ T ∧ ¬F) = T .

Definition 2 (Satisfiability). Consider a transition system M = 〈X, ι(X), τ (X,X′)〉 and a state predicate π(X), which is a
Boolean function over X. We say that M satisf ies π (denoted by M � π) if and only if ∀α = v0 v1...vt ∈ L(M), we have
π [vi] = T for 0 ≤ i ≤ t .

Consider the example system M mentioned in Definition 1 when the state predicate is defined as follows: π(X) = (¬x1 ∧
¬x2)|(¬x1 ∧ x2)|(x1 ∧ ¬x2). We can see that ∀v0 : ι[v0] = T , we have π [v0] = T . In addition, ∀vi, vi+1 : τ [vi, vi+1] = T , and
we also have π [vi] = T and π [vi+1] = T . Therefore, we have M |= π .

Let M be a transition system and π be a state predicate, the problem of deciding whether M satisfies π is called the
invariant checking problem. The technique for solving the invariant checking problem automatically is called a model check.
When performing a model check for M � π , a model checking algorithm returns a witness if M does not satisfy π . A trace
v0 v1...vt of M is called a witness to M � π if and only if π [vi] = T for 0 ≤ i < t but π [vt] = F .

Definition 3 (Simulation). Let N = 〈X, ιN (X), τN (X, X′)〉 be a transition system. We say that N simulates M or M is simulated
by N (denoted by M � N) if ∀X.ιM(X) ⇒ ιN (X) and ∀XX′.τM(X,X′) ⇒ τN (X,X′).

Intuitively, if the initial condition of M is more restrictive than that of N and all transitions allowed in M are also
allowed in N , then N simulates M . Formally, if M ≺ N , then L(M) ⊂ L(N). In this case, we say that M is stronger than N or
N is weaker than M .

Composition is one of the key operations during the assume-guarantee verification process of a CBS. It describes the
behavior of a CBS from its sub-components.

4 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
Definition 4 (Composition). Let Mi = 〈Xi, ιi(Xi), τi(Xi, X′
i)〉 be a transition system over a set of Boolean variables Xi for i = 0,1.

The composition of M0 and M1 is the transition system M0||M1 = 〈X0 ∪ X1, ι0(X0) ∧ ι1(X1), τ0(X0, X′
0) ∧ τ1(X1,X′

1)〉.

For any finite sequence of valuations α over X0 ∪ X1, α ∈ L(M0||M1) if and only if α �X0∈ L(M0) and α �X1∈ L(M1). Let
consider the following example of the composition operation. In this paper’s examples, we use j to denote x j , − j to denote
¬x j , 0 to denote the Boolean value F , and 1 to denote the Boolean value T . Let M = M0 ‖ M1 be a CBS, where M0 and M1
are defined as follows:
XM0 = {1, 2},
X′

M0
= {3, 4},

ιM0 = (−1 ∧ −2),
τM0 = (−1 ∧ −2 ∧ −3 ∧ 4)|(−1 ∧ 2 ∧ 3 ∧ −4), and
XM1 = {5, 6},
X′

M1
= {7, 8},

ιM1 = (−5 ∧ −6),
τM1 = (−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8)

From Definition 4, we have M defined as follows:
XM = {1, 2, 5, 6},
X′

M = {3, 4, 7, 8},
ιM = (−1 ∧ −2) ∧ (−5 ∧ −6), and
τM = ((−1 ∧ −2 ∧ −3 ∧ 4)|(−1 ∧ 2 ∧ 3 ∧ −4)) ∧ ((−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8))

Definition 5 (Noncircular Assume-guarantee rule [13]). Let Mi = 〈Xi, ιi(Xi), τ (Xi, X′
i)〉 be a transition system for i = 0,1 and π

be a state predicate over X0 ∪ X1. The following formula is called the assume-guarantee rule.

M0||A � π M1 � A

M0||M1 � π

where A = 〈X1, ιA(X1), τA(X1, X′
1)〉 is a transition system, M0||A � π and M1 � A are its premises, and M0||M1 � π is its

conclusion. The assume-guarantee rule is sound and invertible. That means its conclusion holds if and only if its premises
are fulfilled.

Definition 6 (Assumption). Let Mi = 〈Xi, ιi(Xi), τi(Xi, X′
i)〉 be a transition system for i = 0,1 and π be a state predicate over

X0 ∪ X1. Let A be a transition system in which A = 〈X1, ιA(X1), τA(X1, X′
1)〉. If M0||A � π and M1 � A, then A is called the

contextual assumption of M0. We will hereafter call A the assumption.

Definition 7 (Weakest assumption). Among all assumptions that satisfy Definition 6, the assumption AW is called the
weakest assumption if and only if ∀A : L(A) ⊆ L(AW).

To the best of our knowledge, there has not been any algorithm which can generate the weakest assumption. For a given
CBS M = M0 ‖ M1 and a predefined property π , it could be verified that if a given trace σ belongs to L(AW) by using a
membership query (shown in Section 3.2.1). AW is known as an assumption whose language is the set of traces that the
corresponding membership queries results are yes.

Remark 1. Let A be a subset of assumptions that satisfy Definition 6. We call ALW ∈ A the local weakest assumption in A
if and only if ∀A ∈ A : L(A) ⊆ L(ALW).

3. The CDNF–based assumption generation method

3.1. The CDNF algorithm

Let X be a fixed set of Boolean variables and λ(X) be a Boolean function over X. CDNF is an incremental learning
algorithm that can learn the exact representation of λ(X) in a finite number of steps [10]. Sharing the same ideas as the L∗
algorithm [4], CDNF is based on a teacher (which knows λ(X)) when performing the learning process. The teacher must be
able to answer the following two types of queries:

• Membership queries M E M(v): Given a valuation v over X, if λ[v] = T (true), the teacher returns yes to the learner.
Otherwise, it returns no.

• Equivalence queries E Q (h): Given a candidate Boolean function h over X, if the candidate h is equivalent to the target
function λ, the teacher returns yes. Otherwise, the teacher returns a valuation of v over X such that h[v] �= λ[v]. The
valuation v serves as a counterexample to the equivalence query.

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 5
Consider an example where λ(x, y) = (¬x ∧¬y) ∨(x ∧¬y) is the target Boolean function over x and y. The teacher returns
no to the membership query M E M(v), where v(x) = F , and v(y) = T (denoted by v(xy) = F T) because λ(F T) = F . With
another valuation v(xy) = F F , the teacher answers yes. Later, the learner generates a candidate h((x, y)) = ¬x ∧ ¬y and
sends an equivalence query E Q (h) to the teacher for the candidate h(x,y) = ¬x ∧ ¬y. The teacher provides the valuation
v(xy) = T F as a counterexample to the leaner because h[v] = F �= T = λ[v]. Based on this counterexample, the learner
generates another candidate h′(x,y) = (¬x ∧¬y) ∨ (x ∧¬y) and then sends a new equivalence query E Q (h′) to the teacher.
This time, the teacher returns yes to the learner and the learning process stops.

Consider a Boolean function of λ(X) over X. Let |λ(X)|DN F and |λ(X)|C N F be the corresponding size of λ(X) in the minimal
disjunctive and conjunctive normal forms, respectively. The CDNF algorithm can learn representations of any target Boolean
function in a polynomial number of queries in |λ(X)|DN F , |λ(X)|C N F , and |X| [10].

3.2. The CDNF–based assumption generation algorithm

This section presents the CDNF–Based assumption generation algorithm [13], referred to as CBAG algorithm. Based on
this algorithm, the LWAG algorithm is presented in Section 4. We start with some core algorithms that will be integrated in
CBAG algorithm to generate assumptions [13]. These algorithms are membership query answering algorithm (Algorithm 1
- OMQ algorithm), equivalence query answering algorithm (Algorithm 2 - EQ algorithm), and an algorithm that checks
whether a counterexample α can be used to learn a better candidate assumption or if α is a real counterexample to the
fact that M0 ‖ M1 �|= π (Algorithm 3 - IW algorithm). The correctness of these algorithms was proved by Chen et al. [13].

3.2.1. The original membership query answering algorithm
This section presents the OMQ algorithm to resolve the membership queries for both the C DN F ι and C DN Fτ learning

instances [13]. The pseudo code for the algorithm is shown in Algorithm 1, where the input is a type parameter (which
can be either ι or τ) and a valuation v (which can be either one valuation μ or a pair of valuations (μ, μ′) respectively)
as input. When the type = ι, then OMQ algorithm will check whether θ1 = ι1(μ) = T (line 1); otherwise, it checks whether

Algorithm 1 (OMQ algorithm) IsMember(type, v).
Input: (ι, μ): a membership query for the target ιA(X); or (τ , (μ, μ′)): a membership query for the target τA(X1, X1

′)
Output: yes or no

1: if θ1(v) = T then � When type is ι, θ1 is ι1; when type is τ , θ1 is τ1

2: return yes
3: else
4: return no
5: end if

θ1 = τ1(μ, μ′) = T (line 1). When θ1(v) = T , OMQ algorithm returns yes to the learner; otherwise, it returns no.

3.2.2. The original equivalence query answering algorithm
When both C DN F instances implemented in the learner have their own candidate functions ι and τ , the learner

will send an equivalence query to the teacher. The EQ algorithm presented in Algorithm 2 is implemented in the
teacher to answer the equivalence query from the learner. EQ algorithm starts by constructing the candidate assump-

Algorithm 2 (EQ algorithm) IsEquivalent(ι, τ).
Input: E Q (ι): an equivalence query for the target ιA(X1); E Q (τ): an equivalence query for the target τA(X1, X′

1);
Output: yes, or continue and a counterexample to E Q (ι), or continue and a counterexample to E Q (τ)

1: Let C be the transition system (X1, ι1(X1), τ1(X1, X′
1));

2: if ι1(X1) ∧ ¬ι(X1) is satisfied by μ then
3: Answer E Q (ι) with the counterexample μ;
4: return continue;
5: end if
6: if τ1(X1, X′

1) ∧ ¬τ (X1,X′
1) is satisfied by μμ′ then

7: Answer E Q (τ) with the counterexample μμ′;
8: return continue;
9: end if

10: if M0 ‖ C |= π then
11: Answer E Q (ι) with yes;
12: Answer E Q (τ) with yes;
13: return yes and report “M0 ‖ M1 |= π ”;
14: else
15: Let α be a witness to M0 ‖ C �|= π ;
16: Call IsWitness(α);
17: end if

tion C = (X1, ι1(X1), τ1(X1, X′)) in line 1. It then checks whether a valuation μ exists in which ι1[μ] ∧ ¬ι[μ] = T (line 2).
1

6 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
Fig. 1. CBAG algorithm.

If so, then μ is returned to the C DN F ι instance as a counterexample for it to learn a new candidate initial function ι′
(line 3) and continue is returned to the learner (line 4). When there is a candidate function ι for which there is no valua-
tion μ that ι1[μ] ∧ ¬ι[μ] = T , the candidate function of ι is a satisfied initial function for ιA . Next, the algorithm checks
whether a pair (μ, μ′) exists in which τ1[μ, μ′] ∧¬τ [μ,μ′] = T (line 6). If the answer is yes, the algorithm returns (μ, μ′)
as a counterexample for the C DN Fτ instance to learn another candidate function τ ′ (line 7) and continue to the learner
(line 8). Otherwise, the candidate function of τ is a satisfied transition function for τA . The last step is to check whether
the candidate assumption C satisfies the Assume-Guarantee rule in Definition 5 (line 10). If so, the algorithm returns both
C DN F instances with yes (lines 11 and 12), returns yes to the learner, and reports “M0 ‖ M1 |= π ” (lines 13). Otherwise,
let α be the witness to M0 ‖ C �|= π ; the algorithm calls IsW itness(α) (i.e., IW algorithm) to check whether α can be the
counterexample for ι, τ ; otherwise, it witnesses the fact that M0 ‖ M1 �|= π .

3.2.3. The original witness analysis algorithm
When M0 ‖ C �|= π is witnessed by a counterexample α, it is required IW algorithm (presented in Algorithm 3) to analyze

whether α can be returned to either C DN F ι , C DN Fτ or whether it actually witnesses that M0 ‖ M1 �|= π . IW algorithm

Algorithm 3 (IW algorithm) IsW itness(α).
Input: α is a witness to M0 ‖ C �|= π
Output: continue and a counterexample to E Q (ι), or continue and a counterexample to E Q (τ), or no to the learner and a counterexample

1: Let α �X1 = μ0μ1...μt ;
2: if ι1[μ0] = F then
3: Answer E Q (ι) with the counterexample μ0;
4: return continue;
5: end if
6: for i := 1 to t do
7: if τ1[μi−1, μi] = F then
8: Answer E Q (τ) with the counterexample μi−1μi ;
9: return continue;

10: end if
11: end for
12: return no + α and report “M0 ‖ M1 �|= π is witnessed by α”;

starts by restricting α on X1 in line 1. Let μ0μ1...μt be the result. Then, it checks whether ι1[μ0] = F , and finally, it
returns μ0 to the C DN F ι so that this instance can learn another better candidate initial function ι′ (line 3) and continue
to the learner (line 4). When ι1[μ0] = T , the algorithm continues to find a couple of valuations μi−1, μi ∈ {μ0, μ1, ..., μt},
such that τ1[μi−1, μi] = F (line 7). This pair (μi−1, μi) will be returned to the C DN Fτ so that this instance can learn
another, better transition function τ ′ (line 8) and continue to the learner (line 9). When no such couple (μ, μ′) exists, the
algorithm returns no + α and reports that “M0 ‖ M1 �|= π is witnessed by α” and stops (line 12).

3.2.4. The original assumption generation algorithm
The CBAG algorithm creates a learner with two instances of the CDNF algorithm [10], called instances C DN F ι and

C DN Fτ . These instances interact with a teacher, which is where OMQ, EQ, and IW algorithms are implemented. An overview
of CBAG algorithm is shown in Fig. 1. Flowcharts are used to present both CBAG and LWAG algorithms because of the big
complexity of these algorithms which contain both C DN F ι and C DN Fτ instances with other assumptions related compu-
tation. Note that we use the notation A = (ιA, τA) as a brief representation of the contextual assumption to be generated
as defined in Definition 6. Hereafter, we also use arrows with empty head () to show data-flow, and arrows with solid
head () to show control-flow.

In CBAG algorithm, the two Boolean functions of ιA and τA are initialized in step 1 with T (true). For each of the
conjectures (ιA, τA) (i.e., an assumption candidate), the learner sends the teacher an equivalence query in step 2. EQ

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 7
Table 2
Implication operation truth table.

θ γ θ → γ

F F T
T F F
F T T
T T T

algorithm is implemented in this step in the teacher to answer the learner. If the teacher returns yes, the algorithm stops
and returns the conjecture (ιA, τA) as the needed assumption. If the teacher returns no and a counterexample (cex) after
analyzing that the given system violates the property, the algorithm also stops and returns no and cex. This answer means
that the given system violates the property with a counterexample cex. After analyzing in IW algorithm that using the
counterexample cex can generate another candidate function, if the teacher returns continue and a counterexample cex to
either C DN F ι or C DN Fτ , the learner will use cex to learn a new corresponding candidate function (either ιA or τA) (step
3). In this step, the learner interacts with the teacher which uses OMQ algorithm to answer the learner (step 4). When it
finishes learning and creating a new conjecture, the learner will ask a new equivalence query by returning to step 2. This
loop (from step 2 to 4) is repeated until the teacher returns either yes or no and cex.

Although CBAG algorithm can nicely generate assumptions, it does not support system verification in the context of soft-
ware evolution. If we simply use the method to generate assumptions as described in the framework proposed by Hung
et al. [33], there will be no reduction in the number of times assumptions need to be regenerated. Consequently, during
system change, this process involves significant effort when rechecking modified systems as they evolve daily during their
development cycle. The sections below describe a way to reduce the number of times assumptions must be regenerated by
generating weaker assumptions than those generated by CBAG algorithm and integrating those assumptions into a frame-
work for rechecking modified systems.

4. A local weakest assumption generation method

4.1. An improved technique for answering membership queries

As shown above in Section 3.1, in CDNF algorithm, the generated Boolean function depends on how the teacher answers
membership queries and whether yes or no (i.e., λ[v] = T or λ[v] = F , respectively) are returned to the learner. As a result,
to improve the CDNF–based assumption generation method, we first need to focus on improving the technique by which of
the teacher answers the learner.

After analyzing OMQ algorithm together with Table 2, we observe that the answering technique in this algorithm can be
improved as follows. The relationship between M1 and A in Definition 6 implies that ιM1 (X1) → ιA(X1) and τM1 (X1, X′

1) →
τA(X1, X′

1). Table 2 shows a truth table of the implications of the Boolean operation, where θ and γ are two arbitrary
Boolean functions. From Table 2, we can see that the technique to answer membership queries in Algorithm 1 is correct,
but does not cover all the cases where the answer can be yes. To find that θ → γ = T , a result of θ = T (true) guarantees
that γ = T ; however when θ = F (f alse), there is still a case where γ = T . Based on this observation, an improved version
of OMQ algorithm is presented in Algorithm 4 - IMQ algorithm. A new symbol, question, is returned to the learner when
θ = F , whereas θ is either ι1(X1) or τ1(X1, X′

1) (line 4). The learner will first make a copy of the learning status before

Algorithm 4 (IMQ algorithm) ImprovedIsMember(type, v).
Input: (ι, μ): a membership query for the target ιA(X); or (τ , (μ, μ′)): a membership query for the target τA(X1, X1

′)
Output: yes or question

1: if θ[v] = T then � When type is ι, θ is ι1; when type is τ , θ1 is τ1

2: return yes
3: else
4: return question
5: end if

treating the question results as a yes to generate the candidate function. Then, it sends equivalence queries to the teacher.
When the candidate does not satisfy the assume-guarantee rule in Definition 5, it retrieves the previously stored learning
status and treats the corresponding question result as a no, at which point it starts the learning process again. However,
when θ = T , the algorithm returns yes to the learner in the same way as OMQ algorithm (line 2).

4.2. A backtracking local weakest assumption generation algorithm

Using the improved answering technique to membership queries in IMQ algorithm, this section shows a backtracking
algorithm, known as LWAG algorithm, that generates weaker assumptions than those generated by CBAG algorithm shown
in Section 3. LWAG algorithm is shown in Fig. 2. A correctness proof of LWAG algorithm will be presented in Section 4.3.

8 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
Fig. 2. LWAG algorithm to generate local weakest assumptions for CBSs.

The key idea of LWAG algorithm is to perform a “try” operation to learn either an initial or transition Boolean function
(ιA or τA) for each question membership query result from the teacher. Initially, the question result is considered as a
“yes”. When an attempt is unsuccessful, the algorithm backtracks one step and considers the question result as a “no”. The
algorithm then restarts the learning process with the newly considered as “no” membership query result. To be able to
backtrack one step after an unsuccessful attempt, we need to make a copy of the learning status of the CDNF algorithm
before treating the question result as “yes”, allowing it to backtrack and restore the learning process later.

In LWAG algorithm, the learner initializes the initial function ιA and transition function τA of the candidate assumption
(conjecture) to be generated with T (true) in step 1. Subsequently, for each conjecture of (ιA, τA), the learner sends the
teacher an equivalence query (step 2). The teacher uses EQ algorithm to check whether the conjecture satisfies the assume-
guarantee rules in Definition 5. If the teacher returns a yes answer, the algorithm terminates and returns yes and the
conjecture (ιA, τA) as the needed assumption. If the teacher returns continue and cex after the analysis, using the cex, the
learner will generate a new candidate Boolean function. Depending on whether cex is for C DN F ι or C DN Fτ , the learner
will make a copy of the status of the corresponding learning process (i.e., the CDNF algorithm’s status for learning ιA or
τA) (step 6) before learning a new function (ιA or τA) (conjecture function) for the next conjecture (step 7). In step 7, the
learner interacts with the teacher which is using IMQ algorithm while “walking” (step 8) to learn a new conjecture function.
During walking, the learner first treats a question result as a yes to generate a conjecture function. The learner also stores
membership query results returned from the teacher in a list that can be checked later. When the learner finishes learning
a new conjecture, it comes back to step 2 to ask the teacher the corresponding equivalence query. If the teacher returns
no and a counterexample cex after determining that the given system violates the given property, then the learner checks
whether any membership query result exists with a question result (step 3). If yes, this means that the corresponding
valuation is not a member of the target conjecture function. The learner will change the corresponding question to no (step
4), return to the previous step and start the learning process again from the backed-up status by considering the question
result as a yes (step 5). Note that the learner will still interact with the teacher by sending membership queries while
walking (step 8), but it will not repeat the membership queries for valuations that have already been asked. For each a
new conjecture, the learner will return to step 2 to ask a new equivalence query for the newly created conjecture. If the
teacher returns no and cex after determining that the given system violates π , but no membership query result of question
exists in the list of results, then all the possible cases have been tried in which a valuation μ (or μμ′) is such that when
ι1[μ] = F (or τ1[μ, μ′] = F), the corresponding ιA[μ] = T (or τA[μ, μ′] = T), but without success. Consequently, no suitable
assumption can be found for the given M0, M1, and π . At that point, the algorithm returns no and cex and terminates.

4.3. Correctness

LWAG algorithm was developed based on CBAG algorithm, in which each of the learning steps is actually an attempt to
learn either an initial or transition Boolean function (ιA or τA). When an attempt does not successfully generate a satisfied
conjecture, the learner backtracks to the step before the attempt to learn a new conjecture, which is why it is called a
backtracking algorithm. Each attempt actually contains a part of CBAG algorithm – the learning process that starts at step
4 of LWAG algorithm. The algorithm changes one question result to no and learns a new conjecture, which it then uses to
send the teacher the first equivalence query, and so on.

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 9
To prove the correctness of LWAG algorithm, we follow the three steps below to prove its soundness, completeness, and
termination. Let Mi = 〈Xi, ιi(Xi), τi(Xi, X′

i)〉 be transition systems for i = 0, 1 and π be a state predicate over X = X0 ∪ X1.
We have the following lemmas.

Lemma 1 (Soundness).

1. Let ι(X1) and τ (X1, X′
1) be Boolean functions over X1 and X1 ∪ X′

1 , respectively. If LWAG algorithm reports yes, then M0||M1 |= π
and A = 〈X1, ι(X1), τ (X1, X′

1)〉 is the corresponding assumption.
2. Let ι(X1) and τ (X1, X′

1) be Boolean functions over X1 and X1 ∪ X′
1 , respectively. If LWAG algorithm reports no and cex, then that

cex is the witness to M0||M1 �|= π .

Proof. When LWAG algorithm reports yes in step 2, it has verified that the conjecture A = 〈X1, ιA(X1), τA(X1, X′
1)〉 is actu-

ally a required assumption using EQ algorithm (step 2). Based on the correctness of that algorithm, we have M0||M1 |= π .
In contrast, when the algorithm reports no and cex (step 3 returns no), it has verified that the list of membership query
results contains no question result, which means there is no difference between the results returned by OMQ algorithm
and the results returned by IMQ algorithm. Therefore, the same conjecture as in CBAG algorithm has been submitted to EQ
algorithm for an equivalence query. Consequently, the answer no and cex is correct and the cex is the witness to M0||A �|= π
by the correctness of EQ algorithm. When the teacher returns continue and a counterexample cex that the learner can
use to generate a new Boolean function candidate after analyzing in IW algorithm, the algorithm continues creating new
conjecture functions and submitting them to the teacher (steps 6 and 7). The algorithm terminates in the two cases de-
scribed above, where the teacher returns either yes or no and cex and there is no question result in the list of membership
query results. �
Lemma 2 (Completeness).

1. If M0||M1 |= π , then LWAG algorithm reports yes for some Boolean functions ι(X1) and τ (X1, X′
1) over X1 and X1 ∪ X′

1 , respec-
tively.

2. If cex is a witness to M0||M1 �|= π , then LWAG algorithm reports no and cex for some Boolean functions ι(X1) and τ (X1, X′
1) over

X1 and X1 ∪ X′
1 , respectively.

Proof. When M0||M1 |= π , based on the correctness of CBAG algorithm, there exists a ι(X1) and τ (X1, X′
1) such that a

conjecture of A = 〈X1, ι(X1), τ (X1, X′
1)〉 satisfies the rule in Definition 6. Because EQ algorithm returns yes, LWAG algorithm

also returns yes (step 2). In contrast, when cex is a witness to M0||M1 �|= π , we consider the following two cases. When
some question results exist in the membership query result list (i.e., step 3 returns yes), the algorithm will not return
the verification result yet. Instead, it continues setting one of the question results to no (step 4) and trying to learn new
conjecture functions (step 5). This process repeats until no question result remains in the list. In this case, the conjecture
submitted to EQ algorithm is the same as in CBAG algorithm. If the algorithm still returns no and cex, this response is
equivalent to returning a witness of cex to the original learner to witness the fact that M0||M1 �|= π (step 3 returns no). In
that case, LWAG algorithm returns no and cex for the conjecture functions of ι(X1) and τ (X1, X′

1). Alternatively, when the
teacher returns continue and a counterexample cex that the learner can use to learn a better candidate Boolean function
after analyzing, the algorithm continues running to create new conjecture functions and submitting new conjectures to the
teacher (steps 6, 7 and then 2). This process repeats until the teacher returns either yes or no and a counterexample cex
that witnesses the fact that M0||M1 �|= π . Thus, these are the same as the above two described cases in which the algorithm
returns yes or no and cex. �
Lemma 3 (Termination). LWAG algorithm terminates in a finite number of membership queries and equivalence queries.

Proof. CBAG algorithm terminates within a polynomial number of queries in |ι1(X1)|DN F , |ι1(X1)|C N F , |τ1(X1, X′
1)|DN F ,

|τ1(X1, X′
1)|C N F , and |X1| [13]. In LWAG algorithm, if the teacher returns yes (step 2), then the algorithm stops. If the

teacher returns a no result and a counterexample cex with which the learner cannot learn another Boolean function for
a new conjecture (i.e., a check for “violation?” returns yes) (a real counterexample), the learner will update one question
result to no (if any exist) (step 3) and continues trying to learn another conjecture (steps 4 and 5). If the query continues
to return a no result and a real counterexample, eventually, there will be no more question responses in the member-
ship query result list because the number of question results in the list is finite. At that point, the algorithm terminates
thanks to the correctness of CBAG algorithm presented in Section 3. Otherwise, when the teacher returns continue and a
counterexample cex with which the learner can learn a new Boolean function for a new conjecture after analyzing (i.e., a
check for “violation?” returns no), the algorithm continues running, creating new conjecture functions and submitting new
conjectures to the teacher (steps 6 and 7). This process repeats until the teacher returns either yes or a no result and a real
counterexample cex. The number of steps needed to create conjecture functions is also finite because the CDNF algorithm
can learn any Boolean function in a finite number of steps [10]. Therefore, the process for generating a new conjecture will

10 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
Fig. 3. Relationships among L(A O), L(AN), and L(AW).

terminate in a finite number of steps. Eventually, this case becomes one of the above two described cases and the algorithm
will terminate. �
Lemma 4 (Complexity). In the worst case, LWAG algorithm terminates in n2.SizeDN F .SizeC N F membership queries and
∑SizeDN F .SizeC N F

i=1 (SizeDN F .SizeC N F − i + 1) equivalence queries to learn the corresponding ιA or τA function.

Proof. To implement LWAG algorithm, we need to implement two learner instances using the CDNF algorithm [10] to learn
ιA and τA . CBAG algorithm requires SizeDN F .SizeC N F equivalence queries and n2.SizeDN F .SizeC N F membership queries to
learn one Boolean function, where n is the basis size [10]. In LWAG algorithm, to learn the ιA or τA function (because the
learner stores previous membership query results) the total number of membership queries is the same as CBAG algorithm
in the worst case, which is n2.SizeDN F .SizeC N F . With each counterexample cex returned from an equivalence query, the
algorithm creates a backtracking point by backing up the status of the corresponding CDNF algorithm (step 6). Therefore,
we will have SizeDN F .SizeC N F − 1 backtracking points. This is because the last answer from the teacher will be a real coun-
terexample (a counterexample from which the learner cannot learn another Boolean function to create a new conjecture),
and the learner will not create a backtracking point for this answer. For each backtracking point, the learner needs to turn
some question membership query answers to no (step 4) and then send the teacher a new equivalence query (steps 5
then 2). In the worst case, with the ith backtracking point (where 1 ≤ i < SizeDN F .SizeC N F), the algorithm will require
SizeDN F .SizeC N F − i + 1 equivalence queries. This is because we need SizeDN F .SizeC N F equivalence queries to learn the
function at step ith in total – but we already asked i − 1 equivalence queries before each step. Therefore, in total, and in the
worst case, we will need

∑SizeDN F .SizeC N F
i=1 (SizeDN F .SizeC N F − i + 1) equivalence queries. This complexity is clearly greater

than the complexity of CBAG algorithm. �
From Lemma 4, the worst-case complexity of LWAG algorithm is greater than that of CBAG algorithm. In regards to the

average-case complexity, the experiment results presented in Section 6 show that LWAG algorithm takes longer to generate
assumptions than CBAG algorithm. However, in general, there are some scenarios where LWAG algorithm is faster than CBAG
algorithm. In such cases, the best-case complexity of LWAG algorithm is less than that of CBAG algorithm.

Lemma 5 (Language relationship). Let A O , AN , and AW be assumptions generated by CBAG algorithm, LWAG algorithm, and the
weakest assumption, respectively. The relationship among L(A O), L(AN), and L(AW) is as follows: L(A O) ⊆ L(AN) ⊆ L(AW).

Proof. We consider the following cases to prove the correctness of Lemma 5. Because AW is the weakest assumption, we
always have L(AN) ⊆ L(AW). In the case where no question result exists when the teacher answers yes to the equivalence
query, the final assumption is the same as the assumption generated by CBAG algorithm. Therefore, in this case, L(AN) is
equal to L(A O). The last case is the case where some question results exist when the teacher answers yes to the equivalence
query. From Table 2, this means the cases in which X = F but Y = T is integrated into the final accepted Boolean functions
of ιA and τA . To prove L(A O) ⊆ L(AN), we prove that ∀α ∈ L(A O), we also have α ∈ L(AN), where α = μ0μ1...μt ∈ L(A O).
According to the T race definition, we have ιA O [μ0] = T and τA O [μi, μi+1] = T for 0 ≤ i < t . From OMQ algorithm, we have
ι1[μ0] = T and τ1[μi, μi+1] = T for 0 ≤ i < t . Moreover, thanks to IMQ algorithm, we have ιAN [μ0] = T and τAN [μi, μi+1] =
T for 0 ≤ i < t . This means that ∀α : α ∈ L(AN). That is L(A O) ⊆ L(AN). Fig. 3 illustrates the relationships among L(A O),
L(AN), and L(AW). �
Lemma 6 (Local weakest assumption). Assume that LWAG algorithm does not return the assumption immediately after obtaining the
first satisfied assumption; instead, it continues running to find all possible assumptions until all of the question results have been
changed into no results in the list.

Let A be the above set of assumptions and A be the first generated assumption. A is the local weakest assumption in A (Remark 1).

Proof. Let the first-found assumption be AN W and an arbitrary assumption found by LWAG algorithm after AN W be AN .
Let the list of membership query results corresponding to AN W and AN be ListN W and ListN , respectively. We prove that
L(AN) ⊆ L(AN W). To do this, we prove that ∀α ∈ L(AN); we also have α ∈ L(AN W), where α = μ0μ1...μt ∈ L(AN). According
to the T race definition, we have ιAN [μ0] = T (true) and τAN [μi, μi+1] = T for 0 ≤ i < t . In LWAG algorithm, when it reaches
a satisfied assumption, the algorithm already considers all the existing question results in the list as yes (steps 5 and
7). Because AN W is the first found assumption, assume that AN is found after n steps of changing question result to no,
where n > 0. We can easily see that all the yes items in ListN also exist in ListN W . Therefore, we have ιANW [μ0] = T
and τANW [μi, μi+1] = T for 0 ≤ i < t . Consequently, we obtain α ∈ L(AN W). The relationship between ListN W and ListN is

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 11
Fig. 4. The relationship between ListNW and ListN .

shown in Fig. 4 (where the question results are represented as question mark (“?”) symbols). We can see that after some
steps of changing a question result to no (step 4) in ListN W , we will have ListN . �

Thus far, we have presented LWAG algorithm that uses an improved technique to answer membership queries. This
algorithm generates weaker assumptions than those generated by CBAG algorithm. Although LWAG algorithm has a greater
complexity than does CBAG algorithm, the generated assumptions can reduce the number of times assumptions must be
regenerated when rechecking a modified system in the context of software evolution. In the long run, where most of the
effort is spent on software maintenance, this will significantly reduce the verification cost for rechecking evolving systems,
especially large-scale systems. To reduce the verification cost of evolving systems, Section 5 shows an effective framework
for using these weaker assumptions to recheck evolving CBSs.

5. A framework for modular verification of evolving CBS

In practice, when software verification cost increases daily because of software evolution which can happen all time
during software life cycle, more reusable assumptions, such as weak assumptions, play an important role in reducing ver-
ification cost by being used in the framework presented in this section. The empirical results shown in Section 6 clearly
indicates the effectiveness of using weak assumptions when rechecking evolved software.

Consider a CBS M that contains two components M0 and M1. Assume that M0 is a type of static framework component
that remains unchanged during the software life cycle. M1 is a business/extension component that is supposed to change
during software evolution. Let A be an assumption under which M satisfies a predicate π . When software is modified, there
are several types of change that we must consider, as follows.

1. When some existing behaviors of M1 are removed, it becomes M ′
1 with L(M ′

1) ⊆ L(M1). Then, we already have L(M ′
1) ⊆

L(A) because L(M1) ⊆ L(A). Therefore, the assumption will not need to be regenerated.
2. When updating some existing behaviors of M1, it becomes M ′

1 with L(M ′
1) ⊆ L(M1). In this case, we already have

L(M ′
1) ⊆ L(A) because L(M1) ⊆ L(A). Therefore, the assumption will not need to be regenerated.

3. When updating some existing behaviors of M1, it becomes M ′
1 with L(M ′

1) � L(M1) and L(M ′
1) ⊆ L(A). This assumption

will not need to be regenerated.
4. When updating some existing behaviors of M1, it becomes M ′

1 with L(M ′
1) � L(M1) and L(M ′

1) � L(A); therefore, the
assumption will need to be regenerated.

5. When adding some new behaviors to M1, it becomes M ′
1 with L(M ′

1) ⊆ L(M1); however, we already have L(M ′
1) ⊆ L(A)

because L(M1) ⊆ L(A). Therefore, the assumption will not need to be regenerated.
6. When adding some new behaviors to M1, it becomes M ′

1 with L(M ′
1) � L(M1) and L(M ′

1) ⊆ L(A). The assumption will
not need to be regenerated.

7. When adding some new behaviors to M1, it becomes M ′
1 with L(M ′

1) � L(M1) and L(M ′
1) � L(A). Therefore, this as-

sumption will need to be regenerated.

From the above types of change, we can see that numbers 4 and 7 require A to be regenerated because L(M ′
1) � L(A).

Therefore, the greater L(A) is, the greater L(M ′
1) can be such that L(M ′

1) ⊆ L(A) (i.e., more behaviors can be added to M1
such that L(M ′

1) ⊆ L(A)). Consequently, the greater L(A) is (i.e., the weaker A is), the more cost of software verification can
be reduced because the number of times that A can be reused is increased. Consequently, weak assumptions play a key role
in reducing the software verification cost in the context of software evolution.

As shown in Section 4, the assumption generated by LWAG algorithm AN is weaker than the assumption A Org generated
by CBAG algorithm. Therefore, in the context of software evolution, the assumption AN can be used for modular verification
in modified CBSs to reduce the verification cost as shown in Fig. 5.

As proposed in the framework by Hung et al., the previous assumption A Org can be reused when verifying CBS with
modified M1 [33]. This situation is much better than the one in which we need to restart the assumption learning process all
over again from the beginning. Using LWAG algorithm presented in Section 4, the generated assumption AN has L(A Org) ⊆
L(AN). As a result, by using AN as the starting point for verifying the modified CBS, we can reduce the number of times
that assumptions must be regenerated from A Org to AN as shown in Fig. 5.

12 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
Fig. 5. Reusing assumptions generated by LWAG algorithm for evolving CBS.

Fig. 6. The algorithm to regenerate assumption for evolving CBS.

5.1. The proposed framework

This section proposes a framework for verifying CBSs in the context of component change. This framework was developed
based on the framework proposed by Hung et al. [33,32]. The proposed framework is shown in Fig. 6 and has the following
steps.

Let M = M0||M1 be a component-based software, π be a predefined predicate, and AN be the assumption generated by
LWAG algorithm.

1. Here, Model M1 of a component-based software M0||M1 evolves during the software life cycle. Assume that M ′
1 is the

modified model of M1.
2. The previous assumption AN is used as the starting assumption for the reverification process. AN is checked to see if

M ′
1 � AN . If M ′

1 � AN , then M0||M ′
1 |= π because we already have M0||AN |= π . If M ′

1 � AN , then this step returns
f alse and a counterexample, cex.

3. The returned cex is analyzed to see if the modified system (M0||M ′
1) truly violates the property. If it does, then we have

M0||M ′
1 �|= π . Otherwise, we will need to generate a new assumption.

4. The new assumption Anew is generated using AN as a starting candidate, the counterexample cex, and M0. To avoid
learning assumptions that had been sent to the teacher, the learner needs to store required information for checking
candidate and membership queries duplication. This is a simple task and is not mentioned in both LWAG algorithm and
the framework shown in Fig. 6.

Although the framework in Fig. 6 shows the simple case in which the CBS is composed of only two component models
M0 and M1, we can generalize it to larger systems containing n-component models, M0, M1, ..., Mn , where n ≥ 2. Neverthe-
less, the framework for a larger system consists of similar steps as described above because we focus only on the modified
component models.

In 2016, He et al. proposed a fast assumption generation method [27] by learning the subpredicates of the assumption to
be generated simultaneously. However, even when using the assumptions generated by He et al.’s method, the framework
proposed by Hung et al. [33,32] still needs to regenerate the assumption every time even a small change occurs in the
component model. Thus, over the full software life cycle, even when using the more effective assumption generation method,
the regeneration cost may still be very high.

5.2. An example

This section shows an example of generating an assumption using LWAG algorithm and the framework shown in Sec-
tion 5.1 for verifying an evolving system. Consider a system M = M0||M1, where Mi = 〈Xi, ιi(Xi), τi(Xi, X′

i)〉 is a transition
system for i = 0,1, and π is a state predicate over X0 ∪ X1 as shown below. In this example, we use the notation “C DN F ι”
for the CDNF algorithm instance for learning ιA and “C DN Fτ ” for the CDNF algorithm instance for learning τA . We also use
(ιA, τA) to represent a candidate assumption without loss of generality.
XM0 = {1, 2},
X′

M0
= {3, 4},

ιM0 = (−1 ∧ −2),
τM0 = (−1 ∧ −2 ∧ −3 ∧ 4)|(−1 ∧ 2 ∧ 3 ∧ −4)|(1 ∧ −2 ∧ 3 ∧ 4)|(1 ∧ 2 ∧ −3 ∧ −4), and
XM1 = {5, 6},

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 13
Table 3
Generation of the first assumption using LWAG algorithm.

Step Action Result

Step 1 Set ιA = T , τA = T ιA = T , τA = T

Step 2 Ask Equivalence Query (EQ) for (ιA = T , τA = T) Return 0100 to C DN Fτ

Step 6 Backup status -

Step 7 Try to learn new τA ιA = T , τA = (6)

Step 2 Ask EQ for (ιA = T , τA = (6)) Return 0001 to C DN Fτ

Step 6 Backup status -

Step 7 Try to learn new τA ιA = T , τA = (6)|(8)

Step 2 Ask EQ for (ιA = T , τA = (6)|(8)) Return 0101 to C DN Fτ

Step 6 Backup status -

Step 7 Try to learn new τA ιA = T , τA = (6)|(8)|(6 ∧ 8)

Step 2 Ask EQ for (ιA = T , τA = (6)|(8)|(6 ∧ 8)) Return 0011 to C DN Fτ

Step 6 Backup status -

Step 7 Try to learn new τA . While learning, it asked ιA = T , τA = (6)|(8)|(6 ∧ 8)|(7)

membership query for 0010 and the answer is
question. This is first considered as T (True).

Step 2 Ask EQ for (ιA = T , τA = (6)|(8)|(6 ∧ 8)|(7)) Return 10 to C DN F ι

Step 6 Backup status -

Step 7 Try to learn new ιA ιA = (5),
τA = (6)|(8)|(6 ∧ 8)|(7)

Step 2 Ask EQ for (ιA = (5), τA = (6)|(8)|(6 ∧ 8)|(7)) Return 00 to C DN F ι

Step 6 Backup status: -

Step 7 Try to learn new ιA . While learning, it asked ιA = (5)|(−6),
membership query for 11 and the answer is τA = (6)|(8)|(6 ∧ 8)|(7)

question. This is first considered as T (True).

Step 2 Ask EQ for (ιA = (5)|(−6), τA = (6)|(8)|(6 ∧ 8)|(7)) Return yes

X′
M1

= {7, 8},
ιM1 = (−5 ∧ −6),
τM1 = (−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8)|(5 ∧ −6 ∧ 7 ∧ 8)|(5 ∧ 6 ∧ −7 ∧ −8),
π = (−1 ∧ −2 ∧ −5 ∧ −6)|(−1 ∧ 2 ∧ −5 ∧ 6)|(1 ∧ −2 ∧ 5 ∧ −6)|(1 ∧ 2 ∧ 5 ∧ −6)|(1 ∧ 2 ∧ 5 ∧ 6)|(1 ∧ −2 ∧ 5 ∧ 6)|(1 ∧ 2 ∧ −5 ∧
−6)|(1 ∧ 2 ∧ −5 ∧ 6).

5.2.1. Generating the first assumption
The first step of the proposed framework is to generate an assumption AN that satisfies Definition 6. Table 3 shows

how LWAG algorithm generates the assumption AN . From the result of LWAG algorithm shown in Table 3, the generated
assumption AN is as follows:
XAN = XM1 = {5, 6},
X′

AN
= X′

M1
= {7, 8},

ιAN = (5)|(−6), and
τAN = (6)|(8)|(6 ∧ 8)|(7).
In the meantime, the result of CBAG algorithm forms a stronger assumption, A O , as follows:
XA O = XM1 = {5, 6},
X′

A O
= X′

M1
= {7, 8},

ιA O = (−6), and
τA O = (6)|(8)|(6 ∧ 8)|(7 ∧ 8).

5.2.2. Verifying evolving systems
Consider the case in which M1 is modified by adding the predicate (−5 ∧ −6 ∧ 7 ∧ −8) to τM1 , causing M1 to become

the component M ′
1 as follows:

XM′
1
= {5, 6},

X′ ′ = {7, 8},

M1

14 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
Table 4
Generating an assumption for an evolving system using LWAG algorithm and the proposed framework.

Step Action Result

Step 2 Ask EQ for ((5)|(−6), (6)|(8)|(6 ∧ 8)|(7)) Return 1000 to C DN Fτ

Step 6 Make a copy of status -
Step 7 Try to learn new τA ιA = (5)|(6), τA = (6)|(8)|(6 ∧ 8)|(7)|(5)

Step 2 Ask EQ for ((5)|(−6), (6)|(8)|(6 ∧ 8)|(7)|(5)) Return yes

Table 5
Assumption generation methods comparison.

Test
cases

Common CBAG algorithm LWAG algorithm

B |X0| |X1| EQ I T Time (ms) Mem (B) |L(A O)| EQ I T Time (ms) Mem (B) |L(AN)|

TC1_0 4 2 2 8 2 1 3,093 1,371,782 70 11 1 1 4,032 1,401,310 177
TC2_0 4 2 2 8 2 2 1,475 1,472,883 94 10 1 1 1,737 1,458,893 182
TC3_0 4 2 2 6 2 2 1,665 1,284,175 30 10 1 1 3,007 1,405,921 163
TC4_0 4 2 2 6 2 2 1,649 1,359,926 30 10 1 1 2,808 1,441,094 163
TC5_0 4 3 3 10 5 5 31,486 1,711,054 340 18 3 3 117,112 1,704,387 3,343
TC6_0 4 4 4 18 9 10 1,457,649 5,511,856 4,680 34 7 7 6,697,195 5,760,382 59,455

ιM′
1
= (−5 ∧ −6),

τM′
1
= (−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8)|(5 ∧ −6 ∧ 7 ∧ 8)|(5 ∧ 6 ∧ −7 ∧ −8)|(−5 ∧ −6 ∧ 7 ∧ −8).

We can easily see that M ′
1 � AN but M ′

1 � A O . Therefore, there is no need to regenerate the assumption when AN is
used as a starting assumption in the proposed framework in Section 5.1. However, if A O were to be used as a starting
assumption in the framework, we would need to generate another assumption.

In the case where M1 is modified by adding the predicate (5 ∧ −6 ∧ −7 ∧ −8) to τM1 , M1 becomes the component M ′′
1

as follows:
XM′′

1
= {5, 6},

X′
M′′

1
= {7, 8},

ιM′′
1
= (−5 ∧ −6),

τM′′
1
= (−5 ∧ −6 ∧ −7 ∧ 8)|(−5 ∧ 6 ∧ 7 ∧ −8)|(5 ∧ −6 ∧ 7 ∧ 8)|(5 ∧ 6 ∧ −7 ∧ −8)|(5 ∧ −6 ∧ −7 ∧ −8).

We can see that M ′′
1 � AN and M ′′

1 � A O . Therefore, regardless of whether A O or AN is used as the starting assumption
in the framework, we will need to generate new assumptions. Table 4 shows how LWAG algorithm and the framework in
Section 5 are applied to verify the evolving system for the one mentioned in the beginning of Section 5.2 when M1 evolves
to be M ′′

1 .

6. Experiments

To evaluate the effectiveness of LWAG algorithm, experiments are performed to highlight two key points: (i) a comparison
between CBAG algorithm and LWAG algorithm and their corresponding generated assumptions; and (ii) a comparison of the
framework in Section 5.1 between the cases using the assumptions generated by CBAG algorithm and LWAG algorithm after
the software has been modified. Algorithms presented in Section 3 and Section 4 are implemented in C#.N E T and Microsoft
Visual Studio Community 2017. The verification tool is called AGVerifier; and is available from http://www.tranhoangviet .
name .vn /p /agverifier.html. AGVerifier is based on the CELL framework [36] and includes ready-to-use test cases. Those test
cases and the evolved ones are described in Section 6.1 and 6.2. We used a bounded model–checking approach to conduct
the experiments in which the bound B was selected so that the longest traces in both components of those test cases can
cover their transitions between all their states. The experiments are performed on a machine with following specifications:
Microsoft Windows 10 Home edition operating system, Intel Core i5-5200U 2.2 Ghz CPU, 8.00 GBs RAM memory. To present
reliable experimental results, each test case are performed 10 times and the average results are reported in Table 5 and
Table 6.

6.1. Assumption generation algorithms comparison

To compare CBAG algorithm with LWAG algorithm with the corresponding generated assumptions, we used the same
test data for both and compared the same key indicators: the number of equivalence queries for assumption candidates, the
number of membership queries for the initial and transition functions, the time needed to generate assumptions, memory
usage, and the size of the languages of the generated assumptions. We performed experiments with the following systems.

• Candy Packaging Line Controller The candy packaging line controller (denoted by TC1) is a system that controls the
process of candy packaging. The controller is a part of one of our national projects. The design of this controller is
based on the system called Simple Communication Channel from Cobleigh et al.’s paper [19]. The controller consists of

http://www.tranhoangviet.name.vn/p/agverifier.html
http://www.tranhoangviet.name.vn/p/agverifier.html

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 15
Table 6
The generated assumptions comparison in software evolution context.

Test
cases

CBAG algorithm LWAG algorithm

EQ I T Time(ms) Mem (B) |L(AR O)| EQ I T Time(ms) Mem (B) |L(ARN)|
TC1_0.1 - - - - - - - - - - - -
TC1_0.2 3 0 1 620 1,526,210 108 - - - - - -
TC1_0.3 2 0 0 376 1,546,480 108 2 0 0 680 1520334 215
TC1_0.4 3 0 1 610 1,403,568 108 - - - - - -
TC1_0.4.1 3 0 1 629 1,270,924 108 - - - - - -
TC2_0.1 2 0 0 211 1,439,318 115 - - - - - -
TC2_0.1.1 2 0 0 215 1,565,050 115 - - - - - -
TC2_0.1.2 2 0 0 219 1,332,717 115 - - - - - -
TC2_0.1.2.1 2 0 0 228 1,219,572 115 - - - - - -
TC3_0.1 5 0 3 981 1,533,133 96 - - - - - -
TC3_0.1.1 5 0 3 992 1,445,293 96 - - - - - -
TC3_0.1.1.1 6 0 6 1,250 1,439,177 132 5 0 3 1,775 1,525,369 208
TC3_0.1.1.1.1 5 0 3 998 1,597,769 96 - - - - - -
TC4_0.1 2 0 2 282 1,554,553 62 - - - - - -
TC4_0.1.1 2 0 2 278 1,701,371 62 - - - - - -
TC4_0.1.1.1 2 0 2 267 1,469,968 62 - - - - - -
TC4_0.1.1.1.1 2 0 2 259 1,633,011 62 - - - - - -
TC4_0.1.1.1.1.1 2 0 2 294 1,662,419 62 - - - - - -
TC5_0.1 - - - - - - - - - - - -
TC5_0.2 11 0 25 29,119 1,714,294 1,276 - - - - - -
TC5_0.2.1 10 0 19 25,036 1,699,504 1,276 - - - - - -
TC5_0.2.1.1 10 0 19 25,537 1,702,160 1,276 - - - - - -
TC5_0.2.1.1.1 9 0 18 21,508 1,713,168 1,276 - - - - - -
TC6_0.1 21 0 50 1,071,687 5,705,728 18,792 - - - - - -
TC6_0.1.1 21 0 49 1,096,787 5,735,795 18,792 - - - - - -
TC6_0.1.1.1 20 0 43 1,080,497 6,008,460 18,792 - - - - - -
TC6_0.1.1.1.1 20 0 43 1,051,336 5,292,621 18,792 - - - - - -
TC6_0.1.1.1.1.1 19 0 44 1,061,336 5,778,549 18,792 - - - - - -

two components M0 and M1. M0 has four states: in: candy is poured into a package; process: the package with candy
is weighed to see if its weigh is correct or not; send: the package with candy is sent to the section where it is soldered;
ack: the system finished soldering the candy package and it is ready to process other candy packages. M1 has four
states: process: the candy package is weighed to see if its weigh is correct or not; send: the candy package is sent to the
section where it is soldered; out: candy package information is displayed on user’s monitor; ack: the system finished
displaying information and it is ready to process other candy packages. We checked the property that all following
restrictions need to be satisfied: The system states must be in the following order: in → process → send / out →
ack; after a package is soldered or its information is displayed, candy can be poured into the next package; when the
system finished packaging the current package, candy can be poured into the next package or the next package can be
weighed or the next package can be soldered or the next package information can be displayed; the system can have
some spare time before candy can be poured into the next package. For this candy packaging line controller, we used
two Boolean variables to encode the states of M0 and M1 (i.e., |X0| = 2 and |X1| = 2).

• Waste sorting line controller The waste sorting line controller (denoted by TC2) is a system that controls the process
of sorting and processing waste into two categories of organic and inorganic. The controller is another part of the
national project mentioned above. The controller has two components M0 and M1. M0 has three states: in: an amount
of waste is put into the system and sorted; organic waste: waste is recognized to be organic; inorganic waste: waste is
recognized to be inorganic. M1 also has three states: sorted waste: sorted waste (either organic or inorganic) is received
and prepared to be processed; process: depends on the type of waste, it is passed to the recycling phase (inorganic
waste) or used to produce chemical fertilizers (organic waste); ack: waste processing is finished and the component
is ready to receive another amount of waste to work on. We checked the property that all following restrictions need
to be satisfied: an amount of waste can only be recognized as organic or inorganic after it is received and sorted; the
amount of waste can only be processed after it is sorted into either organic or inorganic; only after an amount of waste
is sorted and processed, the system is ready to receive another amount of waste to work on. For this waste sorting line
controller, we used two Boolean variables to encode the states of M0 and M1 (i.e., |X0| = 2 and |X1| = 2).

• Master / slave system The master / slave system (denoted by TC3) is one of the example system presented in Magee
and Kramer’s book [43]. This is a typical system where a master thread creates a slave thread to perform some tasks
such as I/O and continues its work. Later, the master synchronizes with the slave to get the result. The system consists
of two components M0 and M1. M0 (master) has four states: slave.start: the master created a new slave thread; rotate1:
the master does its own work; slave.join: the master synchronizes with the slave to get the result; rotate2: the master
does its own work and gets ready to create a new slave. M1 (slave) has three states: slave.start: the slave is started;
slave.rotate: the slave does its own work; slave.join: the master synchronized with the slave to get the result and then,
the slave is ready to be started again. We checked the property that all following restrictions need to be satisfied: after

16 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
the master starts a slave, it can wait for some time before doing its own work (rotate1); later, it can synchronize with
the slave to get the result; the master then can continue its own work (rotate2) and is ready to start a new slave.
For this master / slave system, we used two Boolean variables to encode the states of M0 and M1 (i.e., |X0| = 2 and
|X1| = 2).

• Simple communication channel The simple communication channel (denoted by TC4) is a common example system used
in Cobleigh et al.’s paper [19] that controls the process of receiving and sending message / data in a communication
channel. The channel has two components M0 and M1. M0 has three states: in: the channel received a message;
send: the message is sent to another channel; ack: the channel is ready to receive another message; M1 has three
states: send: the message is sent to another channel; out: the channel provides feedback to the monitor thread; ack: the
channel is ready to send another message. We tested the channel with a more complex safety property that all following
restrictions need to be satisfied: the channel can only send a message after it receives the message; the channel can
provide feedback to the monitor thread after it receives and sends a message; the channel is ready to receive another
message when it finished sending the previous message and providing feedback to the monitor thread. For this simple
communication channel, we used two Boolean variables to encode the states of M0 and M1 (i.e., |X0| = 2 and |X1| = 2).

• Simple communication channel - variant 1 The simple communication channel - variant 1 (denoted by TC5) is the same
as the simple communication channel used in Cobleigh et al.’s paper [19]. However, we used three Boolean variables to
encode the states of M0 and M1 (i.e., |X0| = 3 and |X1| = 3). This is to check the affection of the number of Boolean
variables inside a transition system to the verification process. This test case can also show that our proposed verifica-
tion method can be used to check software systems represented by Label Transition System (LTS) whose maximum sizes
can be size of component 0 ×size of component 1 ×(size of property +1) = |C0| ×|C1| ×|perr | = 23 ×23 ×(23 +1) = 576
[35]. An LTS C is a quadruple 〈Q , �, δ, q0〉, where: Q is a non-empty set of states; � ⊆ Act is a finite set of observable
actions called the alphabet of C ; τ represents the unobservable action of C to its environment; δ ⊆ Q ×� ∪{τ } × Q is a
transition relation; and q0 ∈ Q is the initial state. When we check whether an LTS C satisfies a required safety property
p, an error LTS, denoted by perr , is created which traps possible violations with the � state (i.e., the error state). perr of
a property p = 〈Q , �p, δ, q0〉 is 〈Q ∪ {�}, �p, δ′, q0〉, where δ′ = δ ∪ {(q, a, �) | a ∈ �p and � ∃q′ ∈ Q : (q, a, q′) ∈ δ}.

• Simple communication channel - variant 2 The simple communication channel - variant 2 (denoted by TC6) is the same
as the simple communication channel used in Cobleigh et al.’s paper [19]. However, we used four Boolean variables to
encode the states of M0 and M1 (i.e., |X0| = 4 and |X1| = 4). This is to check the affection of the number of Boolean vari-
ables inside a transition system to the verification process. This test case can also show that our proposed verification
method can be used to check software systems represented by Label Transition System (LTS) whose maximum sizes can
be size of component 0 × size of component 1 × (size of property + 1) = |C0| ×|C1| ×|perr | = 24 × 24 × (24 + 1) = 4352
[35].

Table 5 shows the results of the experiments. The columns “Test cases”, “B”, |X0|, and |X1| contain the test case short
name in which “_0” means version 0, the trace length’s bound number, and the sizes of the Boolean variable sets of M0
and M1, respectively. For example, in Table 5, “TC1_0” in line 1 indicates the experimental results for the version 0 of
TC1 (Candy Packaging Line Controller), and so on. For simplicity without loosing the generality of the proposed method,
the bound B was selected so that the longest traces in both components of those test cases can cover their transitions
between all their states. The columns “EQ”, “I”, “T”, “Time(ms)”, and “Mem(B)” are the number of equivalence queries,
the initial and transition membership queries, the time (in milliseconds), and the memory (in bytes) required to generate
assumptions, respectively. |L(A O)| and |L(AN)| are the sizes of the corresponding languages of the assumptions generated
by CBAG algorithm and the improved algorithm, respectively. We calculated |L(A O)| and |L(AN)| by counting the number
of traces in |L(A O)| and |L(AN)| with the bound shown in the “B” column of Table 5.

From the experimental results shown in Table 5, we can see that the number of queries for assumption candidates, initial
function candidates, and transition function candidates of the two algorithms are different; the assumptions generated by
LWAG algorithm are weaker than the assumptions generated by CBAG algorithm. However, LWAG algorithm takes longer
to generate the assumptions because it requires more processing (i.e., it must process more assumption candidate queries).
However, the amount of memory used by the two algorithms is similar.

6.2. The effectiveness of the generated assumptions in software evolution context

To compare the effectiveness of the assumptions generated by LWAG algorithm compared to those generated by CBAG
algorithm in a software evolution context, we implemented the proposed framework described in Section 5 for verifying
modified systems for the test cases shown in Table 5. When performing the experiments, we also measured the same key
indicators as presented in Section 6.1. However, we focus on different key information from the experimental results – that
is, whether a previous assumption can be reused when verifying modified systems (i.e., whether we can avoid regenerating
assumptions unnecessarily when verifying modified systems).

Table 6 shows the experimental results. “_x.n” indicates that “version x.n was evolved from version x”. For example, “TC1_0.1”
and “TC1_0.4.1” were evolved from versions “TC1_0” and “TC1_0.4”, respectively. In this table, test cases are modified
systems of those tested in Section 6.1, in all of which M0 was kept unchanged but M1 was modified from M1 of the
corresponding previous version. Details of the test cases in Table 6 are described below.

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 17
“TC1_0.1” – “TC1_0.4.1” are modified systems from “TC1_0”, in all of which M1 was modified from M1 of the previous
version by adding some behaviors as follows. In TC1_0.1, the system can only be ready for processing the next package when
the current package was weighed, soldered, and the system finished displaying information on user’s monitor. In TC1_0.2,
the system needs to satisfy the following requirements: after a candy package is weighed or soldered, the information is
displayed on user’s monitor and the system is ready to process another candy package; the information can be displayed
on user’s monitor for some time before processing another candy package; the system can be ready for some time before
it receives another package of candy. In TC1_0.3, when the system finished displaying information on user’s monitor, it can
receive another candy package. In TC1_0.4, after a package of candy is weighed, the information about the package can
be displayed on user’s monitor. In TC1_0.4.1, the information can be displayed on user’s monitor for some time before the
system is ready to process another candy package (e.g., it is waiting for command from user).

Similar to “TC1”, “TC2_0.1” – “TC2_0.1.2.1” are modified systems from “TC2_0” by adding some behaviors as follows. In
TC2_0.1, when the system finished processing a certain amount of waste, it is ready to receive another sorted amount of
waste to process. In TC2_0.1.1, the process of the current amount of waste can take some time before the system can be
ready for receiving another amount of sorted waste to process. In TC2_0.1.2, after processing a certain amount of waste, the
information is displayed on the screen of the user. Then, the system is ready to receive another amount of sorted waste to
process. In TC2_0.1.2.1, the process of the current amount of waste can take some time before the system can be ready for
receiving another amount of sorted waste to process.

“TC3_0.1” – “TC3_0.1.1.1.1” are modified systems from “TC3_0” by adding some behaviors as follows. In TC3_0.1, after the
slave is started, it can wait for some time before it starts doing its own work. When the slave finished doing its work, it
displays information to the screen of user before being synchronized with the master. In TC3_0.1.1, when the slave finished
displaying information to user’s screen, it can go back to do its own work. In TC3_0.1.1.1, when the slave finished displaying
information to user’s screen, it can wait for some time before being synchronized with the master or doing its own work.
In TC3_0.1.1.1.1, the slave can do its own work for some time before doing other works.

“TC4_0.1” – “TC4_0.1.1.1.1.1” are modified systems from “TC4_0” by adding some behaviors as follows. In TC4_0.1, when
the channel finished providing feedback to the monitor thread, it needs to inform user about the status before being ready
to send another message. In TC4_0.1.1, when the channel finished providing feedback to the monitor thread, it can be ready
to send another message. In TC4_0.1.1.1, when the channel finished providing feedback to the monitor thread, it can send
another message. In TC4_0.1.1.1.1, when the channel finished informing user about the status, it can provide feedback to the
monitor thread again. In TC4_0.1.1.1.1.1, when the channel can be ready for sending a new message for some time before it
actually sends the next message.

In TC5, although it is the same simple communication channel as TC4, different versions of M1 are tested as follows.
In TC5_0.1, when the channel finished providing feedback to the monitor thread, it needs to inform user about the status
before being ready to send another message or providing feedback to the monitor thread again. In TC5_0.2, after sending
a message, the channel can wait for some time before providing feedback to the monitor thread. In TC5_0.2.1, when the
channel finished providing feedback to the monitor thread, it needs to inform user about the status before being ready to
send another message. TC5_0.2.1.1, when the channel finished informing user about the status, it can provide feedback to
the monitor thread again. In TC5_0.2.1.1.1, when the channel is ready to send another message, it can provide feedback to
the monitor thread.

Finally, similar to TC5, TC6 are tested with different versions of M1 as follows. TC6_0.1 is the same as TC5_0.2.1 in TC5.
TC6_0.1.1 is the same as TC5_0.2.1.1 of M1 in TC5. TC6_0.1.1.1 is the same as TC5_0.2.1.1.1 of M1 in TC5. In TC6_0.1.1.1.1, the
channel provides feedback to the monitor thread for some time before doing other works. In TC6_0.1.1.1.1.1, the channel can
be ready for sending a new message for some time before it actually sends the next message.

In Table 6, “EQ”, “I”, “T”, “Time(ms)”, and “Mem (B)” are the number of equivalence queries, initial and transition mem-
bership queries, time (in milliseconds), and memory (in bytes) required to regenerate an assumption after reusing the first
assumption, respectively. |L(AR O)| and |L(ARN)| are the size of the corresponding languages of the assumptions regenerated
by CBAG algorithm and LWAG algorithm, and a minus sign (“-”) means that the assumption did not need to be regenerated
after M1 modified because the modified M ′

1 of M1 already has L(M ′
1) ⊆ L(ARN). Similar to the cases in the previous ex-

periment, we calculated |L(AR O)| and |L(ARN)| by counting the number of traces in |L(AR O)| and |L(ARN)| with the bound
shown in the “B” column of Table 5.

From the experimental results shown in Table 6, we can see that when using CBAG algorithm, in 26 out of 28 test cases,
we still need to regenerate the assumption after M1 is modified. In contrast, when using LWAG algorithm, in 26 out of 28
test cases, we do not need to regenerate the assumption after M1 is modified. This result implies that LWAG algorithm and
framework reduce the number of times assumptions must be regenerated after M1 evolves and shows they can reduce the
cost of modular verification of the modified CBS. The memory usage in both cases (using assumptions generated by CBAG
algorithm or using assumptions generated by LWAG algorithm) is similar.

6.3. Discussion

Although both LWAG algorithm and the proposed framework are presented for software with two components, the
method can be extended to be applied for larger systems (i.e., M = M0 ‖ M1 ‖ ... ‖ Mn , where n ≥ 2) as discussed in re-
searches of Chen et al. [13], Hung et al. [32], and Lin et al. [41]. On one hand, the assume-guarantee rule can be applied

18 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
recursively as follows: {M0 ‖ A1 � π ; M1 ‖ A2 � A1; ...; Mn−1 ‖ An � An−1; Mn � An} =⇒ M = M0 ‖ M1 ‖ ... ‖ Mn � π . This
method of applying LWAG algorithm has a high complexity since many assumptions need to be learned. On the other hand,
the given system M can be partitioned into two higher level components H0 = M0 ‖ ... ‖ Mi and H1 = Mi+1 ‖ ... ‖ Mn with
0 ≤ i < n to fit the assume-guarantee rule. For a given CBS M , the evolution can occur on some components of M . When
applying the proposed framework for M , we divide M into two higher level components H0 which contains unchanged
components and H1 which contains modified components. The application of the framework for M contains similar steps
as described in Section 5 because we only care about the modified component H ′

1 of H1.
When carrying out experiments, because of the limitations of test systems and the computing power of the experimen-

tal environment, we only performed experiments using some small systems. The results show considerable potential for
applying the proposed method to practical systems regarding the following aspects.

• The maximum values of |X0| and |X1| are 4. This means that these test cases can represent systems combined from
components and properties that have up to 24 = 16 states. As a result, we can verify software systems in which their
maximum sizes can be size of component 0 × size of component 1 × (size of property + 1) = |C0| × |C1| × |perr | =
24 × 24 × (24 + 1) = 4352 [35], where C0, C1, and p are represented by LTS. In addition, we care only about observable
actions of the components. This allows us to apply the proposed method to practical systems that have complex internal
implementations but have a limited number of observable actions, such as STS [47] and PLC [54]. This experimental
results indicate the reliable effectiveness when applying LWAG algorithm and the proposed framework to large scale
systems in practice.

• Although only some small test cases were used in the experiment, they clearly show that LWAG algorithm generates
weaker assumptions than those generated by CBAG algorithm. These test cases also show that the assumptions gener-
ated by LWAG algorithm can reduce the number of times that assumptions must be regenerated to verify of evolving
software. Although the time saved each time an assumption does not need to be regenerated is small, our approach can
be applied many times during the software life-cycle because change can occur at any time in any phase of the software
development process. As a result, the obtained benefit from our approach grows over time. Using this approach, the
framework is effective for verifying practical software.

• When testing with a large test case, such as test case 6 (T C6), the time needed to regenerate assumptions becomes
greater. Consequently, reducing the number of times that an assumption needs to be regenerated would accelerate
many software reverification efforts. Once again, this result shows the effectiveness of the proposed framework when
applied to evolving software verification.

• The verification complexity depends on both the number of transitions inside M0 and M1 and the number of variables
in X0 and X1 to encode the system. For the four systems TC1, TC2, TC3, and TC4 which have 3 to 4 transitions in
both M0 and M1, there is not much difference in the verification running time. The reason is that when encoding a
given system, each transition will be encoded into one DNF predicate in the transition function while CDNF algorithm
complexity depends on the number of DNF and CNF predicates in the Boolean function to be learned. With the same
system of the simple communication channel, it is much faster when using two Boolean variables to encode both
components M0 and M1 (i.e., TC4) than that when using three Boolean variables (i.e., TC5) and when using four Boolean
variables (i.e., TC6). The reason is that the complexity of algorithms implemented in the teacher depends on the number
of Boolean variables in the system under check. This result gives us a suggestion that we should use the minimum
number of Boolean variables to encode the system under checking for the best verification speed.

• In the proposed framework shown in Section 5, we assume that M0 is a type of static framework and that M1 is a
business component subject to change during the software life cycle. Under this hypothesis, we can reuse the weaker
assumptions generated by LWAG algorithm in the framework when M1 is modified. In addition, effectively decomposing
a given software application into components is another major problem when working with assume-guarantees specif-
ically and component-based software in general. This problem is outside the scope of this research paper. However, we
are aware of the problem and will consider addressing it in future research.

7. Related works

Several existing papers on evolving software verification are relevant to our research [11,13,23,27,31–35,44].
In 2010, Chen et al. proposed a purely implicit solution to the contextual assumption generation problem in assume-

guarantee reasoning [13]. However, this paper did not consider the case in which the software component has been
modified. Instead, when a component has been modified, the assumption–generation method must be executed again from
the beginning to regenerate the assumptions for the entire modified system. In contrast, our paper focuses on the context of
component change to improve CBAG algorithm [13]. Our target is to reduce the number of assumption regenerations when
the component is modified by generating weaker assumptions that can be reused more often than those generated by CBAG
algorithm.

In 2016, He et al. proposed a fine-grained learning technique for regression verification for component-based soft-
ware [27]. Although He et al.’s technique was an excellent idea and garnered good experimental results, it was different
from our paper in the following three aspects.

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 19
First, when performing the initial verification for component-based software, the key idea of the fine-grained learning
technique was to learn each of the subpredicates of the assumption to be generated in a separated learning instance.
The candidate was the combination of all subcandidates and submitted to the teacher. Obviously, this approach does not
reduce the overall computation cost of the learning progress. Instead, the fine-grained learning technique achieved faster
speed due to the simultaneous learning of the subpredicates of the assumption to be generated. It generated the same
assumption as the one generated by CBAG algorithm [13]. In contrast, LWAG algorithm is target toward generating a weaker
assumption that can be reused more effectively for verification when the software evolves. To generate weaker assumptions,
the algorithm needs to process more. Therefore, the complexity of LWAG algorithm is greater than that of CBAG algorithm.

Secondly, when performing regression verification for the modified software, the method proposed by He et al. [27]
always needs to generate new assumptions even for small evolutionary changes by regenerating the corresponding subpred-
icates of the assumption to match the changed subpredicates of the software component. However, our proposed framework
does not need to regenerate the assumptions for small changes in the modified component because the assumption gener-
ated by our method is weaker than the one generated by Chen’s method [13].

Lastly, He et al. assumed that the component models are decomposed into smaller subpredicates [27]; however, that is
not an easy task in practice in terms of time or the algorithm complexity required. Moreover, when performing regression
verification, the method proposed by He et al. [27] needs to compare each of the subpredicates of the system both before
and after change. This is also not easy in practice with regard to time complexity. In contrast, the assumption generation
method and the framework for verifying modified software proposed in this paper use the component models directly and
effectively.

Groce et al. proposed a method called Adaptive Model Checking (AMC) that used inaccurate and updated models to
perform verification as they were refined [23]. Nonetheless, the model used in AMC is the whole system model. Thus,
when verifying the modified system, the state explosion problem may occur, particularly when checking large-scale systems.
Moreover, AMC uses automatons to describe the system under checking. While we share the idea of verification of evolving
software with this previous paper, our paper uses an implicit representation of the CBS, focuses only on the modified
components and attempts to reuse previous verification results when performing reverification.

Chaki et al. focused on checking component substitutability from the verification viewpoint directly [11]. The paper also
proposed an algorithm to verify the evolving system dynamically. We share the motivation of this paper concerning evolving
systems. Our proposed framework can be used for all types of change. Moreover, the proposed framework is simpler than
the method proposed by Chaki et al. [11]. In addition, we use an implicit representation of the CBS, while Chaki used an
automaton representation.

Hung et al. proposed a method to optimally generate the minimized assumption for assume-guarantee reasoning [31–
35]. This assumption can be used to recheck a modified system at a much lower cost [31]. However, because the cost to
generate minimized assumptions is very high, the method is not practically applicable to large-scale systems [35]. These
studies also proposed an efficient framework for reverifying modified CBS and were also based on the idea of reusing the
previous verification results to reduce the assumption regeneration cost [32,33]. We share the motivation of these studies to
reduce verification cost when rechecking modified systems by reusing the previous verification results. That is, we reuse the
previous assumption as the starting point for regenerating the assumption when rechecking a modified system. However,
we use weaker assumptions than those generated by CBAG algorithm to reduce the number of times assumptions must be
regenerated while Hung used minimized assumptions [32]. In addition, we use implicit system representations while Hung
used automata to model them. These differences make our method faster than the one proposed by Hung and also make it
applicable to large-scale systems.

In 2014, Menghi proposed an approach to extend classical verification algorithms to consider incomplete and evolving
specifications [44]. His paper attempted to ensure that after any change, only the part of the system affected by the changes
needed to be rechecked to avoid reverification from scratch. This paper extended various existing modeling formalisms to
express incompleteness. We share the idea of reusing the previous verification results when rechecking modified systems
to avoid rechecking the entire system from the scratch; however, we focus on using an implicit CBS representation during
verification and on reducing the number of times assumptions must be regenerated.

Chaki and Strichman proposed three optimizations to the L∗ based automated Assume-Guarantee reasoning algorithm for
the compositional verification of concurrent systems [12]. The paper suggested an optimization that uses some information
already available to the teacher to avoid many unnecessary membership and candidate queries. However, this used a labeled
transition system specification and did not consider the software evolution context. We use an implicit software specifica-
tion, improve the assumption generation method proposed by Chen et al. [13], and apply it in the context of software
evolution to provide a greater reduction of the regression verification cost.

8. Conclusion

In this paper, we presented an effective framework for rechecking evolving software using LWAG algorithm with an
improved technique for answering membership queries during the assumption learning process. Although LWAG algorithm
has a greater time complexity than does CBAG algorithm, it can generate local weakest assumptions to reduce the number
of assumption regenerations when rechecking evolving software. An implemented tool and experimental results are also
presented that allows comparing both assumption generation algorithms and assumption regeneration processes for evolving

20 H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439
systems. The experimental results show that the improved assumption generation algorithm generates weaker assumptions,
at the cost of a longer execution time. However, in the long run, the weak assumptions reduce the cost for reverifying
evolving systems. Some discussions concerning the experiments are provided in the paper.

Although the experiments in this study were conducted with only small evolving systems, we plan to apply the algo-
rithm and framework to larger and to practical systems to show their usefulness. With large software in practice, in which
the cost of each reverification becomes larger, (as shown in test case T C4_v0 in Table 5), being able to reduce the number
of assumption regenerations plays a key role in verifying modified software. In addition, LWAG algorithm generates only
the locally weakest assumption among all the possible assumptions generated by the backtracking algorithm, as shown in
Lemma 6. For the future work, it is focused on generating the globally weakest assumption. This globally weakest assump-
tion will play an even more important role in reducing the verification cost in an evolving software context. In addition,
as discussed in Section 6.3, we are also working on a method that can divide a predefined component-based software into
components to effectively apply assume-guarantee verification.

Acknowledgements

This work is supported by the Vietnam’s National Foundation for Science and Technology Development (NAFOSTED)
under grant number 102.03-2015.25.

References

[1] K. Abd Elkader, O. Grumberg, C.S. Păsăreanu, S. Shoham, Automated circular assume-guarantee reasoning with n-way decomposition and alphabet
refinement, in: S. Chaudhuri, A. Farzan (Eds.), Computer Aided Verification, Springer International Publishing, Cham, 2016, pp. 329–351.

[2] K. Abd Elkader, O. Grumberg, C.S. Păsăreanu, S. Shoham, Automated circular assume-guarantee reasoning, Form. Asp. Comput. 30 (5) (September 2018)
571–595.

[3] R. Alur, L. Fix, T.A. Henzinger, Event-clock automata: a determinizable class of timed automata, Theor. Comput. Sci. 211 (1–2) (January 1999) 253–273.
[4] D. Angluin, Learning regular sets from queries and counterexamples, Inf. Comput. 75 (2) (November 1987) 87–106.
[5] M. Archer, B.D. Vito, C. Muñoz, Developing user strategies in pvs: a tutorial, in: Proceedings of the First International Workshop on Design and

Application of Strategies/Tactics in Higher Order Logics (STRATA’03), NASA/CP-2003-212448, 2003.
[6] H. Barringer, D. Giannakopoulou, Proof rules for automated compositional verification through learning, in: Proc. SAVCBS Workshop, 2003, pp. 14–21.
[7] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen, Systems and Software Verification: Model-Checking Techniques and

Tools, 1st edition, Springer Publishing Company, Incorporated, 2010.
[8] R. Bouchekir, M.C. Boukala, Learning-based symbolic assume-guarantee reasoning for Markov decision process by using interval Markov process, Innov.

Syst. Softw. Eng. 14 (3) (September 2018) 229–244.
[9] R. Bouchekir, M.C. Boukala, Toward implicit learning for the compositional verification of Markov decision processes, in: M.F. Atig, S. Bensalem, S.

Bliudze, B. Monsuez (Eds.), Verification and Evaluation of Computer and Communication Systems, Springer International Publishing, Cham, 2018,
pp. 200–217.

[10] N.H. Bshouty, Exact learning Boolean functions via the monotone theory, Inf. Comput. 123 (1995) 146–153.
[11] S. Chaki, E.M. Clarke, N. Sharygina, N. Sinha, Verification of evolving software via component substitutability analysis, Form. Methods Syst. Des. 32 (3)

(June 2008) 235–266.
[12] S. Chaki, O. Strichman, Optimized L*-based assume-guarantee reasoning, Chapter, in: Tools and Algorithms for the Construction and Analysis of Sys-

tems: 13th International Conference, TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2007
Braga. Proceedings, Portugal, March 24 – April 1, 2007, Springer Berlin Heidelberg, Heidelberg, March 2007, pp. 276–291.

[13] Y.-F. Chen, E.M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, B.-Y. Wang, Automated assume-guarantee reasoning through implicit learning, in: T. Touili, B.
Cook, P. Jackson (Eds.), Computer Aided Verification, in: Lecture Notes in Computer Science, vol. 6174, Springer Berlin Heidelberg, 2010, pp. 511–526.

[14] Y.-F. Chen, A. Farzan, E.M. Clarke, Y.-K. Tsay, B.-Y. Wang, Learning minimal separating dfa’s for compositional verification, in: S. Kowalewski, A. Philippou
(Eds.), Tools and Algorithms for the Construction and Analysis of Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 31–45.

[15] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching-time temporal logic, in: Logic of Programs, Workshop,
Springer-Verlag, London, UK, UK, 1982, pp. 52–71.

[16] E.M. Clarke, W. Klieber, M. Nováček, P. Zuliani, Model Checking and the State Explosion Problem, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 1–30.

[17] E.M. Clarke, D. Long, K. McMillan, Compositional model checking, in: Proceedings of the Fourth Annual Symposium on Logic in Computer Science, IEEE
Press, Piscataway, NJ, USA, 1989, pp. 353–362.

[18] E.M. Clarke Jr., O. Grumberg, D.A. Peled, Model Checking, MIT Press, Cambridge, MA, USA, 1999.
[19] J.M. Cobleigh, D. Giannakopoulou, C.S. Păsăreanu, Learning assumptions for compositional verification, in: Proceedings of the 9th International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’03, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 331–346.
[20] E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Commun. ACM 18 (8) (August 1975) 453–457.
[21] D.A. Duffy, Principles of Automated Theorem Proving, John Wiley & Sons, Inc., New York, NY, USA, 1991.
[22] A. Farzan, Y.-F. Chen, E.M. Clarke, Y.-K. Tsay, B.-Y. Wang, Extending automated compositional verification to the full class of omega-regular languages,

in: Proceedings of the Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 2–17.

[23] A. Groce, D. Peled, M. Yannakakis, Adaptive model checking, in: Proceedings of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS ’02, Springer–Verlag, London, UK, 2002, pp. 357–370.

[24] O. Grumberg, D.E. Long, Model checking and modular verification, ACM Trans. Program. Lang. Syst. 16 (3) (May 1994) 843–871.
[25] A. Gupta, K.L. Mcmillan, Z. Fu, Automated assumption generation for compositional verification, Form. Methods Syst. Des. 32 (3) (June 2008) 285–301.
[26] F. He, X. Gao, M. Wang, B.-Y. Wang, L. Zhang, Learning weighted assumptions for compositional verification of Markov decision processes, ACM Trans.

Softw. Eng. Methodol. 25 (3) (June 2016) 21.
[27] F. He, S. Mao, B.-Y. Wang, Learning-Based Assume-Guarantee Regression Verification, Springer International Publishing, Cham, 2016, pp. 310–328.
[28] T. Henzinger, Z. Manna, A. Pnueli, Temporal proof methodologies for timed transition-systems, Inf. Comput. 112 (2) (August 1994) 273–337.
[29] T.A. Henzinger, S. Qadeer, S.K. Rajamani, You assume, we guarantee: methodology and case studies, in: A.J. Hu, M.Y. Vardi (Eds.), Computer Aided

Verification, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 440–451.

http://refhub.elsevier.com/S0167-6423(20)30049-6/bib3A4D1EEC62803BDB4F8D9C1954E86E16s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib3A4D1EEC62803BDB4F8D9C1954E86E16s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib0CC160F517E6E710D28B415EBE572F03s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib0CC160F517E6E710D28B415EBE572F03s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibCEFFA19D6495C7262F93FFC778C0503Cs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib48DC1F09177B41D8616FC746EC3355BBs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibF5812EEEF7B9E79D8229A561711C9F71s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibF5812EEEF7B9E79D8229A561711C9F71s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib59678DCD93D5A81CBE6FB9FA59112E91s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibE137A20747F0085A060DE3C04F3B5431s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibE137A20747F0085A060DE3C04F3B5431s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib1FF7A8E23A9CCA65AD3EE2D667B03723s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib1FF7A8E23A9CCA65AD3EE2D667B03723s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibF5D06D2779F046EE5EF823B447A50EA3s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibF5D06D2779F046EE5EF823B447A50EA3s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibF5D06D2779F046EE5EF823B447A50EA3s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib95C5524EF867BBB4207A1B7C25C737D7s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib397732D826A51F8E4C0F2C9C154AABA4s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib397732D826A51F8E4C0F2C9C154AABA4s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib2DEFA3BD82FCD237F230B92FEB684024s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib2DEFA3BD82FCD237F230B92FEB684024s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib2DEFA3BD82FCD237F230B92FEB684024s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib31345077AC9A6EEE30D7F1B595AE7BD6s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib31345077AC9A6EEE30D7F1B595AE7BD6s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibE679EE674DC7FE975D7E97C34DBCE11Ds1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibE679EE674DC7FE975D7E97C34DBCE11Ds1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib646CFCD3DFA26C5BB1739BC0FAA96969s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib646CFCD3DFA26C5BB1739BC0FAA96969s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib8AECC9D68033037EEBCFE9D4F637B7F6s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib8AECC9D68033037EEBCFE9D4F637B7F6s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib29383CF52C5F22FE7AAC555CD0E10A58s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib29383CF52C5F22FE7AAC555CD0E10A58s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib8169347CF40DD16945111422916A758As1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibFA87823F74D19625F3205A1E4C86ABA9s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibFA87823F74D19625F3205A1E4C86ABA9s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibAABFEB295BEDF3331C66C72E03E05610s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib1ED010B930D20E14B0BC79DEB0444C5As1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib5D7BCC95AE258837ED590A35104811DFs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib5D7BCC95AE258837ED590A35104811DFs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib5D7BCC95AE258837ED590A35104811DFs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib669577B004D410F9853C6353E2B60267s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib669577B004D410F9853C6353E2B60267s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib1EFED725D781448F940DF7BC0AF4BBF5s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib3EB7CC4F49F1E3F619C22690420C5ADBs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib36E9EB235BAD94ED6E782758627BE93Cs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib36E9EB235BAD94ED6E782758627BE93Cs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibBFEEC6829A01B3B4375F303CF7CF081Es1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibE5F0DB436972E32791434080412DD292s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib060B374CF7903FD61EB6149995EC1A9Es1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib060B374CF7903FD61EB6149995EC1A9Es1

H.-V. Tran et al. / Science of Computer Programming 193 (2020) 102439 21
[30] C.A.R. Hoare, An axiomatic basis for computer programming, Commun. ACM 12 (10) (October 1969) 576–580.
[31] P. Hung, T. Aoki, T. Katayama, A minimized assumption generation method for component-based software verification, Chapter, in: Theoretical Aspects

of Computing - ICTAC 2009: 6th International Colloquium. Proceedings, Kuala Lumpur, Malaysia, August 16–20, 2009, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, pp. 277–291.

[32] P.N. Hung, T. Aoki, T. Katayama, An effective framework for assume-guarantee verification of evolving component-based software, in: Proceedings of the
Joint International and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops, IWPSE-Evol
’09, ACM, New York, NY, USA, 2009, pp. 109–118.

[33] P.N. Hung, T. Katayama, Modular conformance testing and assume-guarantee verification for evolving component-based software, in: Software Engi-
neering Conference, 2008. APSEC ’08. 15th Asia-Pacific, December 2008, pp. 479–486.

[34] P.N. Hung, V.-H. Nguyen, T. Aoki, T. Katayama, An improvement of minimized assumption generation method for component-based software verifi-
cation, in: Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), IEEE RIVF International Conference,
February 2012, pp. 1–6.

[35] P.N. Hung, V.H. Nguyen, T. Aoki, T. Katayama, On optimization of minimized assumption generation method for component-based software verification,
IEICE Trans. 95-A (9) (2012) 1451–1460.

[36] K. Ji, Y. Liu, S.-W. Lin, J. Sun, J. Dong, T. Nguyen. Cell, A compositional verification framework, in: D. Van Hung, M. Ogawa (Eds.), Automated Technology
for Verification and Analysis, in: Lecture Notes in Computer Science, vol. 8172, Springer International Publishing, 2013, pp. 474–477.

[37] D. Kapur, M. Subramaniam, Lemma discovery in automating induction, in: M.A. McRobbie, J.K. Slaney (Eds.), Automated Deduction — Cade-13, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1996, pp. 538–552.

[38] M. Kaufmann, J. Moore, Some key research problems in automated theorem proving for hardware and software verification 98 (01 2004) 181–196.
[39] C.-L. Le, H.-V. Tran, P.N. Hung, On Implementation of the Assumption Generation Method for Component-Based Software Verification, Springer Inter-

national Publishing, Cham, 2017, pp. 549–558.
[40] S.-W. Lin, É. André, J.S. Dong, J. Sun, Y. Liu, An efficient algorithm for learning event-recording automata, in: T. Bultan, P.-A. Hsiung (Eds.), Automated

Technology for Verification and Analysis, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 463–472.
[41] S.-W. Lin, E. André, Y. Liu, J. Sun, J.S. Dong, Learning assumptions for compositional verification of timed systems, IEEE Trans. Softw. Eng. 40 (2)

(February 2014) 137–153.
[42] S.-W. Lin, J. Sun, T.K. Nguyen, Y. Liu, J.S. Dong, Interpolation guided compositional verification (t), in: 2015 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE), November 2015, pp. 65–74.
[43] J. Magee, J. Kramer, Concurrency: State Models &Amp; Java Programs, John Wiley & Sons, Inc., New York, NY, USA, 1999.
[44] C. Menghi, Verifying incomplete and evolving specifications, in: Companion Proceedings of the 36th International Conference on Software Engineering,

ICSE Companion 2014, ACM, New York, NY, USA, 2014, pp. 670–673.
[45] W. Nam, P. Madhusudan, R. Alur, Automatic symbolic compositional verification by learning assumptions, Form. Methods Syst. Des. 32 (3) (June 2008)

207–234.
[46] A. Pnueli, In transition from global to modular temporal reasoning about programs, in: K.R. Apt (Ed.), Logics and Models of Concurrent Systems,

Springer-Verlag New York, Inc., New York, NY, USA, 1985, pp. 123–144.
[47] P. Poizat, J.-C. Royer, A formal architectural description language based on symbolic transition systems and modal logic, J. Univers. Comput. Sci. 12 (12)

(2006) 1741–1782.
[48] J.-P. Queille, J. Sifakis, Specification and verification of concurrent systems in cesar, in: Proceedings of the 5th Colloquium on International Symposium

on Programming, Springer-Verlag, London, UK, UK, 1982, pp. 337–351.
[49] R.L. Rivest, R.E. Schapire, Inference of finite automata using homing sequences, in: Proceedings of the Twenty-First Annual ACM Symposium on Theory

of Computing, STOC ’89, ACM, New York, NY, USA, 1989, pp. 411–420.
[50] N. Sinha, E.M. Clarke, Sat-based compositional verification using lazy learning, in: Proceedings of the 19th International Conference on Computer Aided

Verification, CAV’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 39–54.
[51] M. Sipser, Introduction to the Theory of Computation, 1st edition, International Thomson Publishing, 1996.
[52] T. Vale, I. Crnkovic, E.S. de Almeida, P.A.d.M. Silveira Neto, Y.a.C. Cavalcanti, S.R.d.L. Meira, Twenty-eight years of component-based software engineering,

J. Syst. Softw. 111(C) (January 2016) 128–148.
[53] A. Wijs, T. Neele, Compositional model checking with incremental counter-example construction, in: R. Majumdar, V. Kunčak (Eds.), Computer Aided

Verification, Springer International Publishing, Cham, 2017, pp. 570–590.
[54] M. Zhou, H. Wan, R. Wang, X. Song, C. Su, M. Gu, J. Sun, Formal component-based modeling and synthesis for plc systems, Comput. Ind. 64 (8) (October

2013) 1022–1034.

http://refhub.elsevier.com/S0167-6423(20)30049-6/bib18EE564BCC8FB041A2A423EFA3591BE1s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibE7A2B04130A4C89C5EC5322D1FC2E3F8s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibE7A2B04130A4C89C5EC5322D1FC2E3F8s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibE7A2B04130A4C89C5EC5322D1FC2E3F8s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib177BC7A07CECDFF4046C3A23ABD5D90Es1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib177BC7A07CECDFF4046C3A23ABD5D90Es1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib177BC7A07CECDFF4046C3A23ABD5D90Es1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib577EDBD908CF4109F7C6048FCADDBE38s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib577EDBD908CF4109F7C6048FCADDBE38s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibF1DD23FA7C8085638A33032A48D62B38s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibF1DD23FA7C8085638A33032A48D62B38s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibF1DD23FA7C8085638A33032A48D62B38s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib79CB480D7B3E10891C9268948B771765s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib79CB480D7B3E10891C9268948B771765s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibBC936AB1EAD148C24AB683FE96FA7D6Ds1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibBC936AB1EAD148C24AB683FE96FA7D6Ds1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib2A40533B1597B9799ED90A21E72A8790s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib2A40533B1597B9799ED90A21E72A8790s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib6141DBA9008A34F39B9D8A185FF57BDFs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib0DCB1327192B44D77C87DF64ED22E232s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib0DCB1327192B44D77C87DF64ED22E232s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib1DF832B1FC1F4729D345BBA57D6D90E3s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib1DF832B1FC1F4729D345BBA57D6D90E3s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib7E248B79CBC3B426247892ABC5A155F8s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib7E248B79CBC3B426247892ABC5A155F8s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib5F7C4E6BC36EAA4922D2BB3AAA6177CCs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib5F7C4E6BC36EAA4922D2BB3AAA6177CCs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib208F645B6AC258CA9E605047B9F30266s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibDF459B5601D0D55615E7FB5A89FE8865s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bibDF459B5601D0D55615E7FB5A89FE8865s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib8D57E683D613BAA372AD141A9233F1D7s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib8D57E683D613BAA372AD141A9233F1D7s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib492B7BA14A6794F41B0065127BAEE34Es1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib492B7BA14A6794F41B0065127BAEE34Es1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib6033BF5D9021C71F5AB07667B376EE46s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib6033BF5D9021C71F5AB07667B376EE46s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib00E58DF2F727C31E4F080E6D118D4D1Ds1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib00E58DF2F727C31E4F080E6D118D4D1Ds1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib56954A15874436211DE263A3D7A1FB3Ds1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib56954A15874436211DE263A3D7A1FB3Ds1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib6BBD673F81E0981D673C8ADC6BD83022s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib6BBD673F81E0981D673C8ADC6BD83022s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib0098A614D1A75C58D23419DFDD75F79Fs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib1C967B8F9F955A04DA2D11C836B3597Cs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib1C967B8F9F955A04DA2D11C836B3597Cs1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib9F13D1C8479F9736447EEC99B1892137s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib9F13D1C8479F9736447EEC99B1892137s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib49F504125F851FA331FC53D05AAC4FD7s1
http://refhub.elsevier.com/S0167-6423(20)30049-6/bib49F504125F851FA331FC53D05AAC4FD7s1

	A framework for assume-guarantee regression verification of evolving software
	1 Introduction
	2 Background
	3 The CDNF--based assumption generation method
	3.1 The CDNF algorithm
	3.2 The CDNF--based assumption generation algorithm
	3.2.1 The original membership query answering algorithm
	3.2.2 The original equivalence query answering algorithm
	3.2.3 The original witness analysis algorithm
	3.2.4 The original assumption generation algorithm

	4 A local weakest assumption generation method
	4.1 An improved technique for answering membership queries
	4.2 A backtracking local weakest assumption generation algorithm
	4.3 Correctness

	5 A framework for modular verification of evolving CBS
	5.1 The proposed framework
	5.2 An example
	5.2.1 Generating the first assumption
	5.2.2 Verifying evolving systems

	6 Experiments
	6.1 Assumption generation algorithms comparison
	6.2 The effectiveness of the generated assumptions in software evolution context
	6.3 Discussion

	7 Related works
	8 Conclusion
	Acknowledgements
	References

