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Abstract—In recent years, along with the development of precision agriculture, Unmanned Aerial Vehicles (UAVs) in 
crop data collection is becoming more popular because of the advantages of collecting data in a large area. However, 
many crops and special growing conditions require low-flying UAVs to collect data such as orchards. This challenge 
with the safety control algorithm of the UAVs. The research aims to develop UAVs capable of autopilot and sampling 
at low altitudes. The safety control problem of UAV is solved by the Visual Inertial Odometry (VIO) algorithm using a 
stereo camera synchronized with an inertial measurement unit (IMU). Besides that, the UAV is equipped with a high-
resolution RBG camera for data sampling. The system has been tested under various conditions of low-ceiling 
performance with altitude hold and obstacle avoidance requirements, and the collected data is satisfactory for use.  
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I. INTRODUCTION  
In the last few years, the total volume of investments in the 

agricultural sector has increased by 80%. These investments 
aim to achieve productivity growth of at least 70% by 2050to 
meet the advanced needs of 9 billion people. At the same time, 
the agricultural sector has to address severe challenges such as 
environmental pollution, the limited availability of arable 
lands, and the decrease in the number of farmers. Farms must 
be extended and constantly innovate to improve and maintain 
productivity to meet the demands. The integration of 
Unmanned Aerial Vehicles (UAVs) with IoT ( Internet of 
Things) devices, such as embedded sensors and 
communication elements, for agriculture operations is 
growing at a significantly faster pace than expected  [1], [2]. 
These IoT devices greatly enhance management operations, 
including field mapping[3], [4], plant-stress detection [5], [6], 
biomass estimation [7], [8], weed management [7], 
[9]inventory counting [10], etc. 

UAV’s most common application is observing agriculture 
fields regarding soil conditions, crop growth, weed 
infestation, insects, plant diseases, and crop water 
requirements. It provides prescription data to guide the 
operation of precision implements. Realizing the decisions 
calls for variable-rate technology to implement tactical actions 
in seeding, fertilizer/chemical application and irrigation 
instead of only mapping the field one year for improvements 
in a subsequent year. Typically, UAVs always using high-
range fly combine with high-resolution cameras for the survey 
mission [11]. However, many crops and special growing 
conditions require low-flying UAVs to collect data such as 
orchards. The other type of application is using drones for 
water crops or pesticide spraying. This application can help 
reduce herbicide use by 52% in Brazilian soybean field but it 
cannot work automatically with the auto fly mission in 

complex farmland at low altitude. In a low-altitude fly range, 
UAVs will face many risks such as damping GPS, obstacles… 
Therefore, achieving autonomous recognition of obstacles and 
real-time avoidance is one of the inevitable trends in the 
intelligent development of agriculture drone. 

Obstacle detection, collision avoidance, path planning, 
localisation, and control systems are the key parts required by 
an unmanned vehicle to be fully autonomous and able to 
navigate without being explicitly controlled [12]. In a 
challenging dynamic agricultural environment, tasks may 
become increasingly difficult for UAVs due to on-board 
payload limitations (e.g., sensors, batteries), power 
constraints, reduced visibility due to bad weather (e.g., rain, 
dust), and complications in remote monitoring. The robotics 
community is striving hard to address these challenges and to 
bring the technological level suited for the demanding 
environments ensuring success and safe navigation of the 
unmanned vehicles[13][14]. Therefor, UAV’s controller need 
a  

There has been a lot of research in recent times on visual 
and visual-inertial odometry for UAVs with a variety of 
proposed algorithms [15]. A monocular camera is an ideal 
sensor for this task because of its small size, cheap and 
straightforward hardware setting. But, there are many 
problems in the system based on pure vision, so it is difficult 
to be applied and practice [16]. Besides that, cameras and 
inertial measurement units have complementary properties. 
By combining and utilizing their measurement data, 
robustness and accurate positioning can be well solved. The 
camera provides rich image information; the data is not easy 
to drift, contained in the IMU gyroscope, and the 
accelerometer can accurately provide short-term estimates. 
Visual and inertial navigation is more and more popular 
among researchers, especially in UAV[17] . 



Minh-Trung Vu et. al. 

At present, there are also very excellent visual-inertial 
navigation research results, such as Hong Kong university of 
science and technology VINS[18], based on the ORB-SLAM2 
improved IMU+ORB-SLAM2 system[19]. There are some 
problems in the monocular inertial navigation system. 
Because the monocular camera cannot measure the depth 
information, the monocular system cannot recover the 
measurement scale information. Due to the lack of direct 
distance measurement, the monocular visual structure will be 
difficult to integrate with the inertial measurement directly. To 
solve these problems, many systems of stereo-base inertial 
odometry were proposed [20]. The stereo camera can now 
obtain the depth information of the object so that the camera 
data can be better integrated with the IMU data and the system 
initialization is simpler. 

Furthermore, the stereo vision algorithm is excellent to 
extract information about the relative position of 3D objects 
and obstacle avoidance in autonomous systems.For example, 
the article, 3D path-planning and stereo-based obstacle 
avoidance for rotorcraft demonstrate the complexity of 
working with the stereo vision to build a 3D occupancy map. 
The experiments highlighted the need to keep the stereo 
cameras pointed along the velocity vector to avoid collisions. 

In this paper, we design a fully autonomous drone for 
agriculture, developed and implemented. This design 
integrated both the stereo camera and an embedded computer 
for state estimation and obstacle avoidance. This article is 
divided as follows: Section II inquires on the platform and 
hardware system for the primary purpose. Section III defines 
the VIO and obstacle avoidance algorithm. Section IV 
introduces the results and discussion. Finally, Section V is the 
conclusion.  

,  

II. HARDWARE SYSTEM 
The specifications for the design were listed in table 1 

below, and these determine the choice of the suitable 
component. 

 

TABLE I.  THE SPECIFICATIONS FOR THE DRONE DESIGN 

Parameter Value 
Lifting thrust 10N 

Weight 5Kg 
Battery 4S 5200mAh 

Range of radio frequency coverage 1Km 
Frequency of control signals 2.4GHz 

 
 

A. Hex-copter Body 
The frame of the hex-copter was made of very light 

carbon fiber. Many other materials such as aluminium and 
wood were considered. But their weight dramatically affects 
the performance of the aircraft, especially the flight time. The 
body is divided into three parts: body frame, landing gear, 
and embedded computer connection path. The body frame 
enclosed all the needed components. The width of the 
structure was 450mm, and the height was 400mm.  

Before choosing a motor for the design, the total weight 
needs to estimate first. It was determined by function: 

Thrust=(weight*2)/6 (For 2:1 thrust / 
weight ratio )                                         (1) 

Where: weight is the estimated weight of the loaded vehicle, 
which is obtained by adding the individual weights of all 
components in the aircraft.  

B. Embeded computer and camera 
 Jetson nano was integrated as companion computer because 
its inherent processing power. It serves as the main control 
system which changes flight mode via MAVLink protocol. 
An embedded computer connected to the stereo camera 
processes images to create depth and visual odometry images 
to replace GPS data in positioning. Because of the sampling 
rate and image quality, we use the MyntEye camera. 
 

 
Fig. 1 System connection 

 
 

 

III. ALGORITHM 

A. Visual-Inertial Odometry 
In this paper, we use a VIO system called VINS-Fusion. This 
is an extended version of VINS-Mono [19]. VINS-Fusion is 
an optimization-based multi-sensor state estimator, which 
archives accurate self-localization for autonomous 
applications (UAVs, cars, AR/VR). It supports multiple 
visual-inertial sensor types (mono camera with IMU, stereo 
camera with IMU also only stereo cameras systems). The 
outstanding advantages of VINS-Fusion are: 
• Multiple sensors support 
• Online spatial calibration (transform between the camera 

and IMU) 
• Online temporal calibration (time offset between the 

camera and IMU) [18] 



• Visual loop closure 
In this system, we use the stereo camera with IMU. The 

overview of the system is described in Fig. xxx. In the first 
block, measurement preprocessing, features are extracted and 
tracked, and IMU measurements between two consecutie 
stereo frames are preinegrated. The initialization procedure 
provides all necessary values: pose, velocity, gyroscope bias, 
and three-dimensional feature location. This information will 
be used for bootstrapping the subsequent nonlinear 
optimization based VIO. After successful parameter 

 initialization, the VIO with relocalization modules will 
start. This module tightly fuses pre-integrated IMU 
measurements, feature observations, and redetected feature 
from the loop closure. Finally, the pose graph module 
performs global optimization to eliminate drift and achieve 
reuse propose. Besides, camera-rate pose and IMU-rate pose 
are used to online temporal calibrate process.  
 

 
Fig. 2 System overview 

B. Obstacle avoidance algorithm 
Obstacle avoidance is a two-step problem: Obstacle 

detection and path planning. There exist different algorithms, 
approaches, and solutions to path planning. The stereo vision 
camera help to detect an object in front of the drone, and the 
computer will choose between 4 different flight modes, 
defined as follows: 

 
• Go to the goal (GTG): Only used when no obstacle is 

detected. The quadcopter goes in a straight line toward 
its intended destination (waypoint to waypoint). 

• Avoid obstacle (AO): This is safe mode. Suppose the 
block gets too close to the drone. It will fly in the 
opposite direction of the aiming vector from the center 
of the UAV to the nearest sensed point. 

• Avoid obstacle and go-to-goal (AO+GTG): This mode is 
used when an avoidable obstacle is sensed. It uses the 
result of a weighted sum vector between GTG and AO to 
decide where the flight direction will be. 

• Follow wall (FW): Special mode in which the perceived 
obstacle is between the UAV and its target and the GTG 
+ AO mode is not enough to evade said obstacle. The 
UAV follows the estimated contour of the obstacle until 
it is circumvented and then switches mode depending on 
the information available.  

Algorithm 1 shows how a mode is chosen considering the 
available information and vectors. The transitions between 
modes are illustrated in the Finite State machine displayed in 
Fig3. Furthermore, the vectors mentioned in the description 
are represented in Fig4. 

The algorithm is defined by information obtained from 
stereo vision. The closest distance measured by depth image 
was generated from the stereo camera. It is from smallest to 
highest and the angles at which each of the length were 
measured. Once a flight mode is chosen, the companion 
computer will send a flight control command to the flight 
controller with velocity vector format. 

 .  
Fig. 3 Mode transitions specified in Algorithm 1 represented by a Finite 
State Machine. The algorithm begins in the GTG mode and should end in the 
same mode. 

 
 

 
Fig. 4 Vectors used in the obstacle avoidance algorithm to choose the 
current mode and flight trajectory 

 
 

Algorithm 1 Decision Making 
Input: Current Mode CM, Go To Goal Vector 𝑮𝑻𝑮𝑽𝒆𝒕𝒄,  
Avoid Obstacle Vector 𝑨𝑶𝑽𝒆𝒕𝒄 , Current Minimum Distance  
to Closest Detected Obstacle 𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓  
Output: Current Mode CM  
Initialization : 
1: Define maximum perceivable distance to 
obstacle𝑴𝒂𝒙𝑫𝒊𝒔𝒕𝑶𝒃𝒔 
2: Define minimum permissible distance to obstacle  

𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑶𝒃𝒔 
3: Define distance to keep from estimated wall  
𝑫𝒊𝒔𝒕𝑲𝒆𝒑𝒕  
4: Define maximum angle admissible between 𝑮𝑻𝑩𝑽𝒆𝒄𝒕  
and 𝑨𝑶𝑽𝒆𝒄𝒕,	𝑴𝒂𝒙𝑨𝒏𝒈  
Main Loop : 
5: VectAng ← angleBetweenVectors(𝑮𝑻𝑩𝑽𝒆𝒄𝒕,	𝑨𝑶𝑽𝒆𝒄𝒕) 
6: if (CM = GTG) then  
7:      if (𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓≤ 𝑴𝒂𝒙𝑫𝒊𝒔𝒕𝑶𝒃𝒔 and 
𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓> 𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑶𝒃𝒔) then 
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8:               CM ← GTG+AO 
9:      else if (𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓≤ 𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑶𝒃𝒔) then 
10:              CM ← AO 
11:     end if  
12: else if (CM = GTG+AO) then 
13:     if (𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓> 𝑴𝒂𝒙𝑫𝒊𝒔𝒕𝑶𝒃𝒔) then 
14:               CM ← GTG 
15:      else if (𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓≤ 𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑶𝒃𝒔) then 
16:                CM ← AO 
17:       else if (𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓< 𝑫𝒊𝒔𝒕𝑲𝒆𝒑𝒕  
and 𝑽𝒆𝒄𝒕𝑨𝒏𝒈≥ 𝑴𝒂𝒙𝑨𝒏𝒈) then 
18:                 CM ← FW 
19:        end if  
20: else if (CM = AO) then  
21:         if (𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓> 𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑶𝒃𝒔) then 
22:                 if (𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓< 𝑫𝒊𝒔𝒕𝑲𝒆𝒑𝒕  
and 𝑽𝒆𝒄𝒕𝑨𝒏𝒈≥ 𝑴𝒂𝒙𝑨𝒏𝒈) then 
23:                           CM ← FW 
24:                  else 
25:                            CM ← GTG+AO 
26:                   end if 
27:         end if  
28: else if (CM = FW) then  
29:         if (𝑽𝒆𝒄𝒕𝑨𝒏𝒈< 𝑴𝒂𝒙𝑨𝒏𝒈) then 
30:                    CM ← GTG+AO 
31:          else if (𝑴𝒊𝒏𝑫𝒊𝒔𝒕𝑪𝒖𝒓𝒓> 𝑴𝒂𝒙𝑫𝒊𝒔𝒕𝑶𝒃𝒔) then 
32:                     CM ← GTG 
33:          end if  
34:end if 
 
 

 

IV. EXPERIMENTS AND RESULT 
In this section, we present our experiments with the 

system. The first part is to evaluate VINS-Fusion with the 
VIODE dataset [21], then to verify the obstacle avoidance 
algorithm. All these experiments were conducted in the 
AirSim simulation environment. 

VIODE (VIO dataset in Dynamic Environments) is a 
benchmark for assessing the performance of VO/VIO 
algorithms in dynamic scenes. The environments are 
simulated using AirSim [ref], a photorealistic simulator 
geared towards developing perception and control 
algorithms. VIODE’s unique advantage over existing 
datasets lies in the systematic introduction of dynamic objects 
in increasing numbers and different environments. VIODE 
uses the same UAV trajectory to generate data series with 
growing moving objects in each scenario. Thus, with VIODE, 
we can isolate the influence of scene dynamics on the 
robustness of vision-based localization algorithms. 

 
Figure 1. Environment simulation 

Firstly, for the VO/VIO algorithms our experimental 
simulated a quadcopter with front stereo camera with: 
720x480 resolution and 90° FOV. Simulation environment 
was built on UE4 software and drone, camera was setting by 
Airsim open-source. This is a grass field with tree and rock 
(Figure.1). For the pre-processing, we calibrate the camera 
first to find project matrix for the VIO algorithm input. And 
the result of VIO was show below: 

 
Figure 2.Trajectory simulation 



 

 
Figure 3. Translation error and Yaw error depend on distance 

       Figure.2 show the trajectory of drone in simulation with 
velocity 5m/s. In the first straight travelling, the translation 
error is insignificant (Figure.3). During the next move, the 
system error was too big due to the drone's rotation and 
environment didn’t enough marker. 
      Because of the errors in the VIO algorithm, applying the 
obstacle avoidance algorithm, we reduced the flight speed to 
2m/s and got the results as shown in the figure 4. 

 
Figure 4. Trajectory in Obstacle avoidance 

To investigate how the speed affects the algorithm, we 
tested the system many times with the camera sampling rate 

of 25 fps and the 50m distance results are shown below. 
Velocity Translation error 

5 m/s 7,4% 
4 m/s 5,2% 
3 m/s 3,6% 
2 m/s 1,4% 

 

V. CONCLUSION 
 

In conclusion, this device could potentially detect and avoid 
most obstacles. But only using a front stereo camera is used 
in this implement; obstacles below, behind and above drones 
may not be possible. Therefore, the drone cannot run in a 
more complex scenario and at high speed in the current state. 
Regardless, more tests will be undertaken to assess the 
current system's limitations and identify possible avenues for 
improvement. Furthermore, since most of the exposed 

behaviors rely on practical insights and geometrical 
calculations, a thorough mathematical proof of the algorithm 
has not been developed; therefore, future work will focus on 
deriving it. The VIO system error is insignificant, so it can 
replace GPS, but after a long time run, the cumulative error 
needs to be correct. In the future, we will improve the solution 
as well as the accumulated error. 
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