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Abstract: The High Efficiency Video Coding (HEVC) standard has now become the most popular
video coding solution for video conferencing, broadcasting, and streaming. However, its compression
performance is still a critical issue for adopting a large number of emerging video applications with
higher spatial and temporal resolutions. To advance the current HEVC performance, we propose an
efficient temporal rate allocation solution. The proposed method adaptively allocates the compression
bitrate for each coded picture in a group of pictures by using a trellis-based dynamic programming
approach. To achieve this task, we trained the trellis-based quantization parameter for each frame in
a group of pictures considering the temporal layer position. We further improved coding efficiency
by incorporating our proposed framework with other inter prediction methods such as a virtual
reference frame. Experiments showed around 2% and 5% bitrate savings with our trellis-based rate
allocation method with and without a virtual reference frame compared to the conventional HEVC
standard, respectively.

Keywords: inter coding; HEVC standard; virtual reference; dynamic programming; adaptive quantization

1. Introduction
1.1. Context and Motivations

The wide growth of multimedia applications always demands more powerful video
transmission over the internet with high compression performance as well as low complex-
ity. Therefore, the Joint Collaborative Team on Video Coding (JCT-VC) announced the High
Efficiency Video Coding (HEVC) [1] with 50% bitrate reduction at the same perceptual
quality as the previous H.264/AVC standard [2]. Despite its success, there is still a demand
for beyond HEVC coding to meet emerging requirements of higher resolutions (i.e., 4K,
8K) and diverse contents (screen contents, drone, etc.). In this context, in the newest video
compression standard, H.266/Versatile Video Coding (VVC), many coding tools have been
proposed, such as partitioning with quad-tree plus binary, adaptive transforms, new intra
modes, affine motion estimation, dependent quantization, etc. [2]. Among all, inter coding
tools are always bringing the highest bitrate reduction due to the high redundancy be-
tween consecutive temporal frames. Besides the affine motion estimation, virtual reference
frame and temporal rate control are active research topics to improve the inter coding
performance [3].

Rate control is one of the most powerful encoding tools to advance the rate–distortion
(RD) performance of any video codec. In general, at a given quality, rates are allocated
from coarse to fine in (i) group of pictures (GOP) or temporal rate allocation, then (ii) dis-
tributed among coding unit or spatial, or (iii) adaptive allocation to reduce the distortion
propagation. Adaptive approaches are complicated and demand computational complex-
ity and memory for either pre-analysis or online analysis. As a result, the common test
condition of the most recent video coding standards, including H.266/VVC, still favors a
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simple hierarchical rate allocation at the frame level [2]. For each GOP, HEVC and VVC
classified frames into a temporal index (Tid), and depending on their hierarchical location
and frame types (i.e., intra or inter), the quantized parameter (QP) is adjusted by a fixed
value. This framework is very simple and easy to validate the performance of coding tools
during the standardization process. However, with increasing competition from AOMedia
Video Coding (AV1) [4] with an adaptive GOP, an effective temporal rate allocation for
MPEG codecs is demanded.

HEVC adopts a simple temporal rate control via its hierarchical coding structure [1].
HEVC controls bits for each frame in a group of pictures (GOP) with a temporal index
associated with its hierarchical reference model by adjusting the quantization parameter
for each frame so that high Tid frames are encoded at a higher QP. However, the simple
method in HEVC is not effective in preventing the propagation of distortion. Researchers
have introduced adaptively allocate bitrates to each frame via a rate–distortion optimized
scheme [5–7]. These methods, however, required modification in the decoder, which is non-
compliant with the HEVC standard. Additionally, the adaptive quantization parameter at
the frame level is an encoder-only tool, easy to modify in the configuration. In addition,
adaptive quantization at the frame level would significantly improve the overall compres-
sion performance. Therefore, it is often left out from the MPEG (Moving Picture Experts
Group) standardization process; thus, there are few works on this research topic.

Virtual reference frame (VRF) is another inter coding improvement approach by (i)
generating virtual frames and (ii) utilizing virtual frames as an additional reference or for
guided reconstructed frames [8]. Several works utilized the motion estimation or advanced
deep learning framework to interpolate frames from decoded frames [9–13]. The deep
learning approach shows higher gain but also introduces tremendous complexity in both
encoder and decoder [11–13]. On the other hand, virtual frames are utilized as additional
reference frames for motion estimation or reducing the syntax transmission overhead as a
special merge mode. Although there are many works on VRF, there is lacking investigation
on the impact of virtual frames on coding performance.

1.2. Contributions and Paper Organization

Although the virtual referencing-based method has provided important compression
improvement for HEVC, there is still room for further improving HEVC performance.
Previous works either researched the virtual reference frame or temporal rate control
separately. Firstly, the prior VR creation mainly relied on the motion estimation and
interpolation-based approach, which may be ineffective for fast motion content and com-
pressed with high QPs or low rate. Secondly, the prior VR frames are used for all B-slices,
which may always be effective in terms of the rate–distortion optimization (RDO) manner,
especially for pictures at the low temporal layer positions. Finally, since the quality of the
VR frames highly depends on the quality of existing decoded references, adaptive quan-
tized frames at different layers would impact the performance of inter coding. In this
context, this paper proposes:

(i) a novel virtual reference frame creation where a multiple hypothesis motion estima-
tion method is used for frame generation;

(ii) an efficient rate allocation algorithm in which the trellis coding method is used to
learn the temporal rate allocation.

We conducted a rich set of experiments with numerous train and test videos and
showed around 5% BD-rate gains on top of the most recent HEVC reference software.
The rest of this paper is organized as follows. Section 2 briefly describes the background
work on HEVC inter coding and the related works on rate control. Section 3 presents the
proposed VRF creation and temporal rate allocation, while Section 4 assesses the coding
performance of the proposed methods. Finally, we summarize the contributions of this
paper in Section 5.
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2. Background and Related Works

HEVC adopted the inter-coding tools to take advantage of temporal correlation among
frames in a GOP. This paper introduces novel temporal rate allocation and virtual reference
frame exploitation for HEVC inter coding; hence, this section will briefly describe the
background work on the HEVC inter coding and then analyzes the related works on HEVC
rate control.

2.1. HEVC Inter Coding

Compared to the prior inter-coding tools of the H.264/AVC standard [2], the HEVC
introduces several improvements in coding tools and coding structure, notably (i) block
partitioning and (ii) motion estimation and reference picture management.

Block partition: HEVC inter coding allows compressing picture with more block parti-
tion shapes than intra coding, notably the partition modes of PART_2N× 2N, PART_2N×N,
and PART_N × 2N indicate the cases when coding block is not split, split into two equal-
size prediction blocks horizontally and vertically, respectively [1]. While PART_N × N
refers to the case, the coding block is split into four equal-size blocks. In addition, there are
four asymmetric motion partitions, PART_2N × nU, PART_2N × nD, PART_nL × 2N,
and PART_nR× 2N (see Figure 1). For each coding tree unit (CTU), the rate–distortion opti-
mization (RDO) process is recursively computed to find the optimal coding and prediction
unit, notably from 64 × 64 to 8 × 8.
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Motion estimation and reference picture management: Similar to the prior video
coding standard, HEVC inter employs motion estimation to find the best-matched block
in reference frames to reduce the redundancy between successive frames. For reference
picture management, HEVC inter stores the previously decoded pictures into a decoded
picture buffer (DPB). To identify these pictures, a list of picture order count (POC) identifiers
is transmitted in each slice header, and the set of reference pictures is called the reference
picture set (RPS), as shown in Figure 2.

The HEVC DPB also contains two lists, list 0 and list 1, which are referred through
the reference picture index. For biprediction, i.e., in random access coding configuration,
two pictures are selected (one from each list).

2.2. HEVC Rate Control

Rate control has been an important research topic in video coding over the years.
A temporal domain is an effective way to reduce the transition rate. HEVC uses a fixed
hierarchical bit rate allocation. It controls bits for each frame in a group of pictures (GOP)
with a temporal index (Tid) associated with its hierarchical reference model, depicted in
Figure 2. By simply adjusting the QP parameters for each frame, high Tid frames are
encoded at a higher quantization parameter (QP). However, this simple method in HEVC



Electronics 2021, 10, 1384 4 of 19

is unable to prevent distortion propagation. Therefore, various rate control algorithms
were developed for video coding standards. For HEVC, an early rate control algorithm
was proposed using a pixel-wise unified rate-quantization (R-Q) model [14]. This R-Q
model is almost the same as the conventional quadratic R-D model in [15]. Afterward,
Li et al., in [16], proposed an R-λ model where λ is the Lagrange Multiplier based on a
frame’s complexity. This rate control algorithm allocates target bits to a GOP, a frame,
or a CTU. Further extending this work, the authors in [17] proposed a gradient-based
R- λ model and inter-frame rate control for HEVC. In order to enhance facial detail for
video coding conferencing, the work in [18] developed a rate control algorithm based
on a weighted R- λ model, which can allocate more target bits to important regions in a
video frame. Considering the coding performance of intra coding, a structure similarity
(SSIM) based game theory approach was introduced in [19] to optimize the CTU level
bit allocation. Similarly, a ρ domain bit allocation and a rate control algorithm were
proposed in [20] to optimize bit allocation for key frames. Recently, the authors in [21]
presented a highly parallel hardware architecture for rate estimation in HEVC intra coding.
Although the aforementioned rate control algorithms [14–20] show promising performance
for HEVC, their high computational complexity may not suitable for a number of emerging
video applications.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 2. Example of a temporal prediction structure in HEVC inter coding. 

The HEVC DPB also contains two lists, list 0 and list 1, which are referred through 
the reference picture index. For biprediction, i.e., in random access coding configuration, 
two pictures are selected (one from each list). 

2.2. HEVC Rate Control 
Rate control has been an important research topic in video coding over the years. A 

temporal domain is an effective way to reduce the transition rate. HEVC uses a fixed hi-
erarchical bit rate allocation. It controls bits for each frame in a group of pictures (GOP) 
with a temporal index (Tid) associated with its hierarchical reference model, depicted in 
Figure 2. By simply adjusting the QP parameters for each frame, high Tid frames are en-
coded at a higher quantization parameter (QP). However, this simple method in HEVC is 
unable to prevent distortion propagation. Therefore, various rate control algorithms were 
developed for video coding standards. For HEVC, an early rate control algorithm was 
proposed using a pixel-wise unified rate-quantization (R-Q) model [14]. This R-Q model 
is almost the same as the conventional quadratic R-D model in [15]. Afterward, Li et al., 
in [16], proposed an R-λ model where λ is the Lagrange Multiplier based on a frame’s 
complexity. This rate control algorithm allocates target bits to a GOP, a frame, or a CTU. 
Further extending this work, the authors in [17] proposed a gradient-based R- λ model 
and inter-frame rate control for HEVC. In order to enhance facial detail for video coding 
conferencing, the work in [18] developed a rate control algorithm based on a weighted R- 
λ model, which can allocate more target bits to important regions in a video frame. Con-
sidering the coding performance of intra coding, a structure similarity (SSIM) based game 
theory approach was introduced in [19] to optimize the CTU level bit allocation. Similarly, 
a 𝜌 domain bit allocation and a rate control algorithm were proposed in [20] to optimize 
bit allocation for key frames. Recently, the authors in [21] presented a highly parallel hard-
ware architecture for rate estimation in HEVC intra coding. Although the aforementioned 
rate control algorithms [14–20] show promising performance for HEVC, their high com-
putational complexity may not suitable for a number of emerging video applications. 

In this work, we focused on developing a frame-level rate control algorithm. In order 
to do so, the learning process requires training data to have raw video contents at various 
sizes and resolutions. Therefore, using recently advanced learning frameworks such as 
deep learning [13] would require frame-level features for multiple frames in each GOP, 
thus demands a tremendous amount of computation, not only at training but also at de-
ployment. Additionally, the learning framework often relies on a quality metric such as 
MSE, which does not well reflect the commonly used BDBR score in codec development. 
As a result, with our limited computing resources, we were not able to use a more expen-
sive learning algorithm. To address this problem, and motivated by RDOQ, we proposed 
a simple but efficient temporal rate allocation solution for HEVC following a greedy 
method based on the trellis coding approach. 

Figure 2. Example of a temporal prediction structure in HEVC inter coding.

In this work, we focused on developing a frame-level rate control algorithm. In order
to do so, the learning process requires training data to have raw video contents at various
sizes and resolutions. Therefore, using recently advanced learning frameworks such as
deep learning [13] would require frame-level features for multiple frames in each GOP,
thus demands a tremendous amount of computation, not only at training but also at
deployment. Additionally, the learning framework often relies on a quality metric such as
MSE, which does not well reflect the commonly used BDBR score in codec development.
As a result, with our limited computing resources, we were not able to use a more expensive
learning algorithm. To address this problem, and motivated by RDOQ, we proposed a
simple but efficient temporal rate allocation solution for HEVC following a greedy method
based on the trellis coding approach.

3. Proposed HEVC Improvement Tools

In this work, we aimed to develop a simple, non-normative MPEG video coding tool
by integrating a VR creation solution into the HEVC and refining the existing temporal
bitrate allocation scheme. We avoided the pre-analysis approach, which requires looking
ahead several frames or GOPs, thus subsequently introduces significant complexity and is
not suitable for relative applications. To achieve this target, we readjusted the predefined
heuristic quantization level by a learned method. Unfortunately, the learning approach
usually faces the challenge of the huge computational complexity of video coding, vari-
ous datasets, as well as the nonlinearity of the encoding process [12]. We addressed these
challenges by using a dynamic programming approach—trellis-based rate allocation (TRA).
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The proposed TRA algorithm was integrated into both original HEVC and HEVC with
virtual reference frames (VRF). Hence, this section introduces a novel HEVC with a virtual
reference frame framework and is followed by the proposed TRA solution.

3.1. Proposed HEVC Architecture

The proposed HEVC encoding architecture is described in Figure 3 with highlighted
modified modules. Virtual reference frames are generated from the reference decoded
frames based on the multiple hypothesis motion estimation and then put to the DPB.
Both the previously decoded references and the virtual references are used as the reference
for motion estimation of the current frame.
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3.1.1. Virtual Reference Frame Creation

To achieve high efficient encoder, we created a new virtual reference frame for each
inter coding frame based on a hierarchical motion estimation (HME) and compensation
technique. To fully exploit the statistic information from decoded data and the texture corre-
lation between two consecutive references, we proposed an advanced motion-compensated
temporal interpolation (MCTI) based VR frame creation, in which the motion vector field is
adaptively generated using the hierarchical motion estimation (ME) solution with a coarse
block size of 16 × 16 or 32 × 32 initialized in the backward ME. In this stage, the min-
imization of regularized mean absolute difference (RMAD) was adopted [22]. Figure 3
highlights the proposed MCTI structure. Since a large block size is hard to cover the motion
information of tiny activity or video taken from a far camera, a finer block size may be
chosen. Afterward, the motion vector refinement was adopted to refine the motion field.
Finally, the motion compensation was used to create the VR frame. The creation of the VR
frame can be performed as follows:

• Hierarchical ME: First, decoded frames obtained from two reference lists, list 0 and
list 1, are low pass filtered and used as references in a motion estimation process.
Our proposed VR frame creation uses both forward and backward ME to generate the
forward interpolated frame and the backward interpolated frame. In these modules,
a block matching algorithm is used to estimate the motion between the next and
previous decoded frames.
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To achieve more accurate motion vector information, an up-sample motion vector
field (MVF) was performed. The motion vector value obtained from the previous step
is an integer number; there will be jagged edges in the interpolated frame. To alleviate
this problem, we up-sampled the reference frames by a factor of 2, both in horizontal and
vertical directions, as shown in Figure 4. After up-sampling the MVF, coarsely refine the
MVF considering its 8-neighboring MVs and choose that MVF has the smallest error cost.

• MV refinement: To achieve better motion field, a motion vector refinement (MVR)
process is employed. In MVR, the temporal bidirectional ME (BiME) and the spatial
weighted vector median filtering (WVMF) are chosen to refine the motion information
derived from the hierarchical ME stage [22,23]. In BiME, the motion vectors of each
interpolated block are refined in a small search area and following an assumption
that the motion trajectory between consecutive frames is linear. While the spatial
WVMF improves the motion field spatially coherent by looking, for each interpolated
block, a candidate motion vector at neighboring blocks can better represent the motion
trajectory. This filter is also adjustable by a set of weights, controlling the filter strength
and depending on the block distortion for each candidate motion vector. Since the
quality of decoded references and video content highly affect the final VR frame
quality, we adopted a statistical learning-based parameter optimization solution to
initialize the block size, search range, and search refinement areas for the proposed
MCTI method [24].

• Motion compensation: Finally, the motion compensation process is applied to the
decoded frames and obtained MV to achieve the VR frames.
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3.1.2. Virtual Reference Frame Exploitation

To better use this new reference, we conducted exhaustive experiments to identify
which frame position should be employed to generate VR frames. The generation of the
VR frame benefits from the low complexity motion estimation and compensation approach
combining with a data-driven optimal parameter configuration. The proposed VR is
applied to the B-frame with bi-directional references as in [25].

3.2. Trellis-Based Rate Allocation (TRA)

Trellis search is a type of dynamic programming algorithm to find the optimal encoded
sequence [26]. In video coding, trellis search is used for optimal quantization in rate–
distortion optimized quantization (RDOQ) [27] of HEVC. Starting with initial scal5ar
quantization (i.e., x), RDOQ recursively decides the optimal quantization level at each
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coefficient location between candidates of {x, x− 1} (additional candidate of 0 can be
added) toward minimizing rate and distortion cost.

The overall step of our TRA is given in Algorithm 1. We modeled the bitrate allocation
as an optimal search path of QP adjustment between temporal ID (Tid; illustrated in
Figure 5). The details are explained as follows.
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To avoid the worst case of the greedy algorithm, we have: (1) initialized the search
with ∆QP0 = [0, 0, 0, 0], which is the same as HEVC configuration; (2) using BDBR as the
loss function to pick up the highest BDBR improvement path.

Algorithm 1 Proposed trellis-based bitrate allocation algorithm.

# Detail Descriptions

1
Initialize offset ∆QP0 = [0, 0, 0, 0], max range r, No. iteration K,
excluding test ctid

ex = {0}, Tid = 0, 1, 2, 3
2 For k in {1, . . . , K− 1} # Phase loop
3 For i in {0, 1, . . . } # Iter loop
4 For Tid in {0, 1, 2, 3} # Tid loop
5 Find exclude candidate ctid

ex ∈
{

ctid
ex ,

∣∣∣∆QPk
tid ± k

∣∣∣ > 1
}

6 Current candidate c = {±k}\{cex}
7 Find the best ∆QPk

tid ∈ c at tid w.r.t BDBR
8 Add exclude candidates: ctid

ex ∈
{

ctid
ex , c

}
9 Output ∆QPK

We then performed an iterative greedy search with the maximum K phases. In each
phase, we searched the optimal QP offsets starting from Tid 0 to Tid 3 with respect to the
best BDBR reduction. By starting from the most (Tid 0) to the least important picture (Tid 3),
we avoided the great fluctuation in the algorithm (i.e., the BDBR gain tends to reduce after
each step). An example of Tid structure in HEVC is shown in Figure 5. The lower Tid is,
the more important it is, as being referred by more picture at lower Tid. In our practice,
we used only two-phase, K = 2.

The best QP offset at the iteration k, and Tid i (i.e., denoted as ∆QPk
i ) is added to the

optimal list ∆QPK from the full candidate list of {0, ±1, . . . , ±k}, which already removed
candidates from the previous iteration (i.e., ∆QPk−1

i ). The maximum offset range was set
to k in this work to limit the complexity. Based on the bitrate reduction rate (BDBR) of a
given video dataset, we selected the best offset at high and low bitrate scenarios.

Given four Tids, at the maximum range of ±2 (thus five available options), with six
QPs for low and high rate, the number of tests for each sequence in the greedy search is

nQP× r4 = 6× 54 = 3750. (1)
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This still requires a tremendous amount of computation. Therefore, we used trellis-
based dynamic programing to recursively search for the best offset of each TID. For one
phase round of search (i.e., we named as a phase), it requires

nQP× (5 + 4 + 4 + 4) = 6× 17 = 102, (2)

for each sequence that significantly reduces simulations. Even though the proposed TRA
could significantly reduce the searching space, it still demands a huge computation given
multiple test/train sequences and several iterations. Therefore, we proposed a simplified
version of TRA with a two-phase iterative approach based on the reference candidates.
In the first phase, we limited the candidate list to {0, ±1} which requires

nQP× (3 + 2 + 2 + 2) = 6× 9 = 56, (3)

half of experiments as in TRA. In the second phase, we only tested additional configuration,
which is ±1 difference from phase 1. If the optimal offset is +1, then only +2 is evaluated
(i.e., 0 is evaluated in Phase 1). We skipped the case of the initial offset in Phase 1 being 0,
as the difference to +-2 is larger than 1. Therefore, the maximum additional experiments
per iteration is

QP× (1 + 1 + 1 + 1) = 6× 1 = 6. (4)

The combination of experiments in (3) and (4) is significantly less than the original
TRA in (2).

To train TRA, a decision was made to adjust the quantization level or ∆QP at each Tid
related to the RD performance of the whole sequences. Fortunately, with many sequences,
we adopted an offline simple training scheme, in which a decision is made based on the
final BDBR performance. Then, we applied the learned TRA offset to test sequences without
fine-tuning to avoid the complexity overhead. Therefore, we learned a data-dependent
group of quantization ∆QPi, i = 0, 1, 2, 3 while previous works independently learn to
adjust ∆QP at a given QP setting.

4. Performance Evaluation
4.1. Training and Testing Conditions

To evaluate the coding performance of the proposed methods, Y-BDBR [28] is calcu-
lated under the Random Access (RA) configuration at the common test conditions [29].
We used the HM 16.20 [30] with GOP of 8, intra period of 32, and various quantization
parameters for high rate (QP: 22, 27, 32, 37), which corresponds to the common test condi-
tion in HEVC and low rate (QP: 32, 37, 42, 45). For trellis-based rate allocation, we chose
16 sequences at various resolutions and frame rates while the test sequences are other com-
mon sequences in HEVC [31], and additional sequences can be found in [32,33]. Only the
first 64 frames are used to reduce the training time but still produce high performance.
The training and test sequences can be seen in Table 1, while Figures 6 and 7 illustrate the
first frame of each video sequence.

To illustrate the effectiveness of the TRA method, its performance on the training
dataset in BDBR is shown in Figure 8. It is easy to observe that TRA already achieves
good performance even with phase one, which includes ∆QP set of {±1, 0}. Moreover,
we observed that one iteration was enough for TRA to converge in both phases. For the
1080p training set, over Phase 1, an additional ∆QP set of {±2, ±1, 0} in Phase 2 showed
no BDBR improvement for TRA. Interestingly, the TRA and VRF combination slightly
(i.e., −0.28%) and greatly reduced (i.e., 1.54%) rates for TRA + VRF at a high and low
rate, respectively. The reason for no improvement on TRA at Phase 2 is due to the change
∆QP at frame level, which will greatly impact overall performance. Therefore, ±2 might
depart too much from the conventional rate. However, while combining with the VRF,
∆QP ±2 showed a significant gain of 1% BDBR in the training set on average. The loss in
quality at low is compensated by additional virtual frames generated by VRF. Please refer
to Table 2 for more results on the different training classes. We observed that using the
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same ∆QP set for all training data does show a minor quality improvement at a high rate.
This is due to the nature of the local optima of dynamic programming. At a low rate,
an additional 0.31% Y-BDBR is achieved for low rate but almost identical results for high
rate. Therefore, we adopted a simple resolution-based adaptive ∆QP selection. As the
resolution is available as the input, the proposed method requires no additional complexity
compared to other frameworks. For complex adaptive methods (i.e., fast/slow motion,
simple/details scene, etc.), this could be an interesting topic for our future work.

Table 1. Training and testing sequences at various resolutions and frame rates.

Resolutions Training Sequences Testing Sequences

1080p and Class A ParkScene, BQTerrace, SnakeNDry,
ReadySteadyGo BasketballDrive, Kimono, Cactus, PeopleOnStreet, Traffic

720p and Class F Parkjoy, InToTree, DucksTakeOff, Johnny FourPeople, KristenAndSara, Vidyo1, Vidyo3, Vidyo4,
ChinaSpeed, SlideEditing

480p RaceHorses, BasketballDrill BQMall, PartyScene, BasketballDrillText

4SIF Crew, Harbour Ice

240p RaceHorses, BQSquare BasketballPass, BlowingBubbles

CIF Akiyo, City Hall, Foreman, Football
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SnakeNDry, ReadySteadyGo, Parkjoy, InToTree, DucksTakeOff, Johnny, RaceHorses, BasketballDrill, Crew, Harbour,
RaceHorses, BQSquare, Akiyo, City.

The learned ∆QP set is given in Table 2. Phase 2 only changes the Tid 0 in class 1080p,
720p and 240p. The main reason is related to the GOP 8, which has more Tid 0 frames and
thus consumes a high rate. We also observed very similar results of the learned ∆QP with
and without VRF with the exception of 1080p. A more detailed rate–distribution can be
found in Section 4.3.
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and Phase 2 with ∆QP ∈ {±2,±1, 0}, only one iteration is used.

4.2. Compression Performance Assessment

The coding performance on test sequences is evaluated in Table 3 for BDBR and Table 4
for BDPSNR comparisons. We compared our TRA method with and without VRF to HEVC
with (TRA) and without VRF (TRA + VRF), and the most relevant adaptive quantization
method [3] as well as the standard HEVC. Similar to the training set, low-rate and high-
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rate BDBR are used for comparison. Overall, both TRA and VRF provide a consistent
improvement over the baseline HEVC.

Table 2. Training performance (Y-BDBR % at low rate/high rate).

Resolutions

Best ∆QP for Each Class Sequences Best ∆QP for All Training Sequences

Phase 1: ±1, 0 Phase 2: ±2, ±1, 0 Phase 1: ±1, 0 Phase 2: ±2, ±1, 0

TRA TRA + VRF TRA TRA + VRF TRA TRA + VRF TRA TRA + VRF

1080p −2.49/−1.86 −4.00/−2.68 −2.53/−2.03 −4.05/−2.85 −2.49/−1.86 −4.00/−2.68 −3.77/−2,25 −5.27/−3.12

720p −1.48/−0.84 −2.18/−0.84 −1.72/−1.53 −2.43/−1.50 −0.36/−0.72 −1.12/−0.84 −2.53/−1.50 −2.43/−1.50

480p −1.44/−1.13 −3.38/−2.02 −1.49/−1.50 −3.38/−2.43 −1.44/−1.13 −3.38/−2.02 −2.03/−1.41 −4.08/−1.93

4SIF −1.25/−3.40 −3.40/−1.00 −1.56/−0.60 −3.78/−1.56 −1.07/−0.55 −3.14/−1.48 −2.03/−0.41 −4.08/−1.93

240p −0.76/−0.33 −3.49/−1.49 −1.05/−0.84 −3.54/−1.59 −0.83/−0.76 −3.40/−1.69 −1.63/−0.96 −4.10/−1.72

CIF −1.21/−0.84 −2.67/−1.23 −1.26/−1.16 −2.71/−1.43 −1.07/−0.95 −2.67/−1.23 −1.68/−1.35 −1.53/−1.45

Average −1.58/−1.01 −3.17/−1.61 −1.73/−1.40 −3.30/−1.96 −1.26/−1.07 −2.85/−1.68 −2.50/−1.45 −3.80/−1.96

Table 3. Y-BDBR (%) coding performance of various methods for test sequences, full frames.

Low Rate (QP = 32, 37, 42, 45) High Rate (QP = 22, 27, 32, 37)

QPA [3] TRA VRF TRA + VRF QPA [3] TRA VRF TRA + VRF

Class A
and Class B

BasketballDrive −0.44 −1.38 −1.84 −3.64 −0.43 −1.51 −0.91 −2.21

Kimono −0.49 −0.99 −3.09 −4.82 −1.69 −1.14 −1.75 −2.65

Cactus −0.17 −1.69 −3.33 −6.06 −0.09 −1.20 −1.87 −2.96

PeopleOnStreet N/A −1.11 −8.35 −9.67 N/A −1.28 −4.56 −5.69

Traffic N/A −1.89 −4.14 −7.98 N/A −1.95 −4.05 −4.68

HD 720p

FourPeople −0.71 −1.67 −2.71 −4.53 −0.68 −0.40 −2.38 −3.02

KristenAndSara −0.66 −1.75 −2.56 −4.37 −0.56 −0.68 −1.92 −2.77

Vidyo1 −0.70 −2.03 −4.45 −6.43 −0.88 −0.55 −3.26 −4.03

Vidyo3 −0.73 −2.24 −3.35 −5.83 −0.61 −0.63 −1.85 −2.70

Vidyo4 −0.90 −1.48 −3.23 −4.92 −0.64 −0.29 −1.84 −2.35

ChinaSpeed N/A −1.98 −1.60 −3.65 N/A −0.81 −0.64 −1.44

SlideEditing N/A −0.01 0.02 0.07 N/A 0.27 −0.06 0.26

Class C 480p

BQMall −0.77 −1.39 −3.96 −5.33 −0.88 −0.94 −1.86 −2.78

PartyScene −0.57 −2.80 −1.70 −4.44 −0.61 −1.18 −0.65 −1.83

BasketballDrillText N/A −2.24 −2.22 −4.37 N/A −1.61 −1.11 −2.69

4SIF Ice −0.68 −0.80 −9.33 −9.90 −0.97 −0.77 −4.23 −4.60

Class D
BasketballPass −0.43 −0.81 −4.52 −5.99 0.84 0.27 −1.80 −2.33

BlowingBubbles −0.57 −2.42 −1.49 −4.63 0.26 0.71 −0.65 −1.00

CIF

Hall −0.68 −2.07 −2.04 −4.30 −0.88 −1.92 −0.92 −3.21

Foreman −0.41 −1.48 −4.03 −5.50 −0.49 −1.25 −2.12 −3.49

Football −0.82 −0.41 −1.89 −2.99 −0.72 −0.45 −0.56 −1.07

Average −0.61 −1.55 −3.32 −5.20 −0.56 −0.82 −1.86 −2.73

In addition, to explore the effectiveness of the proposed TRA method, we conducted
further experiments for relevant frame-based QP adaptation methods, notably the QP- λ
model proposed in [34] where the QP and λ are modeled as a linear function and our recent
work in [35] where the QP and RD cost is modeled as a polynomial function. The model
parameters were selected as in [34,35]. We also slightly modified the TRA to change the QP
for only the Tid 0, named TRA_0. The BDBR comparison is illustrated in Table 5.
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Table 4. Y-BDPSNR (dB) coding performance of various methods for test sequences, full frames.

Low Rate (QP = 32, 37, 42, 45) High Rate (QP = 22, 27, 32, 37)

TRA VRF TRA + VRF TRA VRF TRA + VRF

Class A
and Class B

BasketballDrive 0.04 0.06 0.12 0.03 0.02 0.05

Kimono 0.03 0.11 0.17 0.03 0.05 0.08

Cactus 0.06 0.11 0.21 0.02 0.04 0.07

PeopleOnStreet 0.05 0.40 0.46 0.06 0.20 0.25

Traffic 0.08 0.16 0.34 0.07 0.31 0.16

HD 720p

FourPeople 0.09 0.14 0.24 0.02 0.09 0.11

KristenAndSara 0.09 0.13 0.22 0.02 0.06 0.09

Vidyo1 0.10 0.22 0.33 0.02 0.11 0.13

Vidyo3 0.11 0.17 0.30 0.02 0.06 0.09

Vidyo4 0.06 0.14 0.22 0.01 0.06 0.07

ChinaSpeed 0.09 0.07 0.16 0.04 0.03 0.08

SlideEditing 0.00 0.00 -0.01 -0.04 0.01 -0.04

Class C 480p

BQMall 0.06 0.17 0.23 0.04 0.07 0.11

PartyScene 0.10 0.06 0.16 0.05 0.03 0.08

BasketballDrillText 0.10 0.10 0.19 0.07 0.05 0.12

4SIF Ice 0.04 0.44 0.46 0.03 0.14 0.16

Class D
BasketballPass 0.03 0.18 0.24 -0.01 0.09 0.11

BlowingBubbles 0.08 0.06 0.16 -0.03 0.03 0.04

CIF

Hall 0.11 0.11 0.23 0.06 0.03 0.10

Foreman 0.06 0.17 0.23 0.05 0.09 0.15

Football 0.01 0.07 0.11 0.02 0.03 0.06

Average 0.07 0.15 0.23 0.03 0.08 0.10

Table 5. Y-BDBR (%) coding performance for TRA and other frame-based methods.

Sequence QPA [35] QP—λ [34]
(a = 4.2005, b = 13.7112)

QP—λ [34]
(a = 4.2005, b = 9.7112) QPA [3] TRA_0 Proposed TRA

BasketballPass 3.01 11.89 3.58 −0.43 −0.60 −0.81

BlowingBubbles 5.16 8.39 3.37 −0.57 −1.48 −2.42

Football 2.37 15.65 3.72 −0.82 −0.22 −0.41

Foreman 3.90 10.59 2.63 −0.41 −1.35 −1.48

Hall 5.39 7.27 2.91 −0.68 −1.62 −2.07

Average 3.97 10.76 3.24 −0.58 −1.05 −1.44

From the obtained testing performance shown in Tables 3–5, some conclusions can be
obtained as:

• Overall, the compression performance of the HEVC with proposed TRA and VRF
methods outperforms both HEVC with and without QPA benchmarks;

• The HEVC with TRA and VRF methods achieved a significant coding improvement
for all test sequences, notably by 5.2% and 2.7% of BDBR on average for the low and
high rates regions, respectively;
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• The TRA method provides around 1.55% and 0.82% of BDBR saving for test sequences
at the low and high rate regions, respectively, while the VRF method provides around
3.32% and 1.86% of BDBR saving;

• The proposed methods, both TRA and VRF, achieve better compression performance
for the low rate region than for the high rate region;

• In most cases, the combination of TRA and VRF methods achieves even better com-
pression performance than a simple addition method where the compression gain of
TRA is added with that of VRF. This composed effect motivates the use of both TRA
and VRF in improving HEVC performance;

• Experimental results also show that no compression gain is achieved for screen content
videos such as SlideEditing. This may come from the fact that the training set does not
include any video with this content, and the VRF creation may also not work well for
screen-captured videos;

• Compared to other frame-based QPA algorithms, the proposed method achieved
better BDBR (see Table 5). It should be noted that the QPA proposed in [35] was
mainly designed for surveillance video content and its high-order polynomial model
is highly sensitive to the selected parameters. Similarly, the QP- λ linear model
proposed in [34] is also unable to achieve good BDBR performance even with the
original model parameters used in [34] or our new parameters;

• A similar compression achievement is also observed for the BDPSNR comparison.

In addition, similar to other temporal rate allocation methods, TRA and TRA + VRF
show better performance for slow-motion sequences while still greatly improve perfor-
mance for fast-moving sequences such as BasketballDrive. It should be noted that the testing
sequences are different from the training sequences, thus validating the generalization of
our TRA scheme.

To further visualize the performance of our proposed method, Figure 9 shows the RD
comparison between the original HEVC and the proposed TRA + VRF.
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Figure 9. RD performance comparison between the original HEVC and the proposed methods for
various sequences, full frames, low-rate.
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4.3. Rate Allocation Asessment

To explore the rate allocation performance with the proposed method, the rate distri-
bution with different temporal layers is measured and shown in Table 6 and Figure 10 for
both low rate and high rate.

Table 6. Rate distribution (%) between temporal index.

Tid HEVC
HEVC + Proposed Methods

VRF TRA TRA + VRF

HR

0–I 23.95 24.07 30.06 30.23

0–P 32.03 32.19 33.43 33.61

1–B 17.27 17.27 16.43 16.41

2–B 20.27 20.16 11.69 11.57

3–B 6.50 6.30 8.39 8.19

LR

0–I 45.78 46.27 51.44 52.04

0–P 34.57 34.94 31.24 31.58

1–B 8.20 8.17 7.42 7.36

2–B 7.82 7.51 5.81 5.48

3–B 3.63 3.11 4.09 3.54
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Figure 10. Rate allocation among coded pictures in GOP and for several codecs.

The proposed TRA redistributed the rate among temporal layers. The proposed
method tends to give more bits for pictures at the lower temporal layer indexes, i.e., Tid 0.
In fact, the pictures at these positions have a higher impact than the remaining ones as they
can be referred to when coding the pictures at the higher Tid. In general, our proposed
TRA tends to reduce the rate while maintaining a similar level of quality.

On the other hand, VRF shows a virtually similar rate distribution compared to the
baseline HEVC. Therefore, the rate redistribution is only impacted by our TRA. Details on
the rate distribution can be seen in Table 6.

4.4. Complexity Assessment

To complete the performance evaluation, we evaluated the encoding time of our
proposed TRA with and without VRF. The time increase with the proposed tools was
assessed and is shown in Table 7. As obtained, The TRA method does not affect the
computational complexity of the encoder.
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Table 7. Encoding time (%) compared to HEVC.

Class
Low Rate High Rate

TRA TRA + VRF TRA TRA + VRF

1080p 99.7 675.90 99.1 561.5

720p 100.8 447.10 101.9 463.2

480p 87.0 231.30 85.6 281.7

4SIF 105.9 231.19 96.9 243.4

240p 109.3 148.55 106.9 166.7

CIF 96.1 165.50 96.9 180.8

Average 99.8 316.60 97.9 316.2

On the other hand, TRA can even reduce the encoding time, especially at a high rate.
The main reason is due to the reduction in total rate, which greatly impacts other coding
tools. However, the computation time caused by the VRF method introduces nearly three
times the encoding increase to the proposed HEVC. This mainly comes from the creation
of additional references, and more reference frames also lead to more encoding time for
motion estimation. This complexity–compression performance trade-off may prevent the
wide deployment of VRF in some video coding applications where the computational
complexity is constrained. However, as shown in Table 4, BDBR with the combination
of TRA and VRF methods is mostly higher than the total BDBR of TRA and VRF when
they are individually applied. This effect motivates to include in HEVC not only the rate
control solution but also other VRF creation approach in future video coding development.
Additionally, the complexity issue in VRF can be addressed by looking for low complexity
VRF creation methods.

4.5. VRF Assessment

Finally, although VRF has shown an impressive compression performance when
adopted in the HEVC architecture, it also introduced a remarkable complexity overhead.
To further explore the creation of VRF in the proposed HEVC, this sub-section will assess
the visual quality and the computational complexity of VRF.

As presented in Section 3.1.1, the VRF creation adopted in this paper includes three
main steps, (i) the hierarchical motion estimation (HME) to initialize the motion vector field,
(ii) the motion vector refinement (MVR) to mitigate the quantization errors which frequently
happen in decoded references and (iii) motion compensation (MC) to interpolate the VRF.
To reveal the contribution of these modules, we compute and illustrate in Table 8 the percent-
age of computation time (%) measured for VRF over overall HEVC (%VRFHEVC), and for
the HME, MVR, and MC over the VRF (%HMEVRF, %MVRVRF, %MCVRF), while Figure 11
illustrates the visual quality comparison for the proposed VRF with and without MVR and
the related work in [25].

%VRFHEVC = TimeVRF × 100/TimeHEVC (5)

%HMEVRF = TimeHME × 100/TimeVRF (6)

%MVRVRF = TimeMVR × 100/TimeVRF (7)

%MCVRF = TimeMC × 100/TimeVRF (8)

The complexity results obtained in Table 8 shows that the VRF consumes around
11.70% of computational complexity in overall HEVC encoding. In VRF, the HME required
the largest computational complexity, i.e., 95.24%. In this case, reducing the time of the
HME is critical to make the VRF more potential for widespread adoption in HEVC.
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As observed in Figure 11, both HME and MVR contribute to the final quality of VRF.
Naturally, HME exploits the video content to initialize the motion vector information;
the good MV can mitigate the hole and occlusion problems in the interpolated frame.
Meanwhile, the MVR can partly reduce the quantization noise and blocking artifacts in
interpolated pictures by adaptively refining the MVF obtained in the HME. It should be
noted that the blocking artifact typically happens in HEVC compressed videos due to the
block-based coding approach, while the translational motion model adopted in BiME may
also introduce further blocking artifact (see Figure 11 visual quality for VRF w/o MVR).
In this case, WVMF can eliminate the “outlier” motion information, resulting in smoother
MVF for final VRF creation (see Figure 11 visual quality for proposed VRF).

Table 8. VRF Complexity assessment.

Video %VRFHEVC %HMEVRF %MVRVRF %MCVRF

BasketballDrive 12.71 96.06 2.37 1.56

Kimono 12.41 96.09 2.38 1.53

Cactus 14.12 96.03 2.37 1.59

PeopleOnStreet 14.17 96.85 1.87 1.28

Traffic 18.47 96.81 1.86 1.33

FourPeople 13.70 95.21 2.85 1.94

KristenAndSara 12.71 96.06 2.37 1.56

Vidyo1 13.72 95.22 2.82 1.96

Vidyo3 13.15 95.26 2.82 1.93

Vidyo4 13.24 95.24 2.85 1.91

ChinaSpeed 10.24 95.24 2.87 1.89

SlideEditing 13.73 95.22 2.83 1.95

BQMall 10.12 94.90 3.10 2.00

PartyScene 8.68 94.83 3.15 2.02

BasketballDrillText 9.75 94.84 3.13 2.02

Ice 10.71 94.76 3.11 2.12

BasketballPass 10.26 94.24 3.50 2.26

BlowingBubbles 8.13 94.33 3.46 2.21

Hall 10.85 94.25 3.28 2.46

Foreman 9.00 94.36 3.53 2.12

Football 5.85 94.30 3.42 2.28

Average 11.70 95.24 2.85 1.90
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5. Conclusions

This paper presented a novel trellis-based bitrate allocation algorithm for HEVC inter
coding where a virtual reference frame is considered. The proposed VRF-HEVC relies
on the decoded information available at both the encoder and decoder; thus, no syntax
elements need to change in the standard specification, and no overhead bitrate needs to
concern. To optimize the VRF quality, a statistical learning-based VRF frame creation
is adopted. This paper is the first work that considers the impact of quantization error
and the video content on the VR frame quality. In addition, to achieve higher HEVC
compression performance, a novel set of quantization parameters is introduced for the
VRF-HEVC framework based on a dynamic programing based bitrate allocation approach.
Experimental results obtained for a rich set of test sequences revealed that the proposed
TRA and VRF based HEVC solutions significantly outperform relevant HEVC improvement
methods and the standard HEVC.
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