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IoT applications have been being moved to the cloud during the last decade in order to reduce operating costs and provide more
scalable services to users. However, IoT latency-sensitive big data streaming systems (e.g., smart home application) is not suitable
with the cloud and needs another model to fit in. Fog computing, aiming at bringing computation, communication, and storage
resources from “cloud to ground” closest to smart end-devices, seems to be a complementary appropriate proposal for such type
of application. Although there are various research efforts and solutions for deploying and conducting elasticity of IoT big data
analytics applications on the cloud, similar work on fog computing is not many. This article firstly introduces AutoFog, a fog-
computing framework, which provides holistic deployment and an elasticity solution for fog-based IoT big data analytics
applications including a novel mechanism for elasticity provision. Secondly, the article also points out requirements that a
framework of IoT big data analytics application on fog environment should support. Finally, through a realistic smart home use
case, extensive experiments were conducted to validate typical aspects of our proposed framework.

1. Introduction

1.1. Deployment of IoT Big Data Analytics Applications in the
Context of Fog Computing. The last decade has seen the
emerging of cloud computing as a trendy technology and
business model bringing to incremental value for cloud
stakeholders. At the side of service consumers, this value
comes from saving both deployment time and investment
cost on IT infrastructure, offloading it to cloud service pro-
viders. Taking advantage of virtualization technology, hard-
ware resources at data centers are shared by infrastructure
service providers and sold to customers with a reasonable
price. Platform or application services built on top of virtual
resources now are delivered to the hands of cloud consumers
with invoices billed by fine-grained time or resource unit like
in the water or electric power industries.

However, Internet of Things (IoT) applications are not
appropriate to be converted completely into services of the
cloud computing model. For example, latency-sensitive IoT
applications such as big data analytics (BDA for short) sys-
tems require prompt responses to outliers which need to be
within several milliseconds or even microseconds in some
special emergency cases. Moreover, these BDA systems can
create petabytes of data that are not practical to stream back
and forth between cloud data centers and end-devices. With
this kind of application, it is better to keep some of their com-
ponents staying at centralized clouds and move some of them
down to the edge close to end-devices. The components at
the edge should take care of operations requiring fast
responses or reducing a huge amount of data which may con-
sume much bandwidth if transferred over a wide area net-
work. On the contrary, the components on the cloud is
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often responsible for compute-intensive long-running tasks
on permanent data storage.

The fog-computing model, aiming at bringing computa-
tion, communication, and storage resources from “cloud to
ground” closest to end-devices, seems to be an appropriately
complementary proposal for such type of application. This
model encourages developers to divide their applications into
more fine-grained components deployed in the nodes
throughout from the cloud, fog, to end-device strata as
shown in Figure 1. The position of a component depends
on specific tasks that this component has to be in charge of
and whether its tasks are latency-sensitive or not.

Elasticity is a characteristic of cloud according to NIST [1].
Many cloud applications provide elasticity features to accom-
modate scalability and adapt to changes in demand. Unlike
in the cloud, implementing elasticity for IoT applications in
the fog is not an easy task, especially for BDA ones. An
elasticity-supported platform for this kind of application must
provide the ability to modelize all heterogeneous software and
hardware components participating in these applications and
distribute them throughout strata from the cloud, fog, to
end-devices. The components of these modelized applications
should be migrated horizontally between fog nodes or verti-
cally between cloud and fog strata where there is an increase
or decrease in the density of the end-devices. These compo-
nents should be also duplicated where workloads from the
end-devices increase. To avoid vendor lock-in issues, those
components also should be moved flexibly among IoT service
providers when needed. Application programming interfaces
need to be provided so that intercommunication among com-
ponents can transparently cross boundaries created by differ-
ent communication protocols.

In short, we are lacking a holistic fog framework which
allows IoT BDA service providers to deploy and conduct
elasticity on their applications to adapt fluctuation of big data
workload coming from various IoT end-devices.

1.2. Our Contributions. Before talking about our contributions,
we discuss dedicated features that a fog elasticity framework
should support in addition to the features inherited from the
cloud.

First, a distributed application needs to be modelized
before its automatic deployment. In cloud computing, a stan-
dard modeling domain-specific language such as TOSCA [2]
or Camel [3] is enough to abstract both software and hard-
ware components of application services. However, in cloud
computing, it is often that only a small set of concepts need
to be described such as “cloud provider,” “virtual machine,”
or “hosting server.” These sets of terms need to be extended
to fulfill the demand of describing a large of new concepts
of fog computing coming from widely heterogeneous com-
ponents such as gateway, set-top box, base station, physical
machine, and cloudlet.

Secondly, mobility is a conspicuous characteristic of end-
devices in fog computing. The end-devices can move or are
moved physically from this geographical area to another
one such as vehicles and smartphones or eliminated at one
place and replaced logically at another position such as
short-lived wireless sensors. Along with these movements,

some components located at the upper strata of a fog applica-
tion such as fog or cloud nodes should be moved or migrated
correspondingly. An elasticity controller for fog-based appli-
cations needs to provide modules to take the end-device
mobility and its migrated workload into consideration.

In the third place, software or hardware components in fog
do not always stay with the same provider. They can be dis-
tributed horizontally between fog providers or vertically across
both fog and cloud providers. Moreover, one component can
be found in the fog at this moment but can be migrated to
the cloud at another time when some input conditions vary.
Therefore, the cloud/fog federation to break the vendor lock-
in issue is another concern for developers of fog elasticity tools.

Finally, fog computing’s ecosystem is dominated by mil-
lions of chatty embedded devices with thousands kind of
communication protocols. On the other hand, complex
applications have many components which need to be inter-
connected to enhance automation and autonomy. These
interconnections can be either fog-fog, fog-cloud, cloud-
cloud, fog-devices, or cloud-devices. Providing mechanisms
for interconnection between the components is one of the
critical missions of a modern fog elasticity platform.

Supporting such extended requirements needs a holistic
framework that can catch the required aspects of configura-
tion to deliver a highly automated system for managing any
IoT BDA application on the fog. In this paper, we present
AutoFog, which supports the transformation of complex
applications to fog-based ones as well as supports their large-
scale automatic deployment and scaling. The transformation
is smooth and less time-consuming, thanks to the reuse and
extension of an existing domain-specific language (DSL) [4]
and off-the-shelf components (COTS). Besides the extension
of the DSL, another contribution is the introduction of a
mechanism for automatic deployment and elasticity provi-
sioning which automatically implements all the predefined
component instances as well as monitors and conducts all
the elasticity strategies in fog environment. The last one is a
runtime system ensuring that the deployed fog application is
properly globally configured while scaling the application
model such as adding, removing, or migrating component
instances including fog/cloud nodes. We also have imple-
mented a prototype for the framework and conducted exten-
sive experiments to evaluate AutoFog in deploying and
scaling a real-world IoT BDA application on typical aspects
that a fog-computing elasticity framework should resolve.

The rest of this article is organized as follows. Section 2
describes a real-world complex IoT BDA use case as a fog-
based application that we use throughout this paper. Section
3 discusses important modules of our proposed framework.
Section 4 presents our mechanism for dynamic deployment
and elasticity provision of IoT applications. Section 5 reports
some extensive experiments performed on a prototype of
AutoFog serving as a proof of concept of our work. Finally, sec-
tion 6 presents related work, and section 7 concludes the paper.

2. Use Case

In fog computing, components of an application are not only
divided into tiers but also distributed to the three strata:
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cloud, fog, and end-devices. We consider in this section a use
case of a complex IoT BDA application which is divided into
strata as shown in Figure 2. The components of the application
can appear at positions marked by package icons. It is an
energy management application for smart homes. In the
application model, the smart home center manages and mon-
itors the power consumption of multiple houses in a district.

There may have thousands of end-devices that consume
electricity serving for human regular activities in the houses.
Some mobile end-devices can be moved between the houses
such as smartphones, laptops, and vehicles. This movement
can cause temporarily peak demand in some discrete houses.
In each household of a house, many IoT smart plugs are
implemented to measure the energy consumption of end-
devices. A smart plug is installed between the electrical smart
device and the wall power outlet. A range of sensors is
equipped in a smart plug to measure various values of associ-
ated power consumption. These raw data from thousands of
smart plugs are sent to local agencies of the smart home center
located closest to the corresponding houses for preprocessing
or abnormal detection. Fog nodes in clusters, cloudlets, or pri-
vate clouds are implemented in the local agencies to perform
these operations. If an anomaly such as an unusual peak load
or an outage is detected at this step, corresponding reactions
are triggered from the application components distributed to
the fog nodes. These reactions can be sending a simple notifi-
cation to the administrator or adding more electric power
from renewable energy sources to fulfill a peaking consump-
tion demand. To ensure that these operations are fast and
timely, the connection from the local agencies to the houses
must be ensured by high-speed local transmission lines.

The preprocessed data are sent to more compute-
intensive nodes in the cloud for further analysis to generate
more valuable information such as energy consumption pre-

diction during a period. The processed data and generated
information can be stored permanently in cloud storage for
long-running batch-processing tasks which may need to be
conducted later. The IoT BDA application for energy man-
agement in smart homes is the real-world example used
throughout this article.

3. AutoFog Architecture

As mentioned, fog computing adds an intermediate stratum
between cloud and end-devices resulting in participation of
more heterogeneous and fine-grained resources. In general,
AutoFog architecture detailing in Figure 3 is composed of
modules distributed into 4 layers: design, orchestration, elas-
ticity, and infrastructure.

3.1. Design Layer. The design layer allows users to abstract
and generalize complex distributed applications into applica-
tion models using concepts defined by the framework. At
heart of this layer is AutoFog DSL, a domain-specific lan-
guage evolving from [4], which supports the description of
hardware and software components of the application model
and its fine-grained resources arranged hierarchically. In this
language, the abstraction of a software component is called a
software type. Similar software types can be generated from a
software type template. These templates are stored in a soft-
ware type catalog of the design layer. A software type is
instantiated into software instance which is the running ver-
sion of this type. Software instance inherits all the parameters
and default values of its software type.

AutoFog DSL also proposes terms of container type and
container instance. A container type represents a physical
or virtual hardware component/device hosting software
instances at runtime. It is worth mentioning that a small
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Figure 1: Three strata of fog-computing environment.

3Wireless Communications and Mobile Computing



end-device or a huge cloud data center can also be repre-
sented by a container type. Like software type templates, con-
tainer type templates also can be stored in a container type
catalog. Container instance is a container type in running
state. The software instances instantiated from the same type
can be distributed into multiple container instances of differ-
ent container types. Moreover, software instances of different
software types may collocate on the same container instance.
Each software instance contains a reference to the container
instance on which it is running.

Relations between software types (i.e., horizontal rela-
tionship) can be defined in the application model by series
of “exported” and “imported” configuration variables. While
an exported variable is a structure that a component exposes
to remote components using it, an imported variable is a
structure containing configuration information required by
a component to initialize a service. Receiving the imported
structure to boot is mandatory or not depending on specific
software types.

Another kind of relation supported in AutoFog DSL is
the parent-child relationship between a software type and
its containers (i.e., vertical relationship). This relation in
cloud applications is usually a simple map between the soft-
ware components and their hosts (e.g., virtual machines).
With fog-computing applications, it is often that a software
component is deployed inside multiple levels of software
and hardware containers. For example, a Tomcat war file is
contained inside a Tomcat server, the Tomcat server, in turn,
is packed in a Docker container, and a Docker container is
hosted in a virtual machine of a cloudlet or a physical
machine of a fog cluster. AutoFog DSL supports such a com-
plex description to fulfill the gap when defining very hetero-
geneous resources of fog-computing applications.

In AutoFog, an application is a collection containing
descriptions of container types, container instances, software
types, software instances, and vertical/horizontal relations.
An excerpt of the IoT BDA application model under Auto-
Fog DSL is depicted in Figures 4 and 5. As shown in the
figures, the means used for installation and configuration of
the software instances in the container must be defined such
as Bash, Chef, or Puppet. Corresponding to the selected tech-
nology, some scripting files defining operations on how to
install and configure the software on the container may need
to be provided along with the application model.

3.2. Orchestration Layer. Since a completed model of the fog-
based application is sent to the orchestration layer, the model
is parsed, and the life cycle of the application is managed and
ensured by Application Manager (AM). It also checks the
application’s current state (not deployed, deploying, deployed
and stopped, starting, deployed and started, stopping, etc.).
Through this module, the running application can be updated
by adding/removing types and instances to/from current
application model. Application Manager has a global view of
the application, all software components, and the links
between them, but it does not intervene in the physical deploy-
ment of software components and containers. A copy of the
current global view is sent to Placement Manager (PM) to
compute a placement plan when the application is initialized
or updated. Placement Manager supports various kinds of
solvers such as constraint programming-based solvers,
heuristics-based solvers, learning automata-based allocator,
and metasolvers. The users need to select one of the supported
solvers depending on what is more important to them, accu-
racy or performance. Another module in this layer isMonitor-
ing Manager which is used to monitor states of container
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Figure 2: The IoT BDA use case for an energy management application.
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instances using heartbeats and notify the administrator that
the container went down.

3.3. Elasticity Layer. The core components of this layer are
Deployment Manager (DM) and Elasticity Controller (EC).
They are modules coordinating the physical deployment of
the application across containers. They must ensure all soft-
ware instances are deployed with the correct configuration in
hierarchical container instances. The DM instantiates con-
tainers through the provider’s API, and the EC manages the
deployment and scaling of the software types on the con-
tainers. Another mission of the DM is ensuring the federation
between infrastructure providers. To do this, heterogeneous
infrastructures from these providers must be abstracted. In
the cloud, the DM must ensure that the software instances
hosted in different containers belonging to various cloud pro-
viders work as in the same provider. To avoid vendor lock-in
issues, some access lists may need to be added according to
each provider’s policy. In fog, this federation needs to be
enforced not only among cloud providers but also between
cloud and fog providers. Therefore, AutoFog provides a flexi-
bly plug-in mechanism to add and abstract different cloud/fog

providers. It provides a general AutoFog API with critical
infrastructure primitives including the creation and deletion
of software or container instances as well as minimal informa-
tion about their states. These general requests will be trans-
lated and sent to specific cloud/fog providers’ APIs, thanks
to their corresponding infrastructure plug-ins. Thus AutoFog
is completely independent of any fog/cloud infrastructure.

Right after a software instance is switched to running
state, the EC maintains an admin topic on aMessaging Server
to keep track of all components. The EC, therefore, plays an
important role since it constitutes the entrance for both the
initial configuration and the upcoming scale(s). Briefly, this
module has the responsibility of elasticity control of the com-
ponents it manages.

3.4. Infrastructure Layer. Installation and configuration of soft-
ware at the Infrastructure layer are done by AutoFog Agents.
An agent is a lightweight software installed in advance inside
a container instance to manage the installation and elasticity
of software instances of this container. Therefore, each agent
only knows about the local components of its hosted container.
In general, it is responsible for carrying out communication on
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behalf of its container. A software instance is configured by the
agent using the configuration connector specified in its corre-
sponding software type. Additionally, the agents publish vari-
ables a software instance exports (i.e., exported vars) and
variables this instance imports (i.e., imported vars) to corre-
sponding topics in the messaging server. The agents communi-
cate with each other and with the remaining AutoFog modules,
thanks to communication channels in the messaging server.

A messaging protocol has also been implemented based
on exchanging asynchronous messages and publishing/sub-
scribing message topics which allows the upper layers to
dynamically add/remove containers as well as software com-
ponents to a running application. Using messaging services
to exchange messages promotes interoperability between

application components. All communication protocols used
by fog hardware components need to be abstracted and con-
verted to uniform messages supported by the message server.
Currently, AutoFog implements RabbitMQ as its unique
messaging service. Supports for other messaging brokers or
services can be added to AutoFog as new plug-ins. In the fol-
lowing section, we describe how AutoFog manages its appli-
cations at runtime.

4. Dynamic Deployment and
Elasticity Provision

In this section, we describe how AutoFog can be used to
install and manage the IoT BDA application mentioned in

Figure 4: Types of IoT BDA application described by AutoFog DSL.
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section 2. We depict in Figure 6 various steps required to
deploy the IoT BDA application and conduct elasticity on
the Fog using AutoFog. Below are details of these steps:

(1) The model of the fog application is sent to AutoFog
to be deployed. Figures 4 and 5 represent the IoT
BDA application model under AutoFog DSL.
Figure 4 shows the different software and container
types of the application. As depicted, we describe
some software and container types such as Storm
cluster [5] (Figure 4, lines 5-13), Cassandra [6]
(Figure 4, lines 30-41), and OpenHAB [7] (Figure 4,
lines 16-27). The model first is parsed by the AM
module to generate a provider-independent model
(PIM). The PIM then goes through the constraint-
problem solvers of the PM module to generate a
provider-specific model (PSM) describing which
containers belonging to which infrastructure of plat-
form providers will host the software components

(2) The PSM is sent to the DMmodule at the beginning of
this step. The DM, through the local General API,
contacts the infrastructure/platform API to ask for
the instantiation of container instances. For example,
in the case of the IoT BDA application, we initially
deploy one Nimbus instance (Figure 5, lines 3-14),
one Cassandra instance (Figure 5, lines 17-22), and
one OpenHAB instance (Figure 5, lines 25-30). These
instances are deployed on container types named
“Cloudlet-node” (Docker [8]) on the fog or “VM-
EC2” on the cloud. The users can either specify explic-
itly the name of a hosting container instance for a spe-
cific software instance or leave this task for the solvers.
At the end of the step, the infrastructure/platform pro-
viders instantiate the container instances

(3) Each container instance has a message queue in the
messaging server. The DM asks the EC to include soft-
ware instance definition and corresponding scripting

Figure 5: Instances of IoT BDA application described by AutoFog DSL.
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files onto the message queues including the EC queue.
When containers are started up and running, they
receive information of instances that they are in charge
of from the messaging server and start to install them

(4) All software and container instances of the application
take part in the application-wide configuration after
being installed. The imported and exported variables
are exchanged, and when an event triggers elasticity
actions, they are scaled out/in automatically. This
ensures the correctness of the elasticity mechanism.

From now on, container instances are autonomous and
independent from other modules of AutoFog. They can
exchange information with each other, thanks to correspond-
ing topics in the messaging server. This decentralized
approach allows the application to work even when errors
occur on the EC.

5. Evaluation

We implemented a prototype of AutoFog framework and
conducted several experiments validating its functionality
in terms of auto deployment and elasticity. The Smart Home
BDA application in section 2 is chosen as the deployment’s
target of the framework.

5.1. Experiment Setup. The modules of AutoFog and software
components of the smart home BDA application were devel-
oped to be packaged easily into Docker containers. These con-
tainers are orchestrated by the Kubernetes cluster [9]
implemented in our homegrown infrastructure at the VNU
University of Engineering and Technology (VNU-UET). Each
Kubernetes pod is configured to contain only one container.
The experimental implementation is depicted in Figure 7. In
our implementation, fog nodes are ensured by Kubernetes

and Cloud nodes are provisioned by OpenStack [10]. Because
Kubernetes can provide both elasticity function and fog node,
it works at both elasticity and infrastructure layers of AutoFog
architecture. We have also created different Docker images
which are all embedded an AutoFog agent beforehand:

(i) AutoFog image contains main modules of AutoFog
such as AM, PM, DM, and EC. This image is used
for AutoFog nodes at both Fog and Cloud strata

(ii) Storage image contains an instance of Cassandra, a
NoSQL distributed database management system.
It supports handling large amounts of data across
many nodes with a highly available service. Its data
model allows incremental modifications of rows.
This image is used to instantiate the storage nodes
where permanent data of the smart home BDA
application are stored at the cloud stratum

(iii) StormMaster/worker images represent for two types
of Storm nodes: Nimbus master node and Supervi-
sor worker node at fog strata. The master node man-
ages cluster of Storm Supervisor nodes where Storm
topology is submitted to execute. Storm topology is
composed of Spouts who pump data to the topology
and Bolts who consume and process the data in par-
allel from Spouts

(iv) OpenHAB image includes an OpenHAB message
binding which gathers measurements from smart
plugs and forwards them to the Storm cluster. Open-
HAB nodes created from this image working as edge
gateways locate at the border between end-device
and fog strata

(v) Message server image contains a RabbitMQ server to
asynchronously handle message queuing telemetry
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Figure 6: Steps of the AutoFog mechanism of dynamic deployment and elasticity provision.
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transport (MQTT) messages back and forth in the
system. MQTT is a lightweight communication pro-
tocol broadly used for IoT applications [11]. This
image is used for message server nodes at both fog
and cloud strata.

In our experiments, the input data are synthesized from a
practical data source provided by DEBS grand challenge 2014
[12]. The dataset contains over 4055 million of measurements
for 2125 smart plugs deployed in multiple houses in Germany.
The full data cover a period of one month in September 2013.
We have developed an end-device image including a program
which regenerates measurements retrieved from the DEBS
dataset.

All the practical deployment times are calculated over 20
different runs to get the mean. A new container is needed for
each software instance. The time in Table 1 covers the instan-
tiation of the container, the initial configuration of the soft-
ware until they reach states from which they can be started.
For example, Storm Master (Nimbus) is the one whose
instances take the longest time to deploy with ≈248 seconds
on average.

The initial deployment contains one Cassandra storage
node at the cloud stratum, one Storm Master node and one
to two Storm Supervisor nodes working at fog stratum, two
OpenHAB nodes working as edge gateways, and a maximum
of 40 end-device nodes. Modules of AutoFog and its message

server are grouped into one node called AutoFog node. The
selection of these software components is just one of many
specific combinations of IoT BDA applications. Other com-
binations can also be used in the experiments without losing
the generality and validity of the AutoFog architecture.

5.2. Storm Topology. Storm is one of components of the
smart home BDA application. Thus, Storm can be described
by AutoFog DSL at the design layer and deployed and man-
aged by submodules of both orchestration and elasticity
layers. Storm topology to process the DEBS IoT data is
shown in Figure 8. The topology is composed of 5 compo-
nents as follows.
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Figure 7: The experimental implementation of the smart home BDA application.

Table 1: Deployment time of five smart home BDA’s instances over
20 runs.

Software types Mean 99th percentile

Storm Master 248:05 ± 6:4 221:16 ± 9:4
Storm Supervisor 112:02 ± 16:1 125:53 ± 12:3
OpenHAB 145:43 ± 8:9 154:21 ± 9:7
RabbitMQ 112:71 ± 14:8 118:04 ± 11:2
Cassandra 103:88 ± 11:6 98:09 ± 8:5
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(i) Spout_data: it has the function to create MQTT cli-
ents that connect to the message broker, subscribe
to predetermined topics, receive data from the bro-
ker, separate the data into meaningful fields, and
then send them to the back Bolts for processing

(ii) Bolt_split: it has the function to read data sent from
Spout_data, read the timestamp field, divide the data
into time slices with predetermined window sizes
according to the system’s needs (1 minute, 5
minutes, to 120 minutes), and then send it to Bolt_
avg for further processing

(iii) Bolt_avg: its function is to receive data from Bolt_
split to calculate the average amount of electricity
that the device uses in time slice with predetermined
window sizes according to the needs of the system (1
minute, 5 minutes, to 120 minutes). The data after
calculating will be saved to RAM memory and then
sent to Bolt_sum for further processing. In addition,
Bolt_avg stores the average data of the energy con-
sumed by each device in the local database. The data
stored on the database will be released to save mem-
ory to ensure the long-term operation of the system

(iv) Bolt_sum: it has the function to add the total energy
used of all the equipment in the house to calculate the
total amount of electricity consumed by that house in
the time slice with predetermined window sizes accord-
ing to the needs of the system. Similar to Bolt_avg, Bolt_
sum stores the average data of the energy consumed by
each house in a local database. The data stored on the
database will also be released to save memory to ensure
the long-term operation of the system

(v) Bolt_forecast: it has the function that uses data from
previous time slice to predict energy usage value of
next two time slices and then save it to database.

To vary IoT workload to the Storm topology, in the Bolt_
forecast, we implement three prediction models making
short-term electric load forecast of smart IoT devices. The
utilization of these models causes differences in the amount
of input tuples used in Storm’s Bolts, especially in Bolt_avg,
Bolt_sum, and Bolt_forecast. In the first model, time is
divided into time slices, and the load average of any future
time slice is predicted based on the average electric load of
the previous ith time slices having the same timeframe of
all preceding days. Assuming we predict the average load of
the second time slice Pðtsi+2Þ from the current slide tsi, the
formula used is

P tsi+2ð Þ = avgLoad tsið Þ +median avgLoad tsj
� �� �

2 : ð1Þ

In formula (1): avgLoadðtsiÞ is the average load of current
time slice tsi, avgLoadðtsjÞ is the average load of time slices tsj
—time slices of previous days have the same timeframe as
slice tsi—and medianðavgLoadðtsjÞÞ is the median of all pre-
vious time slices tsj.

With the second model, avgLoadðtsjÞ is the average load
of all previous time slices in the same day up to the current
time slice. For the third one, avgLoadðtsjÞ is average load of
time slices of previous weeks having the same timeframe as
slice tsi on the same date.

5.3. Result. We publish messages from the smart home data-
set to the Storm topology of the smart home IoT application.
In Bolt_forecast, we change the prediction models, and
results measured on Storm Nimbus Master node represent-
ing many experimental runs are shown in Figure 9. The time
on the x-axis is the execution time for experimental system to
publish all messages from the DEBS data files and process
these messages through Bolts of the Storm topology. The

Spout

Spout_trigger

Bolt_spilt Bolt_avg Bolt_sum

Bolt_forecast

Figure 8: Storm topology of the smart home BDA application.
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green, red, and blue lines represent the first, second, and third
prediction models, respectively. The execution time of the
blue one lasts about 20 minutes with the average CPU usage
is quite different from time to time, averaging approximately
30%. The average throughput at the end of data processing is
about 2306 messages per second. As for the green and red
ones, the CPU usage is roughly the same, maintaining at
65-70%, and at a time spike can be as high as 75-80%. The
time to publish and process data with the first model is about
41 minutes, greater than the second one which is about 32.5
minutes. The average throughput at the end of data process-
ing of the first and second models is about 1040 and 1317
messages per second, respectively. The main reason for the
difference in execution time is that the prediction models
use different amounts of historical data leading to various
computation times in the Bolts. The predicting results of all
three prediction models are depicted in Figure 10.

We see in Figure 9 that both the first and second models
exhibit the average CPU usages higher than 75%. Therefore,
elasticity strategies can be applied to reduce the average CPU
usage and at the same time shorten the execution time. To per-
form elasticity, two techniques can be implemented on Kuber-
netes: Vertical Pod Autoscaler and Horizontal Pod Autoscaler.

Horizontal Pod Autoscaler (HPA) is a technique to auto-
matically increase or decrease the number of Kubernetes
pods by collecting and evaluating CPU usage metrics from
the Kubernetes Metrics Server. The number of pods will be
in the range min and max which are set when generating
HPA. The HPA is implemented as a Kubernetes API
resource and as a controller. Every 15 seconds, the controller
periodically checks and adjusts the number of pods so that
the observed average CPU usage matches the value specified
by the user. HPA calculates the number of pods based on a
formula where Ceil() is the rounding function:

#RequiredPods = Ceil #CurrentPods × PresentValue
ExpectedValue

� �
:

ð2Þ

Vertical Pod Autoscaler (VPA) is a technique that auto-
matically increases and decreases resources such as CPU
and memory for pods depending on the needs of the pods.
Technically, VPA does not dynamically change resources
for existing pods; instead, it checks the managed pods to
see if the resources are set correctly and, if incorrectly,
removes them so that the controller can create other pods
with updated configurations.

5.3.1. Horizontal Elasticity. Without loss of generality, we
conduct HPA with the first model only. A HPA object for
the deployment and the pod “StormWorker” are built with
the following limits: When the average CPU usage greater
than 75% will trigger an auto scale up increasing number of
StormWorker pods, it will do a scale down to decrease the
number of pods. When the used RAM memory over 3GB
(75%) will perform auto scale up, it will do a scale down.
The minimum and maximum numbers of pods are 1 and 5,
respectively. Elasticity results are shown in Figure 11. The
horizontal scaling mechanism responds very quickly and
works quite smoothly to changes in pod’s CPU resource
usage even when resource usage spikes during very small
amount of time. This mechanism does not cause downtime
of the Storm workers during use. We see that the average
CPU usage and execution time are reduced to 40% and 36.5
minutes in the case of using elasticity comparing to 75%
and 41 minutes in the case of not using elasticity.

5.3.2. Vertical Elasticity. By default, for stability, the VPA will
not perform an automatic update of pod resources if the
number of pod copies is less than 2. So two pods are created
with each pod configuration as following: the minimum
resource is 0.5 CPU core and 1GB RAM; the maximum
resource is 1 CPU core and 2GB RAM. Next, a VPA object
is created for pods with updateMode=Auto. After the pods
are created, the IoT load is injected to the two pods with
input messages from the DEBS dataset. The obtained results
are depicted in Figure 12. Each line with a specific color is a
representation of a pod containing the running container of
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Figure 9: CPU usage over time of processing smart home dataset with three prediction models. The green, red, and blue lines represent the
first, second, and third prediction models.
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Figure 10: Continued.
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Storm worker. After vertical elasticity actions, two pods
(orange, blue) with minimum configuration are replaced by
two new pods with maximum configuration (green, red),
respectively. It is obvious that the average CPU usage is
reduced significantly.

At the moment, Kubernetes did not have a mechanism
for updating resources directly on a running pod; replicating
pod is the only way. Therefore, VPA can probably bring
unexpected downtime for the Storm worker. When VPA cre-
ates new pods and causes downtime in about 30 seconds,
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Figure 10: Results of all three prediction models. (a)The first model. (b)The second model. (c)The third model.
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Figure 11: CPU resources are automatically scaled horizontally; 5 lines represent 5 StormWorker pods.
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there is a certain amount of messages lost during that time
that depends on the speed of publishing. After that, the suc-
ceeding connections could be functioning normal.

6. Related Work

6.1. General Frameworks for Fog-Based IoT BDA Applications.
For almost a decade since the introduction of fog computing,
many frameworks have been being proposed to support fog-
based IoT BDA applications. Almost all frameworks own
one [13–18] or multiple fog orchestrators (FO) [19–21] oper-
ating at the orchestration layer. With the former, FO must
have holistic view of fog resources and connect to all fog nodes
in the framework. Multiple FO can resolve the scalability issue
of the single one but might incur some overhead from com-
munication between these FO.

Chen et al. propose a FA2ST (fog-as-a-service technology)
fog framework supporting any kind of IoT application [14].
On-demand discovery of fog service is provided to figure out
if a connected fog node’s resource is currently available when
an IoT request comes. In another research, an IoV-fog infra-
structure is defined to provide supports to overworked RSUs
of UAVs [16]. Such a RSU can trigger a deployment of
UAV, and data is migrated to this UAV to decrease response
latency and increase the IoV computation. Storm, a stream
processing platform, is extended by Cardellini et al. to enable
a distributed IoT resource scheduler which is latency aware
[13]. Fog nodes in this extension have knowledge of resource
availability of each other and thus ensures QoS of IoT service
distribution. Donassolo et al. propose FITOR, a Fog-IoT
ORchestrator which monitors the fog infrastructure and keeps
track of every fog resources anytime [15]. It helps to deploy the
IoT data to fog nodes automatically. Foggy framework intro-
duced by Yigitoglu et al. allows the deployment of IoT task
requests to an appropriate fog node having available resources

and satisfying several QoS requirements such as priority,
latency, and privacy [18]. In the same vein, Foggy FOC uses
MQTT protocol to monitor all fog resources [17]. To increase
future deployment, it has a mechanism to store historical IoT
workloads and requirements.

To increase security and reliability, Fogbus [20], a scal-
able fog framework, partitions fog nodes into various roles
including computing, gateway, repository, and broker nodes.
A defective fog node can be restored by repository nodes and
taken over by other fog nodes. A blockchain solution is
applied to validate dependability of IoT data sources. Fog
nodes are clustered into colonies in research of Skarlat et al.
[19]. In their fog architecture, FO of each colony keeps all
fog available resource information. IoT requests firstly are
allocated to fog nodes in a colony. If the colony does not have
enough resources, the FO will find another colony to fulfill
the tasks through transferring the requests using REST API.
It also can propagate the requests to the cloud stratum if
appropriate. Data migration between fog nodes and RSUs
in an IoV-fog application is considered by Zhang et al. [21].
Multiple fog nodes in a region are grouped into a cluster
and managed by a coordinator (FO). If a vehicle moves to a
new region, an IoT module may be handed over to another
fog cluster to avoid interrupted IoT processing.

Although these frameworks are aimed at satisfying
deploying and provisioning fog resources using one or multi-
ple FO, they do not take elasticity feature into account as in
our research.

6.2. Elasticity Frameworks for Fog-Based IoT BDA Applications.
Although a large number of frameworks are proposed for fog-
based IoT BDA applications, not many studies consider
elasticity for this kind of application. Mobile fog [22] proposes
a scaling mechanism where overloaded workloads are resolved
by fog nodes created dynamically. It also properly distributes
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Figure 12: Real-time average CPU usage when using VPA.
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IoT data to these new fog nodes. Moreover, its API data
migration is suitable for ambulant IoT devices like smart
phones, cameras, and vehicles. To enable elasticity for IoT data
stream processing applications using container, Wu et al.
modify Kubernetes HPA to adapt at runtime the deployment
of containerized BDA applications to the estimated load
arrival rate [23]. In a similar way, Netto et al. scale Docker
containers in Kubernetes using a state machine approach
[24]. Adaptive AI services run on IoT gateways and fostered
on the cloud are enabled by Elastic-IoT-Fog (EiF), a flexible
fog-computing framework [25]. EiF virtualizes an IoT service
layer platform and orchestrates various fog nodes. The feasi-
bility of elasticity feature in EiF is depicted via an example of
intelligent traffic flow management and monitoring, in which
network slicing units and respective resource elasticity are
dynamic provisioned. Zanni et al. present and report the eval-
uation of a system consisting of virtual services in a combined
fog, cloud, and IoT environments with various device settings
[26]. By using geometric monitoring, the paper proposes an
original solution to dynamically scale and provision the
resources for the fog-computing layer. Elasticity is expressed
in aspect of moving and redeploying more mobile compo-
nents to the fog nodes closest to the targeted end-devices.
Wang et al. design a three-tier edge computing system archi-
tecture to dynamically route data to proper edge servers and
elastically adjust their computing capacity for the real-time
urban surveillance applications [27]. Moreover, the paper also
introduces schemes of workload balance and resource redistri-
bution in emergency situations. The EU ELASTIC project is
aimed at developing a software architecture for extreme-
scale BDA in fog-computing ecosystems [28]. With the archi-
tecture, ELASTIC supports elasticity across the fog compute
strata while fulfilling communication, real-time, energy, and
secure properties.

The above-mentioned studies and solutions bring elastic-
ity feature for the resources of IoT BDA applications on fog-
computing environment but do not mention the automatic
deployment of these applications based on the description
of given software/hardware components and deployment
plans as the function provided by AutoFog.

7. Conclusion

We have presented AutoFog, a framework with a four-layer
architecture, which supports transformation of IoT BDA
applications to elastic fog-based ones and automatic deploy-
ment of these applications on fog environment. A mecha-
nism of elasticity provision is integrated into the framework
to enable adaptation to changes of workload from IoT smart
devices. The transformation is more smooth and less time-
consuming through the reuse and extension of an existing
domain-specific language and off-the-shelf components.
The validating experiments with the practical smart home
use case were conducted with Kubernetes for fog nodes and
OpenStack for cloud nodes. The results show that the imple-
mentation of AutoFog framework accompanied by our pro-
posed elasticity mechanism is more flexible and faster when
there was fluctuations in managed resources.
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