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A B S T R A C T   

The analytical investigation for the nonlinear thermal dynamic buckling of smart sandwich plate subjected to 
mechanical, thermal and electric loadings is presented. The sandwich plate is composed of a porous homoge-
neous core, two carbon nanotube reinforced composite (CNTRC) layers and two piezoelectric face sheets. Basic 
equations are derived based on the Reddy’s higher order shear deformation plate theory and Hamilton’s prin-
ciple in which the initial imperfection and Pasternak-type elastic foundations are included. The external pressure 
is assumed to be uniformly distributed on the surface of the sandwich plate and depend on time according to the 
linear functions. The nonlinear dynamic response, the frequency – amplitude relation are obtained by using the 
Galerkin and Runge – Kutta methods and the critical dynamic buckling load is determined by using Budiansky – 
Roth criterion. Bees Algorithm is used to determine the maximum value of natural frequency of smart sandwich 
plate and the corresponding optimum values of geometrical and material parameters. The effects of geometrical 
parameters, CNT volume fraction, elastic foundations, temperature increment, initial imperfection and porosity 
coefficient on the nonlinear vibration and dynamic buckling of the smart sandwich plate are considered spe-
cifically. The numerical results are also compared with existing results using different theories.   

1. Introduction 

Porous materials are promising class of solid materials containing 
pores or voids. The material properties of porous materials depend on 
the shape, size and volume fraction of the pores. The porosity increases 
the surface area of materials, which improves the interaction of the 
material with the external impacts. In recent decades, porous materials 
are used in a wide range of applications such as catalyst supports, 
chemical separations, gas sensors and adsorption. Therefore, the design, 
synthesis and behaviors of porous materials have attracted the great 
attention of engineers and materials scientists. Saidi et al. (2019) 
investigated the vibration and stability analyses of functionally graded 
reinforced porous plates with piezoelectric layers under supersonic flow 
based on the first order shear deformation plate theory and first order 
piston theory. Ansari et al. (2020) introduced an efficient numerical 
strategy to study the geometrically nonlinear static bending of 

functionally graded graphene platelet reinforced composite porous 
plates with arbitrary shape. Chen et al. (2018) proposed the least square 
spectral collocation method to predict temperature distribution and heat 
transfer efficiency of moving porous plate in which two types of 
boundary conditions are taken into account. Xie et al. (2020) presented a 
novel approach, based on energy balance method, to deal with the large 
amplitude nonlinear free vibration problem of the rectangular porous 
functionally graded plates. Numerical results in this publication illus-
trate that the nonlinear to linear frequency ratio is less sensitive to the 
porosity volume fraction than the linear frequency for the porous 
functionally graded plates. Xue et al. (2019) studied the free vibration of 
porous square plate, circular plate, and rectangle plate with a central 
circular hole in the framework of isogeometric analysis using the first 
order shear deformation theory and the exact geometric models. Mor-
adi-Dastjerdi et al. (2020) presented the buckling resistance of a novel 
active multidisciplinary sandwich plate which includes an advanced 
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porous core reinforced with carbon nanotubes integrated between two 
active piezoelectric faces under in-plane mechanical load or tempera-
ture change. Further, Trinh et al. (2020) introduced a semi-analytical 
approach integrated with Monte Carlo simulation for stochastic buck-
ling analyses of porous functionally graded plates arising due to the 
inevitable source-uncertainties of geometrical configurations and ma-
terial properties. Based on the third order shear deformation and 
physical neutral plane theories, thermal postbuckling analysis for 
functionally graded porous beam are performed in the work of Babaei 
et al. (2020). Chen et al. (2019) proposed a novel functionally graded 
porous plate where the continuous gradient in material properties based 
on a graded porosity offers a smooth stress distribution along the plate 
thickness so that the remarkable stress mismatch that leads to interfacial 
failure in the conventional sandwich structures can be avoided. 

A single-walled carbon nanotube is a cylinder of carbon atoms with 
geometrical parameters of less than 1 nm. Because of unique properties 
such as ideal strength, light weight, high thermal and electrical con-
ductivity, single-walled carbon nanotubes are often chosen to be rein-
forcement in polymer matrix composite to enhance the material 
properties of structures. There have been an increasing number of 
studies on the mechanical behaviors of carbon nanotube reinforced 
composites (CNTRC) in recent years. Sofiyev et al. (2019, 2020) pre-
sented analytical solutions for the vibration and stability of heteroge-
nous carbon nanotube reinforced composite truncated conical shells 
under axial load and the stability problem of functionally graded carbon 
nanotube reinforced composite conical shells exposed to external lateral 
and hydrostatic pressures based on the first order shear deformation 
theory and Galerkin method. Zhang et al. (2020) introduced a solution 
method for studying the static free vibration behaviors of pretwisted 
hybrid composite blade containing carbon nanotube reinforced com-
posite layers as well as matrix cracked fiber reinforced composite layers; 
Qin et al. (2020) presented a unified Fourier series solution to solve the 
vibration problem of functionally graded carbon 
nanotube-reinforcement composite cylindrical shells, conical shells and 
annular plates subjected to general boundary conditions. Besides, Zhu 
et al. (2012) carried out the bending and free vibration analyses of 
thin-to-moderately thick composite plates reinforced by single-walled 
carbon nanotubes using the finite element method based on the first 
order shear deformation plate theory. Fu et al. (2019) presented an 
accurate and analytical method for investigation the dynamic instability 
of laminated FG-CNTRC conical shell surrounded by the elastic foun-
dations based on the first-order shear deformation theory. Shen et al. 
(2017a; 2017b, 2013, 2014) investigated the behaviors of large ampli-
tude vibration, nonlinear bending and thermal postbuckling of nano-
composite beams, cylindrical panels, plates and cylindrical shells 
reinforced by single-walled carbon nanotubes resting on an elastic 
foundation in thermal environments using higher order shear defor-
mation plate theory and von Kármán nonlinear strain-displacement re-
lationships. The numerical results show the effects of CNT volume 
fraction, geometrical parameters and foundation stiffness on the me-
chanical behaviors of the structures. Yang et al. (2020) reported a study 
on the large amplitude nonlinear vibration of carbon 
nanotube-reinforced composite laminated plates with negative Pois-
son’s ratios in thermal environments. Further, Duc et al. (2019) pro-
posed analytical solutions for the nonlinear vibration of imperfect 
functionally graded nanocomposite double curved shallow shells on 
elastic foundations subjected to mechanical load in thermal 
environments. 

Due to the ability to flexibly and actively change the mechanical, 
thermal, electrical, and magnetic properties under the action of external 
stimulus, smart materials play an important role in creating devices or 
structures in aerospace, civil engineering, memory capabilities, actua-
tors, sensors and so on. Karimiasl et al. (2019) focused on the nonlinear 
vibration analysis of composite sandwich doubly curved shell with a 
flexible core integrated with a piezoelectric layer by using the higher 
order shear deformable theory and the third-order polynomial theory. 

Mahmoodi et al. (2020) presented the bending analysis of laminated 
carbon nanotube piezo-nanocomposite moderately thick rectangular 
plates by a multi-scale approach; Giannopoulos et al. (2007) carried out 
an integrated approach for the buckling behavior of smart beams and 
plates under multiple loading conditions using discrete layer kinematics. 
Further, Sahoo and Ray (2019) analyzed the performance of elliptical 
smart constrained layer damping treatments on active damping of 
geometrical nonlinear vibrations of smart laminated composite plates. 
Based on theory of piezoelectricity and using generalized coupled 
thermoelasticity, Alibeigloo (2019) studied transient response of a 
simply supported functionally graded material rectangular plate 
embedded in sensor and actuator piezoelectric layers under applied 
electric field and thermal shock. Zoric et al. (2019) dealt with optimi-
zation of the sizing, location and orientation of the piezo-fiber reinforced 
composite actuators and active vibration control of the smart composite 
plates using particle-swarm optimized self-tuning fuzzy logic controller. 
Dat et al. (2020) investigated the nonlinear magneto-electro-elastic vi-
bration of smart sandwich plate which consists of a carbon nanotube 
reinforced nanocomposite core integrated with two 
magneto-electro-elastic face sheets using Reddy’s higher order shear 
deformation theory. An analysis of delaminated composite plates with 
integrated active fibre composite actuators and sensor under hygro-
thermal environment has been undertaken in the work of Shankar et al. 
(2017) in which hygrothermal loading is taken into consideration, and 
the effect of moisture and temperature on the delaminated plate struc-
tures is analyzed. Sreehari et al. (2016) developed a finite element 
formulation based on inverse hyperbolic shear deformation theory for 
handling bending and buckling analysis of a smart composite plates 
using Hamilton’s variational principle. Farsangi et al. (2013) introduced 
an analytical solution for free vibrations of a hybrid rectangular plate 
composed of a transversely isotropic, homogeneous and linear elastic 
core and face sheets made of a linear piezoelectric material by assuming 
that the plate deformations are governed by the Mindlin plate theory. It 
is found in this paper that the electric boundary conditions on major 
surfaces of the piezoelectric layers and the aspect ratio of the hybrid 
plate noticeably influence its frequencies. 

Fig. 1. Schematic diagram of a smart sandwich plate on elastic foundations.  
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To the best of authors’ knowledge, there is no investigation on the 
nonlinear thermal dynamic buckling and geometrical optimization of 
smart sandwich plate which is composed of a porous homogeneous core, 
two carbon nanotube reinforced composite layers and two piezoelectric 
face sheets subjected to mechanical, thermal and electric loadings. The 
novelty and significant contributions of the paper may be expressed as 

follows:  

• It is the first time that the model of smart sandwich plate with five 
layers including porous core, CNTRC layers and piezoelectric face 
sheets is introduced.  

• The material properties of porous homogenous core and two CNTRC 
layers are assumed to depend on temperature.  

• Based on the analytical approach, the clear expression for frequency, 
critical dynamic buckling load, deflection amplitude – time and 
frequency ratio – amplitude relations are obtained, which are the 
input basis (objective functions) for optimization problems.  

• The optimum values of geometrical and material parameters of smart 
sandwich plate corresponding to maximum value of natural fre-
quency are obtained by using Bees Algorithm. 

• The effect of material and geometrical parameters, elastic founda-
tions as well as external impacts are considered in details, which 
provide scientific basis for designers and engineering in the specific 
objectives. 

2. Modeling and material properties of the proposed smart 
sandwich plate 

As shown in Fig. 1, a smart sandwich plate with total thickness h, 
length a and width b is considered. The Cartesian coordinates (x, y, z) is 
located on the middle surface of the plate in which z is in thickness di-
rection. The smart sandwich plate consists of five layers; which has 
functionally graded porous homogeneous core, two carbon nanotube 
reinforced composite layers and two piezoelectric face sheets. The 
thickness of core layer, each carbon nanotube reinforced composite 
layer and each piezoelectric face sheet are hc, hf and hp, respectively. 
The displacement components in the middle surface to the coordinates 
(x, y, z) are u, v and w, respectively, and φx, φy denote respectively the 
rotations of the transverse normal about the y and x axes at z = 0. 

The smart sandwich plate is assumed to rest on Pasternak-type elastic 
foundations. The interaction between the sandwich plate and elastic 
foundations is modeled by a Winkler independent spring system with 
modulus k1 and a Pasternak shear layer with stiffness k2. Further, the 
smart sandwich plate is subjected to an external pressure q uniformly 
distributed on the surface of the plate. 

The Young’s modulus Ec, mass density ρc and thermal expansion 
coefficients αc of porous core are summed to be location-dependent as 
(Ansari et al., 2020; Xue et al., 2019) 

Ec = E1[1 − e0λ(z)],
ρc = ρ1[1 − emλ(z)],
αc = α1[1 − emλ(z)],

(1)  

where E1, ρ1, α1 are material properties of non-porous original material 
of core layer; e0 and em are the coefficient of porosity and the mass 
density coefficient, respectively. The relationship between e0 and em can 
be given as 

em = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − e0

√
(0≤ e0 ≤ 1). (2) 

Three different types of porosity distributions, namely non-uniform 
symmetric distribution, non-uniform asymmetric distribution and uni-
form distribution, are considered. The function λ(z) is expressed in three 
different cases as (Xue et al., 2019)   

in which 

λ0 =
1
e0

−
1
e0

(
2
π

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − e0

√
−

2
π + 1

)2

. (4) 

The titanium alloy (Ti–6Al–4V) is chosen for the original material 
without porosity of core layer. Except the Poisson’s ratio and mass 
density, the elastic modulus of this homogeneous material are assumed 
to be nonlinear temperature-dependent as (Shen et al., 2017a) 

ν1 = 0.29, ρ1 = 4429 kg
/

m3,

α1 = 7.5788
(
1 + 6.638 × 10− 4T + 3.147 × 10− 6T2)× 10− 6 /K,

E1 = 122.56
(
1 − 4.586 × 10− 4T

)
GPa,

(5)  

in which T = T0 + ΔT, T0 is the room temperature and ΔT is the tem-
perature increment in the environment containing the material. 

The FG-CNTRC material is composed of homogeneous matrix rein-
forced by (10,10) single-walled carbon nanotubes (SWCNTs). The 
effective Young’s modulus, shear modulus, Poisson’s ratio, mass density 
and the longitudinal and transverse thermal expansion coefficients of 
the FG-CNTRC material are expressed as (Shen et al., 2017a) 

E11 = η1VCNT ECNT
11 + VmEm,

η2

E22
=

VCNT

ECNT
22

+
Vm

Em
,

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm
,

G13 = G12, G23 = 1.2G12,

ν12 = V*
CNT vCNT

12 + Vmνm,

ρ = VCNT ρCNT + Vmρm,

α11 =
VCNT ECNT

11 αCNT
11 + VmEmαm

VCNT ECNT
11 + VmEm

,

α22 =
(
1 + νCNT

12

)
VCNT αCNT

22 + (1 + νm)Vmαm − ν12α11,

(6)  

where the subscript and superscript CNT and m denote carbon nanotube 
and homogeneous matrix components, respectively. VCNT and Vm are the 
volume fractions of the carbon nanotube and the matrix, respectively 
and ηi (i= 1,3) are the CNT efficiency parameters which are determined 
by matching the effective material properties of FG-CNTRC obtained 
from molecular simulation results with those from the rule of mixtures 
(Shen et al, 2013, 2014, 2017a, 2017bbib_Shen_and_Wang_2017abib_-
Shen_et_al_2017bbib_Shen_and_Xiang_2013bib_Shen_and_Xiang_2014). 

In this study, it is assumed that the volume fractions of the CNTs and 
homogeneous matrix distribute according to linear functions throughout 
the thickness direction for top and bottom layers as 

λ(z)=

⎧
⎪⎨

⎪⎩

cos(πz/hc)

cos(πz/2hc + π/4)
λ0

Non − uniform symmetric distribution Non − uniform asymmetric distribution Uniform distribution (3)   
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VCNT (z)=

⎧
⎪⎪⎨

⎪⎪⎩

2
(
(z − hc/2)

/
hf
)

V*
CNT

2
(
(− hc/2 − z)

/
hf
)
V*

CNT

Top face Bottom face (7)  

Vm(z)= 1 − VCNT (z),

where 

V*
CNT =

wCNT

wCNT + (ρCNT/ρm) − (ρCNT/ρm)wCNT
, (8)  

in which wCNT is the mass fraction of CNTs. 
Except Poisson’s ratio, the material properties of the CNT and ho-

mogeneous matrix are assumed to strongly depend on temperature as 
(Shen et al., 2017a, 2017bbib_Shen_and_Wang_2017abib_-
Shen_et_al_2017b)  

3. Fundamental equations 

The Reddy’s higher order shear deformation plate theory is used to 
establish basic equations and investigate the nonlinear vibration and 
dynamic buckling analysis of the smart sandwich plate. 

3.1. Strain field 

For small strains and moderate deflection, the strain field of the 
smart sandwich plate are defined as (Reddy, 2004; Brush and Almroth, 
1975) 

⎡

⎣
εx
εy
γxy

⎤

⎦=

⎡

⎢
⎢
⎢
⎣

ε0
x

ε0
y

γ0
xy

⎤

⎥
⎥
⎥
⎦
+ z

⎡

⎢
⎢
⎢
⎣

k1
x

k1
y

k1
xy

⎤

⎥
⎥
⎥
⎦
+ z3

⎡

⎢
⎢
⎢
⎣

k3
x

k3
y

k3
xy

⎤

⎥
⎥
⎥
⎦
,

[
γxz
γyz

]

=

[
γ0

xz

γ0
yz

]

+ z2

⎡

⎣
k2

xz

k2
yz

⎤

⎦, (10)  

where 

⎡

⎢
⎢
⎢
⎣

ε0
x

ε0
y

γ0
xy

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂u
∂x

+
1
2

(
∂w
∂x

)2

∂v
∂y

+
1
2

(
∂w
∂y

)2

∂u
∂y

+
∂v
∂x

+
∂w
∂x

∂w
∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

[
γ0

xz

γ0
yz

]

= − 3c1

⎡

⎢
⎢
⎢
⎣

∂w
∂x

+ φx

∂w
∂y

+ φy

⎤

⎥
⎥
⎥
⎦
,

⎡

⎢
⎢
⎢
⎣

k1
x

k1
y

k1
xy

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂φx

∂x
∂φy

∂y

∂φx

∂y
+

∂φy

∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

k3
x

k3
y

k3
xy

⎤

⎥
⎥
⎥
⎦
= − c1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂φx

∂x
+

∂2w
∂x2

∂φy

∂y
+

∂2w
∂y2

∂φx

∂y
+

∂φy

∂y
+ 2

∂2w
∂x∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
k2

xz

k2
yz

⎤

⎦

= − 3c1

⎡

⎢
⎢
⎢
⎣

∂w
∂x

+ φx

∂w
∂y

+ φy

⎤

⎥
⎥
⎥
⎦
, (11)  

with c1 = 4/(3h2).

3.2. Stress – strain relations 

The stress field of the functionally graded porous homogeneous core 
is given as follows 

⎡

⎢
⎢
⎢
⎢
⎣

σxx
σyy
σxy
σxz
σyz

⎤

⎥
⎥
⎥
⎥
⎦

C

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

QC
11 QC

12 0 0 0
QC

12 QC
22 0 0 0

0 0 QC
66 0 0

0 0 0 QC
44 0

0 0 0 0 QC
55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

(εxx)C − αCΔT(
εyy
)

C − αCΔT
(
εxy
)

C
(εxz)C(
εyz
)

C

⎤

⎥
⎥
⎥
⎥
⎦
, (12)  

in which elastic stiffness are 

QC
11 = QC

22 =
EC

1 − (vC)
2, QC

12 =
vCEC

1 − (vC)
2, QC

66 =QC
44 =QC

55 =
EC

2(1 + vC)
.

(13) 

For carbon nanotube reinforced composite layers, the linear consti-
tutive relation is expressed by Hooke’s law as 

νm = 0.34,
Em = (3.52 − 0.0034T) GPa, αm = 45(1 + 0.0005ΔT) × 10− 6 /K,

νCNT
12 = 0.175,

ECNT
11 =

(
6.18387 − 0.00286T + 4.22867 × 10− 6T2 − 2.2724 × 10− 9T3)(TPa),

ECNT
22 =

(
7.75348 − 0.00358T + 5.30057 × 10− 6T2 − 2.84868 × 10− 9T3)(TPa),

GCNT
12 =

(
1.80126 − 7.7845 × 10− 4T − 1.1279 × 10− 6T2 + 4.93484 × 10− 9T3)(TPa),

αCNT
11 =

(
− 1.12148 + 0.02289T − 2.88155 × 10− 5T2 + 1.13253 × 10− 8T3)( × 10− 6/K

)
,

αCNT
22 =

(
5.43874 − 9.95498 × 10− 4T + 3.13525 × 10− 7T2 − 3.36332 × 10− 12T3)( × 10− 6/K

)
.

(9)   

Table 1 
The domain of nine variables of global optimization.  

Variable Domain 

hc (m) [10− 3, 10− 1]

hf (m) [10− 3, 10− 1]

hp (m) [10− 3, 10− 1]

a (m) [0.05, 5]
b (m) [0.05, 5]
k1 (Pa /m) [0, 0.9 × 109]

k2 (Pa.m) [0, 0.9 × 109]

ΔT (K) [0, 1000]
e0  [0, 1]
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⎡

⎢
⎢
⎢
⎢
⎣

σxx
σyy
σxy
σxz
σyz

⎤

⎥
⎥
⎥
⎥
⎦

f

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qf
11 Qf

12 0 0 0
Qf

12 Qf
22 0 0 0

0 0 Qf
66 0 0

0 0 0 Qf
44 0

0 0 0 0 Qf
55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

(εxx)f − α11ΔT
(
εyy
)

f − α22ΔT
(
εxy
)

f
(εxz)f(
εyz
)

f

⎤

⎥
⎥
⎥
⎥
⎦
, (14)  

where 

Qf
11 =

E11

1 − ν12ν21
, Qf

22 =
E22

1 − ν12ν21
, Qf

12 =
ν21E11

1 − ν12ν21
, Qf

44 = G23, Qf
55

= G13, Qf
66 = G12.

(15) 

By taking into account the effect of temperature and electric field, 
the stress-strain relation of isotropic piezoelectric face sheets can be 
written as 

⎡

⎢
⎢
⎢
⎢
⎣

σxx
σyy
σxy
σxz
σyz

⎤

⎥
⎥
⎥
⎥
⎦

p

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Qp
11 Qp

12 0 0 0
Qp

12 Qp
22 0 0 0

0 0 Qp
66 0 0

0 0 0 Qp
44 0

0 0 0 0 Qp
55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

(εxx)p − αpΔT
(
εyy
)

p − αpΔT
(
εxy
)

p
(εxz)p(
εyz
)

p

⎤

⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎣

0 0 e31
0 0 e32
0 e24 0
e15 0 0
0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎣
Ex
Ey
Ez

⎤

⎦, (16)  

in which 

Qp
11 = Qp

22 =
Ep

1 − (vp)
2, Qp

12 =
vpEp

1 − (vp)
2, Qp

66 =Qp
44 =Qp

55 =
Ep

2(1 + vp)
, (17)  

and e31, e32, e15, e24 are the piezoelectric stiffness of piezoelectric layers 
which can be determined from dielectric constants d31, d32, d15, d24 and 
elastic stiffness as 

e31 = d31Qp
11 + d32Qp

12,

e32 = d31Qp
12 + d32Qp

22,

e15 = d15Qp
55,

e24 = d24Qp
44.

(18) 

In this study, we assume that the piezoelectric polarization is along z 
direction. Therefore, the components of electric field are expressed as 

[Ex Ey Ez ]
T
= [ 0 0 Vp

/
hp ]

T
, (19)  

with Vp is applied voltage to the piezoelectric layers in the thickness 
direction. 

3.3. Force and moment components 

By integrating the stress through the thickness, the force and moment 
resultants of the smart sandwich plate can be determined as 

(Ni,Mi,Pi) =
∑5

k=1

∫zk+1

zk

σk
i

(
1, z, z3)dz, i = x, y, xy

(Qi,Ri) =
∑5

k=1

∫zk+1

zk

σk
iz

(
1, z2)dz, i = x, y,

(20)  

in which zk and zk+1 are the coordinates of the kth layer of the smart 
sandwich plate. 

By substituting Eq. (10) into Eqs. (12), (14) and (16) then obtained 
results into Eq. (20), the force and moment – strain relationship of the 
smart sandwich plate can be written as 

Nx = A11ε0
x + A12ε0

y + B11k1
x + B12k1

y + E11k3
x + E12k3

y − Φ1 − 2Vae31,

Ny = A12ε0
x + A22ε0

y + B12k1
x + B22k1

y + E12k3
x + E22k3

y − Φ2 − 2Vae32,

Nxy = A66γ0
xy + B66k1

xy + E66k3
xy,

Mx = B11ε0
x + B12ε0

y + D11k1
x + D12k1

y + F11k3
x + F12k3

y − Φ3,

My = B12ε0
x + B22ε0

y + D12k1
x + D22k1

y + F12k3
x + F22k3

y − Φ4,

(21)  

Mxy = B66γ0
xy + D66k1

xy + F66k3
xy,

Px = E11ε0
x + E12ε0

y + F11k1
x + F12k1

y + H11k3
x + H12k3

y − Φ5,

Py = E12ε0
x + E22ε0

y + F12k1
x + F22k1

y + H12k3
x + H22k3

y − Φ6,

Pxy = E66γ0
xy + F66k1

xy + H66k3
xy,

Qx = A44γ0
xz + D44k2

xz, Qy = A55γ0
yz + D55k2

yz,

Rx = D44γ0
xz + F44k2

xz, Ry = D55γ0
yz + F55k2

yz,

in which the detail of coefficients Aij, Bij, Dij, Eij, Fij, Hij (ij= 11,12,22,
), Akl, Dkl, Fkl (kl= 44,55), Φm (m= 1, 2,3, 4,5, 6) may be found in 
Appendix A. 

The strain components in the middle surface of the smart sandwich 
plate can be obtained from Eq. (21) as follows 

ε0
x = j11

∂2f
∂y2 − j12

∂2f
∂x2 + j13

∂φx

∂x
+ j14

∂φy

∂y
− c1j15

(
∂2w
∂x2 +

∂φx

∂x

)

where 

Δ = A11A22 − A2
12, j11 =

A22

Δ
, j12 =

A12

Δ
, j13 =

B12A12 − B11A22

Δ
,

j14 =
B22A12 − B12A22

Δ
, j15 =

E12A12 − E11A22

Δ
, j16 =

E22A12 − E12A22

Δ
,

− c1j16

(
∂2w
∂y2 +

∂φy

∂y

)

+ j17
(
Φ1 + 2Vpe31

)
+ j18

(
Φ2 + 2Vpe32

)
,

ε0
y = j21

∂2f
∂x2 − j12

∂2f
∂y2 + j23

∂φx

∂x
+ j24

∂φy

∂y
− c1j25

(
∂2w
∂x2 +

∂φx

∂x

)

− c1j26

(
∂2w
∂y2 +

∂φy

∂y

)

+ j27
(
Φ1 + 2Vpe31

)
+ j28

(
Φ2 + 2Vpe32

)
,

γ0
xy = − j31

∂2f
∂x∂y

+ j32

(
∂φx

∂y
+

∂φy

∂x

)

− c1j33

(

2
∂2w
∂x∂y

+
∂φx

∂y
+

∂φy

∂x

)

,

(22)   
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j17 =
A22

Δ
, j18 = −

A12

Δ
, j21 =

A11

Δ
, j23 =

B11A12 − B12A11

Δ
, j24

=
B12A12 − B22A11

Δ
, j25 =

E11A12 − E12A11

Δ
, (23)  

j26 =
E12A12 − E22A11

Δ
, j27 = −

A12

Δ
, j28 =

A11

Δ
, j31 =

1
A66

, j32 = −
B66

A66
,

j33 = −
E66

A66
.

and the Airy’s stress function f(x, y, t) is defined as 

Nx =
∂2f
∂y2, Ny =

∂2f
∂x2, Nxy = −

∂2f
∂x∂y

. (24)  

3.4. Motion and geometrical compatibility equations 

Based on the Hamilton principle and the basis of Reddy’s higher 
order shear deformation plate theory, the nonlinear motion equation of 
the smart sandwich plate are defined as (Reddy, 2004; Brush and Alm-
roth, 1975) 

∂Nx

∂x
+

∂Nxy

∂y
= J1

∂2u
∂t2 + J2

∂2φx

∂t2 − J3
∂3w

∂t2∂x
, (25a)  

∂Nxy

∂x
+

∂Ny

∂y
= J*

1
∂2v
∂t2 + J*

2
∂2φy

∂t2 − J*
3

∂3w
∂t2∂y

, (25b)  

∂Qx

∂x
+

∂Qy

∂y
− 3c1

(
∂Rx

∂x
+

∂Ry

∂y

)

+ c1

(
∂2Px

∂x2 + 2
∂2Py

∂x∂y
+

∂2Py

∂y2

)

+ q+Nx
∂2w
∂x2

+ 2Nxy
∂2w
∂x∂y

+Ny
∂2w
∂y2 − k1w+ k2∇

2w= J1
∂2w
∂t2 + 2εJ1

∂w
∂t

+ J3
∂3u

∂t2∂x
+ J5

∂3φx

∂t2∂x

+ J*
3

∂3v
∂t2∂y

+ J*
5

∂3φy

∂t2∂y
− c2

1J7

(
∂4w

∂t2∂x2 +
∂4w

∂t2∂y2

)

,

(25c)  

∂Mx

∂x
+

∂Mxy

∂y
− Qx + 3c1Rx − c1

(
∂Px

∂x
+

∂Pxy

∂y

)

= J2
∂2u
∂t2 + J4

∂2φx

∂t2 − J5
∂3w

∂t2∂x
,

(25d)  

∂Mxy

∂x
+

∂My

∂y
− Qy + 3c1Ry − c1

(
∂Pxy

∂x
+

∂Py

∂y

)

= J*
2
∂2v
∂t2 + J*

4
∂2φy

∂t2 − J*
5

∂3w
∂t2∂y

,

(25e)  

in which ε is the viscous damping coefficient and 

J1 = J1, J2 = J2 − c1J4, J3 = c1J4, J4 = J3 − 2c1J5 + c2
1J7, J5 = c1J5 − c2

1J7,

By replacing Eq. (22) into two first equations of system Eq. (25), we 
can collect the second derivative of the displacements with respect to 
time as 

∂2u
∂t2 = −

J2

J1

∂2φx

∂t2 +
J3

J1

∂3w
∂t2∂x

, (27a)  

∂2v
∂t2 = −

J*
2

J*
1

∂2φy

∂t2 +
J*

3

J*
1

∂3w
∂t2∂y

. (27b) 

Now substituting Eqs. (27a) and (27b) into Eq. (25c) – (25e), the 
differential system equations can be obtained as follows 

∂Qx

∂x
+

∂Qy

∂y
− 3c1

(
∂Rx

∂x
+

∂Ry

∂y

)

+ c1

(
∂2Px

∂x2 + 2
∂2Pxy

∂x∂y
+

∂2Py

∂y2

)

+
∂2f
∂y2

∂2w
∂x2

− 2
∂2f

∂x∂y
∂2w
∂x∂y

+
∂2f
∂x2

∂2w
∂y2 + q − k1w+ k2∇

2w+
1
Rx

∂2f
∂x2 +

1
Ry

∂2f
∂y2

= J1
∂2w
∂t2 + 2εJ1

∂w
∂t

+ J5
∂3φx

∂t2∂x
+ J*

5
∂3φy

∂t2∂y
+ J7

∂4w
∂t2∂x2 + J*

7
∂4w

∂t2∂y2,

(28a)  

∂Mx

∂x
+

∂Mxy

∂y
− Qx + 3c1Rx − c1

(
∂Px

∂x
+

∂Pxy

∂y

)

= J3
∂2φx

∂t2 − J5
∂3w

∂t2∂x
, (28b)  

∂Mxy

∂x
+

∂My

∂y
− Qy + 3c1Ry − c1

(
∂Pxy

∂x
+

∂Py

∂y

)

= J*
3
∂2φy

∂t2 − J*
5

∂3w
∂t2∂y

, (28c)  

in which 

J3 = J4 −
(

J2

)2/
J1, J*

3 = J*
4 −

(
J*

2

)2/
J*

1 , J5 = J5 − J2J3

/
J1, J*

5

= J*
5 − J*

2 J*
3

/
J*

1 J7 =
(

J3

)2/
J1 − c2

1J7, J*
7 =

(
J*

3

)2/
J*

1 − c2
1J7. (29) 

By substituting Eq. (22) into Eq. (21) and the results into Eq. (28) 
leads to 

L11(w)+L12(φx)+L13
(
φy
)
+L14(f )+S(w,f )+q=J1

∂2w
∂t2 +2εJ1

∂w
∂t

+J5
∂3φx

∂t2∂x 

+J*
5

∂3φy

∂t2∂y
+J7

∂4w
∂t2∂x2+J*

7
∂4w

∂t2∂y2,

L21(w)+L22(φx)+L23
(
φy
)
+L24(f )= I3

∂2φx

∂t2 − I5
∂3w

∂t2∂x
,

L31(w)+L32(φx)+L33
(
φy
)
+L34(f )=J*

3
∂2φy

∂t2 − J*
5

∂3w
∂t2∂y

. (30)  

where 

L11(w)=O11
∂2w
∂x2 + O12

∂2w
∂y2 + O13

∂4w
∂x4 + O14

∂4w
∂x2∂y2 + O15

∂4w
∂y4  

(J1, J2, J3, J4, J5, J7) =

∫hc/2

− hc/2

ρc(z)
(
1, z, z2, z3, z4, z6)dz +

∫− hf − hc/2

− hp− hf − hc/2

ρp(z)
(
1, z, z2, z3, z4, z6)dz +

∫− hc/2

− hf − hc/2

ρf (z)
(
1, z, z2, z3, z4, z6)dz

+

∫hc/2+hf

hc/2

ρf (z)
(
1, z, z2, z3, z4, z6)dz +

∫hc/2+hf+hp

hc/2+hf

ρp(z)
(
1, z, z2, z3, z4, z6)dz.

(26)   
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− k1w+ k2

(
∂2w
∂x2 +

∂2w
∂y2

)

,L12(φx)=O11
∂φx

∂x
+O16

∂3φx

∂x3 +XO17
∂3φx

∂x∂y2,

L13
(
φy
)
=O12

∂φy

∂y
+O18

∂3φy

∂y3 +O19
∂3φy

∂x2∂y
,

L14(f )=O110
∂4f
∂x4 +O111

∂4f
∂x2∂y2 +O112

∂4f
∂y4,

S(w, f )=
∂2f
∂y2

∂2w
∂x2 − 2

∂2f
∂x∂y

∂2w
∂y2 +

∂2f
∂x2

∂2w
∂y2 ,

L21(w)=O21
∂w
∂x

+O22
∂3w
∂x3 +O23

∂3w
∂x∂y2, L22(φx)=O21φx +O24

∂2φx

∂x2 +O25
∂2φx

∂y2 ,

L31(w)=O31
∂w
∂y

+O32
∂3w

∂x2∂y
+O33

∂3w
∂y3 , L32(φx)=O34

∂2φx

∂x∂y
,

L33
(
φy
)
=O31φy +O35

∂2φy

∂x2 +O36
∂2φy

∂y2 , L34(f )=O37
∂3f

∂x2∂y
+O38

∂3f
∂y3, (31)  

and the detail of coefficients O1i(i= 1, 12), O2j(j= 1,8), O3k(k= 1, 8)
are given in Appendix B. 

Because of errors in manufacturing, transportation and storage pro-
cess; the geometrical imperfection may exist in the smart sandwich 
plate. This initial imperfection is represented by function w*(x, y) which 
is assumed to be small compared to the deflection of the sandwich plate. 
The motion equations of the imperfect smart sandwich plate can be 
rewritten as 

L11(w) + L12(φx) + L13
(
φy
)
+ L14(f ) + S(w, f ) + L*

11(w
*) + S*(w*, f )

+q = J1
∂2w
∂t2 + 2εJ1

∂w
∂t

+ J5
∂3φx

∂t2∂x
+ J*

5
∂3φy

∂t2∂y
+ J7

∂4w
∂t2∂x2 + J*

7
∂4w

∂t2∂y2,

L21(w) + L22(φx) + L23
(
φy
)
+ L24(f ) + L*

21(w
*)

= J3
∂2φx

∂t2 − J5
∂3w

∂t2∂x
, L31(w) + L32(φx) + L33

(
φy
)
+ L34(f ) + L*

31(w
*)

= J*
3
∂2φy

∂t2 − J*
5

∂3w
∂t2∂y

, (32)  

where 

L*
11(w

*)=O11
∂2w*

∂x2 +O12
∂2w*

∂y2 , S*(w*, f )=
∂2f
∂y2

∂2w*

∂x2 − 2
∂2f

∂x∂y
∂2w*

∂x∂y

+
∂2f
∂x2

∂2w*

∂y2 ,L*
21(w

*)=O21
∂w*

∂x
, L*

31(w
*)=O31

∂w*

∂y
, (33) 

In order to find the displacements of the sandwich plate, we need to 
use one equation which shows the relationship of the strain components. 
Specifically, the geometrical compatibility equation for an imperfect 
smart sandwich plate is introduced as (Dat et al., 2020) 

∂2ε0
x

∂y2 +
∂2ε0

y

∂x2 −
∂2γ0

xy

∂x∂y
=

∂2w
∂x∂y

2

−
∂2w
∂x2

∂2w
∂y2 + 2

∂2w
∂x∂y

∂2w*

∂x∂y
−

∂2w
∂x2

∂2w*

∂y2

−
∂2w
∂y2

∂2w*

∂x2 , (34) 

Inserting Eq. (22) into Eq. (34), the compatibility equation of the 
imperfect sandwich plate becomes 

j21
∂4f
∂x4 + j11

∂4f
∂y4 +H1

∂4f
∂x2∂y2 +H2

∂3φx

∂x3 +H3
∂3φx

∂x∂y2 +H4
∂3φy

∂y3

+ H5
∂3φy

∂y∂x2 − c1j25
∂4w
∂x4 − c1j16

∂4w
∂y4 + j6

∂4w
∂x2∂y2

−

(
∂2w
∂x∂y

2

−
∂2w
∂x2

∂2w
∂y2 + 2

∂2w
∂x∂y

∂2w*

∂x∂y
−

∂2w
∂x2

∂2w*

∂y2 −
∂2w
∂y2

∂2w*

∂x2 −
1
R

∂2w
∂x2

)

= 0,

(35)  

in which 

H1 = j31 − 2j12, H2 = j23 − c1j25, H3 = j13 − c1j13 − j32 + c1j33,

H4 = j14 − c1j16, H5 = j24 − c1j26 − j32 + c1j33, H6 = − c1j15 − c1j26 + 2c1j33.

(36) 

By using basic differential equations (32) and (35), the nonlinear 
vibration and dynamic buckling of the imperfect smart sandwich plate 
are considered based on Reddy’s higher order shear deformation plate 
theory. 

4. Nonlinear dynamic analysis 

4.1. Boundary conditions and solution forms 

Four edges of the smart sandwich plate are assumed to be simply 
supported and immovable. The boundary conditions are given as 

x = 0, a : w = u = φy = Mx = Px = 0, Nx = Nx0,

y = 0, b : w = v = φx = My = Py = 0, Ny = Ny0,
(37)  

in which Nx0 and Ny0 are fictitious compressive edge loads of the 
sandwich plate. 

The deflection and rotations of the smart sandwich plate are defined 
in terms of unknown time-dependent coefficients and one term mode 
shapes based on boundary conditions as follows (Duc et al., 2019; Dat 
et al., 2020) 
⎡

⎣
w(x, y, t)
φx(x, y, t)
φy(x, y, t)

⎤

⎦=

⎡

⎣
W(t)sin λmx sin δny
Φx(t)cos λmx sin δny
Φy(t)sin λmx cos δny

⎤

⎦, (38)  

where λm = mπ/a, δn = nπ/b with m, n are number of half sine and 
cosine waves and responsible for denoting the mode shape of the 
sandwich plate; W, Φx and Φy are time-dependent amplitude of the 
deflection and rotation angles. 

For initial geometrical imperfection, we assume that function w* can 
be expressed by multiplication of spatial terms as 

w*(x, y, t)=W0 sin λmx sin δny, (39)  

where W0 is amplitude of the initial imperfect function. 
By substituting Eqs. (38) and (39) into Eq. (35) and balancing co-

efficients on both sides, the stress function is determined as 

f (x,y,t)=C1(t)cos2λmx+C2(t)cos2δny+C3(t)sinλmxsinδny+
1
2
Ny0x2+

1
2
Nx0y2,

(40)  

where 

C1=
δ2

n

32I21λ2
m

W(W+2μh),C2=
λ2

m

32I11δ2
n
W(W+2μh),C3=G1W+G2Φx+G3Φy,

(41)  

and 

G1 =
c1j25λ4

m + c1j16δ4
n − H6λ2

mδ2
n

j21λ4
m + H1λ2

mδ2
n + j11δ4

n
,G2 =

−
(
H2λ3

m + H3λmδ2
n

)

j21λ4
m + H1λ2

mδ2
n + j11δ4

n
,

G3 =
−
(
H4δ3

n + H5λ2
mδn
)

j21λ4
m + H1λ2

mδ2
n + j11δ4

n
.

(42) 

Substituting Eq. (38) – (40) into equation (32) then applying 
Galerkin method for obtained equations, we obtain the nonlinear system 
of differential equations to investigate the nonlinear vibration and dy-
namic buckling of smart sandwich plate with porous core, CNTRC layers 
and piezoelectric face sheets as  
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in which the details of coefficients l1i(i= 1, 3), ljk(j= 2, 3, k= 1, 2),
nm(m= 1, 9) may be found in Appendix C. 

4.2. Vibration and dynamic buckling analysis 

In order to ensure the existence of thermal stresses and consider the 
effect of temperature on the vibration of the smart sandwich plate, four 
edges of the plate are assumed to be immovable in the transverse plane. 
In other words, displacement components are eliminated in four edges, i. 
e. u = 0 on x = 0, a and v = 0 on y = 0,b. These conditions are satisfied 
on the average sense on the whole area of the plate surface as (Duc et al., 
2019; Dat et al., 2020) 

∫b

0

∫a

0

∂u
∂x

dxdy= 0,
∫a

0

∫b

0

∂v
∂x

dydx = 0, (44) 

The derivative of the displacement components can be obtained by 
substituting Eq. (22) into Eq. (11) as   

Replacing Eq. (38) – (40) into Eq. (45) then substituting the obtained 
results into Eq. (44), the fictitious compressive edge loads are expressed 
to depend on the amplitude of the deflection and rotation angles as 

Nx0=g1W+g4(W+W0)W+g2Φx+g3Φy+g5
(
Φ1+2Vpe31

)
+g6

(
Φ2+2Vpe32

)
,

Ny0= f1W+f4(W+W0)W+f2Φx+f3Φy+f5
(

Φ1+2Vpe31
)
+f6
(
Φ2+2Vpe32

)
,

(46)  

in which 

g1 =
(j21a1 + j12a4)

ab
(
j2
12 − j11j21

)
4

λmδn
, g4 = −

1
8

(
j21λ2

m + j12δ2
n

)

(
j2
12 − j11j21

) g2 =
(j21a2 + j12a5)

ab
(
j2
12 − j11j21

)
4

λmδn
,

g3 =
(j21a3 + j12a6)

ab
(
j2
12 − j11j21

)
4

λmδn
, g5 =

(j17j21 + j27j12)
(
j2
12 − j11j21

) , g6 =
(j18j21 + j28j12)
(
j2
12 − j11j21

) ,

f1 =
(a1j12 + j11a4)

ab
(
j2
12 − j11j21

)
4

λmδn
, f4 = −

1
8

(
λ2

mj12 + j11δ2
n

)

(
j2
12 − j11j21

) , f2 =
(a2j12 + j11a5)

ab
(
j2
12 − j11j21

)
4

λmδn
,

f3 =
(a3j12 + j11a6)

ab
(
j2
12 − j11j21

)
4

λmδn
, f5 =

(j17j12 + j11j27)
(
j2
12 − j11j21

) , f6 =
(j18j12 + j11j28)
(
j2
12 − j11j21

) ,

(47)  

and   

Substituting Eq. (46) into Eq. (43) and assuming that the external 
pressure is a linear function of time q = st, the nonlinear system of 
differential equations becomes 

l11W + l12Φx + l13Φy + l1
14(W + W0)Φx + l1

15(W + W0)Φy + n1
1(W + W0)

+n1
2W(W + W0) + n3W(W + 2W0) + n1

4W(W + W0)(W + 2W0) + n5st

= J0
∂2W
∂t2 + 2εJ1

∂W
∂t

− λmJ5
∂2Φx

∂t2 − δnJ*
5
∂2Φy

∂t2 , l21W + l22Φx + l23Φy

+ n6(W + W0) + n7W(W + 2W0)

= J3
∂2Φx

∂t2 − λmJ5
∂2W
∂t2 , l31W + l32Φx + l33Φy + n8(W + W0)

+ n9W(W + 2W0)

= J*
3
∂2Φy

∂t2 − δnJ*
5
∂2W
∂t2 ,

(49)  

where 

l11W+l12Φx+l13Φy+l14(W+W0)Φx+l15(W+W0)Φy+
[
n1 − Nx0λ2

m − Ny0δ2
n

]
(W+W0)+n2W(W+W0)+n3W(W+2W0)+n4W(W+W0)(W+2W0)+n5q 

=J0
∂2W
∂t2 +2εJ1

∂W
∂t

− λmJ5
∂2Φx

∂t2 − δnJ
∂2Φy

∂t2 ,l21W+l22Φx+l23Φy+n6(W+W0)+n7W(W+2W0)

=J3
∂2Φx

∂t2 − λmJ5
∂2W
∂t2 ,l31W+l32Φx+l33Φy+n8(W+W0)+n9W(W+2W0)=J*

3
∂2Φy

∂t2 − δnJ*
5
∂2W
∂t2 , (43)   

a1 = − j11δ2
nG1 + j12G1λ2

m + c1j15λ2
m + c1j16δ2

n, a2 = ( − j13 + c1j15)λm + j12G2λ2
m − j11G2δ2

n, a3 = ( − j14 + c1j16)δn + G3j12λ2
m − j11G3δ2

n,

a4 = − G1j21λ2
m + δ2

nG1j12 + c1j26δ2
n + c1j25λ2

m, a5 = ( − j23 + c1j25)λm + j12G2δ2
n − j21G2λ2

m, a6 = ( − j24 + c1j26)δn + j12G3δ2
n − j21G3λ2

m.
(48)   

∂u
∂x

= j11
∂2f
∂y2 − j12

∂2f
∂x2 + j13

∂φx

∂x
+ j14

∂φy

∂y
− c1j15

(
∂2w
∂x2 +

∂φx

∂x

)

− c1j16

(
∂2w
∂y2 +

∂φy

∂y

)

+ j17
(
Φ1 + 2Vpe31

)
+ j18

(
Φ2 + 2Vpe32

)
−

1
2

(
∂w
∂x

)2

−
∂w
∂x

∂w*

∂x
,

∂v
∂y

= j21
∂2f
∂x2 − j12

∂2f
∂y2 + j23

∂φx

∂x
+ j24

∂φy

∂y
− c1j25

(
∂2w
∂x2 +

∂φx

∂x

)

− c1j26

(
∂2w
∂y2 +

∂φy

∂y

)

+ j27
(
Φ1 + 2Vpe31

)
+ j28

(
Φ2 + 2Vpe32

)
−

1
2

(
∂w
∂y

)2

−
∂w
∂y

∂w*

∂y
.

(45)   
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l1
14 =

(
l14 − λ2

mg2 − δ2
nf2
)
, l1

15 =
(
l15 − λ2

mg3 − δ2
nf3
)
,

n1
1 =

⎡

⎣
n1 −

(
λ2

mg5 + δ2
nf5
)(

Φ1 + 2Vpe31
)

−
(
λ2

mg6 + δ2
nf6
)(

Φ2 + 2Vpe32
)

⎤

⎦,

n1
2 =

(
n2 − λ2

mg1 − δ2
nf1
)
, n1

4 =
(
n4 − λ2

mg4 − δ2
nf4
)
.

(50) 

By using the fourth – order Runge – Kutta method, the nonlinear 
dynamic response, the values of natural frequency and the relation be-
tween frequency ratio and amplitude of the smart sandwich plate with 
simply supported edges is obtained from Eq. (49) in which the initial 
conditions are chosen to be W(0) = Φx(0) = Φy(0) = dW

dt (0) = dΦx
dt (0) =

dΦy
dt = 0. For dynamic buckling, Budiansky – Roth criterion (Budiansky 

and Roth, 1962) is used to determine the dynamic critical time tdcr. 
Specifically, the dynamic critical time can be selected at any point 
during the period at which the deflection – time curve changes suddenly 
to the first maximum value. 

The natural frequencies of the perfect smart sandwich plate is 
determined by solving the following equation in which the minimum 
value of three solutions is chosen 
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

l11 + n1
1 + J0ω2 l12 − λmJ5 ω2l13 − δnJ*

5 ω2l21 + n6 − λmJ5ω2l22

+ J3ω2l23l31 + n8 − δnJ*
5 ω2l32l33 + J*

3 ω2

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0. (51) 

In fact, the inertial forces caused by the rotation angles are small 
compared to the inertial forces caused by the deflection. Therefore, we 

can ignore two inertial forces ∂2Φx
∂t2 ,

∂2Φy
∂t2 and Eq. (49) can be rewritten as 

l11W + l12Φx + l13Φy + l1
14(W + μh)Φx + l1

15(W + μh)Φy + n1
1(W + μh)

+n1
2W(W + μh) + n3W(W + 2μh) + n1

4W(W + μh)(W + 2μh) + n5q

= J0
∂2W
∂t2 + 2εJ1

∂W
∂t

, l21W + l22Φx + l23Φy + n6(W + μh) + n7W(W + 2μh)

= − λmJ5
∂2W
∂t2 , l31W + l32Φx + l33Φy + n8(W + μh) + n9W(W + 2μh)

= − δnJ*
5
∂2W
∂t2 .

(52) 

The uniformly distributed transverse load is assumed to be in form of 
q = Q sin Ωt in which Q is the amplitude and Ω is the frequency. We can 
collect the rotation angles amplitude Φx and Φy from the last two 
equations of system Eq. (52) then replacing the obtained results into first 
equation of system Eq. (52) yields 

[
J0 − J*

0(W + μh)
] d2W

dt2 + 2εJ1
dW
dt

− s11W − s12(W + μh)

− s13W(W + μh) − s14W(W + 2μh) − s15(W + μh)2

− s16W(W + μh)(W + 2μh)= n5Q sin Ωt, (53)  

where the details of coefficients J0, J*
0 and s1i(i= 1, 6) are shown in 

Appendix D. 
For the smart sandwich plate without initial imperfection, Eq. (53) 

becomes 
(

J0 − J*
0 W
) d2W

dt2 + 2εJ1
dW
dt

− (s11 + s12)W

− (s13 + s14 + s15)W2 − s16W3 = n5Q sin Ωt. (54) 

The coefficient J*
0 is assumed to be much smaller than coefficient J0 

in Eq. (54). By ignoring coefficient J*
0, Eq. (54) transform into following 

form 

d2W
dt2 +

2εJ1

J0

dW
dt

−
(s11 + s12)

j0
W

−
(s13 + s14 + s15)

J0
W2 −

s16

J0
W3 =

n5

J0
Q sin Ωt. (55) 

The linear frequency of the smart sandwich plate can be determined 
by following expression 

ωL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
(s11 + s12)

J0

√

. (56) 

By introducing coefficients M, N, P, Eq. (55) also can be rewritten as 
follows 

d2W
dt2 + 2εJ*

0
dW
dt

+ω2
L

(
W − MW2 +NW3) − P sin Ωt= 0, (57)  

in which 

J*
0 =

J1

J0
, M = −

(s13 + s14 + s15)

(s11 + s12)
, N =

s16

(s11 + s12)
, P=

n5Q
J0

. (58) 

The amplitude deflection of the smart sandwich plate is assumed to 

Table 2 
The values of parameters of standard Bees Algorithm.  

Parameter Value 

Number of scout bees 25 
Number of elite bees 3 
Number of best bees 8 
Number of recruited bees around each elite bee 20 
Number of recruited bees around each best bee 10 
initial size of neighbourhood 0.08 
Number of limit loop for site abandonment 10  

Table 3 
Comparison of the non-dimensional natural frequencies ω̃ = 2hω

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ρ(1 + v)/E

√

of the homogeneous plate with a/b = 2, a/h = 24, 40.

Mode a/h  Source 

Farsangi et al. (2013) Srinivas et al. (1970) Present 

(1,1) 40 0.0589 0.0589 0.0585 
24 0.1576 0.1581 0.1567 

(2,1) 40 0.0930 0.0931 0.0924 
24 0.2444 0.2455 0.2431 

(3,1) 40 0.1481 0.1485 0.1472 
24 0.3788 0.3811 0.3771 

(4,1) 40 0.2218 0.2226 0.2206 
24 0.5497 0.5544 0.5480  

Table 4 
Comparison of the dimensionless natural frequencies of CNTRC plates 
ω̃ = Ω(a2 /h)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρm/Em

√
with m = n = 1, a/b = 1, b/h = 50,T = 300K.

V*
CNT  Types Zhu et al. (2012) Shen and Wang (2017a) Present 

0.11 FG-O 14.302 14.138 14.264 
FG-X 22.984 23.143 23.024 

0.14 FG-O 15.801 15.667 15.796 
FG-X 25.555 25.831 25.670 

0.17 FG-O 17.544 17.351 17.506 
FG-X 28.413 28.625 28.421  
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be in form as W(t) = ξsin(ωt). By substituting this form into Eq. (57), the 
relationship between frequency and amplitude of nonlinear free vibra-
tion can be express as 

ω2
NL − 2εJ*

0
2ωNL

π − ω2
L

(

1 − Mξ
8

3π +Nξ23
4

)

= 0. (59)  

in which ωNL is nonlinear frequency and ξ is amplitude of free vibration. 

5. Global optimization 

The natural frequency of the smart sandwich plate is determined as 
Eq. (56). It is assumed to depend on nine geometrical and material 

Table 7 
The effect of types of porosity distribution, width-to-length ratio a/ b and length- 
to-thickness ratio b/h on critical dynamic buckling load (GPa) of the smart 
sandwich plate with e0 = 0.2, hc/hf = 5, V*

CNT = 0.12, ΔT = 100K.

Porosity distribution a/b  b/h = 10  b/h = 15  b/h = 20  

Non-uniform symmetric porosity 0.5 0.1490 0.2058 0.2373 
1 0.2184 0.2646 0.3040 
1.5 0.2318 0.2849 0.3309 

Non-uniform asymmetric porosity 0.5 0.1490 0.2054 0.2370 
1 0.2182 0.2644 0.3038 
1.5 0.2315 0.2847 0.3307 

Uniform porosity 0.5 0.1496 0.2058 0.2374 
1 0.2187 0.2647 0.3040 
1.5 0.2320 0.2849 0.3309  

Table 8 
Effects of elastic foundations coefficients k1 , k2 and the load velocity s on the 
critical dynamic buckling load (GPa) of the smart sandwich plate in case of non- 
uniform symmetric porosity with a/b = 1, b/h = 20, hc/hf = 5, hc/ hp = 10,
ΔT = 100 K.

(k1 (GPa /m),

k2 (GPa.m))

s =

350 (GPa /s)
s =

700 (GPa /s)
s =

1000 (GPa /s)

(0, 0) 0.2984 0.5968 0.8525 
(0.3,0) 0.3046 0.6093 0.8704 
(0.3,0.04) 0.3053 06105 0.8722 
(0.5,0.04) 0.3107 0.6213 0.8876  

Fig. 2. Effects of width-to-thickness ratio b/h on the frequency ratio – ampli-
tude relation of the smart sandwich plate. 

Fig. 3. Effects of elastic foundations on the frequency ratio – amplitude relation 
of the smart sandwich plate. 

Fig. 4. Effects of temperature increment on the frequency ratio – amplitude 
relation of the smart sandwich plate. 

Table 5 
Comparison of the non-dimensionless frequencies ω̃ = ω(b/π)2 ̅̅̅̅̅̅̅̅̅̅̅

ρh/D
√

of square 
porous steel plates with D = E1h3/[12(1 − v2)]

Type of porosity distribution Porosity coefficient e0  

0.2 0.3 0.4 0.5 

Non-uniform symmetric 
distribution 

Present 1.9322 1.9292 1.9284 1.9308 
Xue et al. 
(2019) 

1.9228 1.9210 1.9220 1.9269 

Non-uniform 
asymmetric 
distribution 

Present 1.8860 1.8527 1.8150 1.7707 
Xue et al. 
(2019) 

1.8754 1.8424 1.8050 1.7612 

Uniform distribution Present 1.8778 1.8426 1.8051 1.7651 
Xue et al. 
(2019) 

1.8656 1.8285 1.7877 1.7423  

Table 6 
Effects of porosity coefficient e0, temperature increment ΔT and CNT volume 
fraction V*

CNT on the critical dynamic buckling load (GPa) of the smart sandwich 
plate with a/b = 1, b/h = 20, hc/hf = 5, hc/hp = 10.

ΔT  V*
CNT  e0  

0 0.2 0.4 

0 0.12 0.3037 0.3022 0.3002 
0.17 0.3017 0.3001 0.2978 
0.28 0.2983 0.2963 0.2937 

100 0.12 0.3056 0.3040 0.3019 
0.17 0.3035 0.3018 0.2994 
0.28 0.3000 0.2979 0.2952 

200 0.12 0.3076 0.3060 0.3037 
0.17 0.3055 0.3036 0.3011 
0.28 0.3017 0.2996 0.2967  
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parameters which are the thickness of porous core, CNTRC layer and 
piezoelectric face sheet hc, hf , hp, the length and the width of the plate a,
b, two modulus of elastic foundations k1, k2, the temperature increment 

ΔT and the coefficient of porosity e0. The standard Bees Algorithm 
(Pham et al., 2009) is used to calculate the maximum value of natural 
frequency and optimum values of above parameters. Nine variables are 
assumed to be in constant domain as Table 1 and the basic parameters of 
Bees Algorithm are chosen as Table 2. 

6. Numerical results and discussions 

6.1. Comparison studies 

Because no existing researches have been carried on the nonlinear 
vibration of the smart sandwich plates with porous core and CNTRC 
layers, two comparisons of dimensionless natural frequency of the ho-
mogeneous plate and CNTRC plate are presented for validation of the 
present method. 

Example 1: In this example, the non-dimensional natural fre-
quencies ω̃ = 2hω

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ρ(1 + v)/E

√
of the homogeneous plate are deter-

mined and compared with numerical results of Farsangi et al. (2013) 
based on Mindlin plate theory and analytical results of Srinivas et al. 
(1970) using a three dimensional linear, small deformation theory of 
elasticity solution. Four cases of mode number are considered and the 
material properties are chosen as E = 105.7 GPa, ν = 0.2981, ρ =

4429 kg/m3. The geometrical parameters are a/b = 2, a/ h = 24, 40. It 

can be seen from Table 3 that the present results are in good agreement 
with those obtained by other authors, which shows the reliability and 
accuracy of present approach and method. 

Example 2: This example is conducted to indicate the comparison of 
the dimensionless natural frequencies ω̃ = Ω(a2 /h)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρm/Em

√
of CNTRC 

plates with first order shear deformation plate theory results of Zhu et al. 
(2012) using finite element method and higher order shear deformation 

Fig. 5. Effect of temperature increment ΔT on the nonlinear dynamic response 
of the smart sandwich plate. 

Fig. 6. Effect of the Winkler foundation k1 on the nonlinear dynamic response 
of the smart sandwich plate. 

Fig. 7. Effect of the Pasternak foundation k2 on the nonlinear dynamic 
response of the smart sandwich plate. 

Fig. 8. Effect of CNT volume fraction V*
CNT on the nonlinear dynamic response 

of the smart sandwich plate. 

Fig. 9. Effect of porosity coefficient e0 on the nonlinear dynamic response of 
the smart sandwich plate. 
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plate theory results of Shen and Wang (2017) based on analytical 
approach. The matrix is chosen to be PmPV and the material properties 
of CNT and the matrix are calculated at T = 300 K. Three values of 
V*

CNT = 0.11, 0.14 and 0.17 are considered. It is also evident from 
Table 4 that the present results reasonable agree with existing results. 

Example 3: This example illustrates the comparison of the non- 
dimensionless frequencies ω̃ = ω(b/π)2 ̅̅̅̅̅̅̅̅̅̅̅

ρh/D
√

(D= E1h3 /[12(1 − v2)])

of square porous steel plates between the present results with numerical 
results of Xue et al. (2019) using isogeometric approach and first order 
shear deformation theory. The material properties of steel are E =

200GPa, v = 0.3, ρ = 7850kg/m3. The geometrical parameters are taken 
to be a/b = 1, b/h = 10. Three types of porosity distribution and four 
values of porosity coefficient are considered in this comparison. The 
specific evaluation is presented in Table 5, which shows the excellent 
agreement between two results. 

6.2. Critical buckling load 

Table 6 shows the effect of porosity coefficient e0, temperature 
increment ΔT and CNT volume fraction V*

CNT on the critical dynamic 
buckling load (GPa) of the smart sandwich plate. The geometrical pa-
rameters are chosen to be a/b = 1, b/h = 20, hc/hf = 5, hc/ hp = 10. 
The elastic foundations stiffness are taken to be k1 = 0.3GPa/m, k2 =

0.02 GPa.m. The results reveal that the critical dynamic buckling load of 
the smart sandwich plates increases slightly when the temperature 

increment ΔT increases. Specifically, the critical dynamic buckling load 
increases from 0.5% to 0.7% when the temperature increment increases 
100 K. Conversely, an increase of CNT volume fraction results in a 
decrease of the critical dynamic buckling load of the sandwich plate. For 
three values of V*

CNT : 0.12, 0.17 and 0.28, the obtained maximum dif-
ference of critical buckling load is 0.8%. This is due to the increase of 
stress concentrations by adding CNT into polymer matrix. Furthermore, 
as the increase of porosity coefficient e0, the critical dynamic buckling 
load will become smaller. In other words the porosity has the negative 
effect on the critical buckling load of the smart sandwich plate. The 
reason is that the increase of porosity coefficient leads to the reduction 
of the stiffness of the sandwich plate. 

The effects of three types of porosity distribution, width-to-length 
ratio a/b (= 0.5,1, 1.5) and length-to-thickness ratio 
b/h (= 10, 15,20) on critical dynamic buckling load (GPa) of the smart 
sandwich plate are presented in Table 7. The input parameters are 
chosen to be e0 = 0.2, hc/hf = 5, V*

CNT = 0.12, ΔT = 100K. It can be 
seen that the critical dynamic buckling load of the plate with uniform 
porosity distribution is higher than one with non-uniform porosity dis-
tribution. Moreover, the difference of the buckling load between two 
cases of non-uniform porosity is very small and the plate with asym-
metric type of porosity distribution has little lower buckling load than 
one with symmetric type. For width-to-length and length-to-thickness 
ratios, it is obvious that by the increase of a/b or b/h ratio, the critical 
buckling load rises significantly. For instance, the highest difference 
with non-uniform symmetric porosity distribution is 8.8% for a/b ratio 
and 38% for b/h ratio. This is due to the enhancement of the stiffness of 
the plate with the increase of a/b or b/h ratio. 

Table 8 indicates the effects of elastic foundations coefficients 
k1 (GPa /m), k2 (GPa.m) and the load velocity s (GPa /s) on the critical 
dynamic buckling load (GPa) of the smart sandwich plate. The CNT 
volume fraction is taken to be V*

CNT = 0.12. The results confirm that the 
critical dynamic buckling load increase as the elastic foundations co-
efficients k1 and k2 increases. This conclusion can be explained by the 

Fig. 10. Effect of initial imperfection amplitude W0 on the nonlinear dynamic 
response of the smart sandwich plate. 

Fig. 11. Effect of the applied voltage Vp on the nonlinear dynamic response of 
smart the sandwich plate. 

Table 9 
The optimum values of nine geometrical and 
material variables of the smart sandwich plate by 
using Bees Algorithm.  

hc (m) 0.752  

hf (m) 0.069  
hp (m) 0.027  
a (m) 1.49  
b (m) 1.03  
k1 (Pa /m) 2.53× 108  

k2 (Pa.m) 4.57× 109  

ΔT (K) 157.12  
e0  0.291   

Fig. 12. The convergence of the optimum value of the natural frequency by 
using Bees Algorithm. 
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increase of the stiffness of the sandwich plate due to the support of 
elastic foundations. It is also observed from Table 8 that the critical 
dynamic buckling load increase sharply as the loading velocity s in-
creases. This is due to the linear dependence of critical buckling load on 
the load velocity. 

6.3. Frequency ratio – amplitude relation 

The effect of width-to-thickness ratio b/h on the nonlinear to linear 
frequency ratio – amplitude relation of the smart sandwich plate is 
illustrated in Fig. 2. The geometrical parameters are taken to be a/ b =

1, hc/hf = 5, hc/hp = 10 while the temperature increment and applied 
voltage are taken to be ΔT = 100 K, Vp = 200 V. It can be clearly seen 
that the width-to-thickness ratio has considerable effect on the relation 
between frequency ratio and amplitude. With the same value of ampli-
tude, the increase of the width-to-thickness ratio causes to the decrease 
of frequency ratio. 

Fig. 3 investigates the effect of elastic foundations coefficients 
k1 (GPa /m) and k2 (GPa.m) on the frequency ratio – amplitude relation 
of the smart sandwich plate. Three cases of (k1, k2) = (0,0), (0.3,0),
(0.3,0.02) are considered. It can be observed that the frequency ratio 
decreases as two coefficients k1 and k2 increase with the same value of 
the amplitude due to the increase of the elastic modulus of the smart 
sandwich plate by the support of elastic foundations. Moreover, the ef-
fect of Pasternak foundation with modulus k2 is more pronounced than 
one of Winkler foundation with stiffness k1. 

Fig. 4 depicts the effect of the temperature increment ΔT on the 
frequency ratio –amplitude relation of the smart sandwich plate. The 
CNT volume fraction is V*

CNT = 0.12 and the porosity coefficient is e0 =

0.2. The results show that the frequency ratio with the same amplitude 
will becomes higher when the temperature increment increases. The 
physical explanation is that, the stiffness of the plate decreases under the 
impact of high temperature environment. 

6.4. Nonlinear dynamic response 

Fig. 5 demonstrates the effect of temperature increment ΔT on the 
nonlinear dynamic response of the smart sandwich plate with simply 
supported edges subjected to uniform external pressure. The non- 
uniform symmetric is the porosity distribution type. The geometrical 
parameters are taken to be a/b = 1, b/h = 20, hc/hf = 5, hc/ hp = 10. 
It is evident that the temperature increment has the negative effect on 
the nonlinear dynamic response of the sandwich plate, an increase of the 
temperature increment leads to a rise of deflection amplitude. This is 
easy to explain because the increase of temperature causes the reduction 
in the stiffness of the sandwich plate. 

Figs. 6 and 7 represent the relation between deflection amplitude of 
the smart sandwich plate with various values of modulus k1 and stiffness 
k2 of elastic foundations. Three values of k1 = 0, 0.1 GPa/m, 0.3 GPa/m 
and three values of k2 = 0, 0.02 GPa.m, 0.04 GPa.m are used. It is easy 
to see that the deflection amplitude of the sandwich plate decreases with 
the increase of elastic foundations coefficients k1 and k2. This is because 
of the opposite impact of the elastic foundation compared to the direc-
tion of the applied loading. By compering Figs. 6 and 7, it also can be 
found that the effect of Winkler foundation on buckling behaviors of the 
sandwich plate is greater than the Pasternak foundation. This is due to 
the nonlinear relationship between Pasternak foundation and deflection 
as well as the linear relationship between Winkler foundation and the 
deflection. 

Fig. 8 shows the effect of CNT volume fraction V*
CNT on the nonlinear 

dynamic response of the smart sandwich plate. The elastic foundation 
coefficients are taken to be k1 = 0.3 GPa/m, k2 = 0.03 GPa.m, the 
temperature increment and applied voltage are chosen as ΔT = 100 K,
Vp = 200 V. From Fig. 8, it is observed that the increase of CNT volume 
fraction results in the decrease of the deflection amplitude of the 

sandwich plate. This is due to the enhancement in the stiffness of the 
sandwich plate by the reinforcement of CNT. 

Fig. 9 presents the effect of porosity coefficient e0 on the nonlinear 
dynamic response of the smart sandwich plate with porous core layer in 
thermal environments. The dimensionless parameters are taken to be a/
b = 1, b/h = 20, hc/hf = 5, hc/hp = 10. The elastic foundations co-
efficients are k1 = 0.3 GPa/m, k2 = 0.02 GPa.m. It is deduced from 
Fig. 9 that an increase of porosity coefficient leads to an increase of the 
deflection amplitude of the smart sandwich plate. It is easy to explain 
because the mass of the plate reduces as the porosity coefficient in-
creases, which results in the reduction of the stiffness of the smart 
sandwich plate. 

Fig. 10 expresses the nonlinear dynamic response of the smart 
sandwich plate for different values of initial imperfection amplitude 
(W0 = 0, 0.005 m and 0.01 m). The CNT volume fraction is chosen as 
V*

CNT = 0.12 and the porosity coefficient is e0 = 0.2. Obviously, the 
initial imperfection parameter has small effect on the nonlinear dynamic 
response of the smart sandwich plate. The higher initial imperfection 
amplitude is, the lower amplitude deflection is. This is due to the impact 
of initial imperfections, the total amplitude deflection of the smart 
sandwich plate changes from w to w+ w*. 

The influence of the applied voltage Vp on the nonlinear dynamic 
response of smart the sandwich plate with a/b = 1, b/h = 20, hc/hf =

5, hc/hp = 10, W0 = 0 e0 = 0.2, V*
CNT0.12, ΔT = 100 K is considered in 

Fig. 11. As can be seen, the applied voltage has small effect on the 
deflection amplitude of the smart sandwich plate. It can be found that 
the deflection amplitude increases slightly when the applied voltage 
increases. This is due to the reduction of the stiffness of the sandwich 
plate with the impact of applied voltage. 

6.5. Optimum value of natural frequency 

Bees Algorithm is conducted in 25 times and the optimum value of 
natural frequency of the smart sandwich plate is defined as the average 
value of 25 obtained values. In each time, the loop of stops if the number 
of objective function evaluation reaches to 40,000. Finally, the 
maximum value of the natural frequency if 70118.45 (1 /s) when opti-
mum values of nine variables are shown in Table 9. 

Fig. 12 illustrates the convergence of the optimum value of the 
natural frequency according to the number of objective function eval-
uation in one loop of Bees Algorithm. As can be observed, the optimum 
value of the natural frequency rises sharply in the first numbers of 
objective function evaluation and then gradually reaches to the final 
value. 

7. Concluding remarks 

This paper introduces analytical solutions for the nonlinear vibration 
and critical dynamic buckling of an imperfect smart sandwich plate on 
elastic foundations based on Reddy’ higher order shear deformation 
plate theory. The sandwich plate has five layers including one porous 
core, two CNTRC layers and two piezoelectric face sheets. The plate is 
subjected to the combination of mechanical, thermal and electric load-
ings. Various parameter studies are performed to consider the effect of 
geometrical and material parameters, elastic foundations and external 
impacts on the critical buckling load, nonlinear dynamic response and 
the frequency – amplitude relation of the smart sandwich plate. Bees 
Algorithm is used to determine the maximum value of the natural fre-
quency. Major conclusions include:  

• An increase of elastic foundations coefficients k1 , k2 results in a 
decrease of the deflection amplitude and frequency ratio as well as a 
rise of critical dynamic buckling load of the smart sandwich plate. 
This is due to the enhancement of the stiffness of the plate by the 
support of elastic foundations. 
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• The porosity coefficient has negligible effect on the vibration and 
dynamic buckling of the sandwich plate. Although the deflection 
amplitude increases and the critical buckling load decreases as the 
porosity coefficient increases, the difference is acceptable. Further, 
the critical dynamic buckling load of the plate with uniform porosity 
distribution is higher than one with non-uniform porosity 
distribution.  

• The addition of CNT increases the stiffness of the sandwich plate. 
Consequently, the deflection amplitude of the plate decreases when 
the CNT volume fraction increases. However, the critical dynamic 
buckling load of the plate becomes lower as the CNT volume fraction 
rises. Therefore, it is necessary to carefully consider the ratio of the 
CNT into the structure to ensure different technical requirements and 
usage goals.  

• Temperature increment is considered as external impact. However, 
the effect of temperature increment on the mechanical behaviors of 
the sandwich plate is special as CNT volume fraction. The amplitude 
deflection and the frequency relation increase when the temperature 
increment increases. However, the critical dynamic buckling load 
also rises with the increase of temperature increment.  

• The geometrical parameters b/h and a/b have significant effect on 
the critical dynamic buckling load and frequency ratio – amplitude 
relation of smart sandwich plate.  

• As the initial imperfection amplitude rises, the deflection amplitude 
of the smart sandwich plate decreases slightly.  

• The optimum value of natural frequency with constant geometrical 
and material parameters is 70118.45 (1 /s). 
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Appendix A 

(
Aij, Bij, Dij, Eij, Fij, Hij

)
=

∫− hc/2− hf

− hf − hc/2− hp

Qij
(
1, z, z2, z3, z4, z6) dz +

∫− hc/2

− hf − hc/2

Qij
(
1, z, z2, z3, z4, z6) dz +

∫hc/2

− hc/2

Qij
(
1, z, z2, z3, z4, z6) dz 

+

∫hc/2+hf

hc/2

Qij
(
1, z, z2, z3, z4, z6) dz +

∫hc/2+hf +hp

hc/2+hf

Qij
(
1, z, z2, z3, z4, z6) dz, ij = 11, 12, 22, 66,

(Akl, Dkl, Fkl) =
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− hp − hf − hc/2

Qij
(
1, z2, z4) dz +
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Qij
(
1, z2, z4) dz +

∫hc/2

− hc/2

Qij
(
1, z2, z4) dz +

∫hc/2+hf

hc/2

Qij
(
1, z2, z4) dz +
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hc/2+hf

Qij
(
1, z2, z4) dz, kl

= 44, 55,

(Φ1,Φ3,Φ5) =

∫− hc/2− hf

− hf − hc/2− hp

(Qp
11α11ΔT + Qp

12α22ΔT)
(
1, z, z2) dz +

∫− hc/2

− hf − hc/2

(
Qf

11α11ΔT + Qf
12α22ΔT

) (
1, z, z2) dz +

∫hc/2

− hc/2

(
Qc

11α11ΔT + Qc
12α22ΔT

) (
1, z, z2)dz 

+

∫hf +hc/2

hc/2

(
Qf

11α11ΔT + Qf
12α22ΔT

) (
1, z, z2)dz +

∫hf +hc/2+hp

hc/2+hf

(Qp
11α11ΔT + Qp

12α22ΔT)
(
1, z, z2) dz,+

∫hf +hc/2

hc/2

(
Qf

12α11ΔT + Qf
22α22ΔT

) (
1, z, z2)dz

+

∫hf +hc/2+hp

hc/2+hf

(Qp
12α11ΔT + Qp

22α22ΔT)
(
1, z, z2) dz, (Φ2,Φ4,Φ6)

=

∫− hc/2− hf

− hf − hc/2− hp

(Qp
12α11ΔT + Qp

22α22ΔT)
(
1, z, z2)dz +

∫− hc/2

− hf − hc/2

(
Qf

12α11ΔT + Qf
22α22ΔT

)(
1, z, z2) dz +

∫hc/2

− hc/2

(
Qc

12α11ΔT + Qc
22α22ΔT

) (
1, z, z2)dz

+

∫hf +hc/2

hc/2

(
Qf

12α11ΔT + Qf
22α22ΔT

) (
1, z, z2)dz +
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Appendix B 

O11 = A44 − 6c1D44 + 9c2
1F44, O12 = A55 − 6c1D55 + 9c2

1F55, O13 = − c2
1(E11I15 + E12I25 + H11),

O14 = − c2
1(4E66I33 + 4H66 + E11I16 + E12I26 + 2H12 + E12I15 + E22I25),

O15 = − c2
1(E12I16 + E22I26 + H22), O16 = c1(E11I13 − c1E11I15 + F11 − c1H11 + E12I23 − c1E12I25),

O17 = c1(2E66I32 − 2c1E66I33 + 2F66 − 2c1H66 + c1E12I13 − c1E12I15 + F12 − c1H12 + E22I23 − c1E22I25),

O18 = c1(E12I14 − c1E12I16 + E22I24 − c1E22I26 + F22 − c1H22), O19

= c1(2E66I32 − 2c1E66I33 + 2F66 − 2c1H66 + E11I14 − c1E11I16 + E12I24 − c1E12I26 + F12 − c1H12), O110 = − c1(E11I12 − E12I21),O111

= − c1(2E66I31 − E11I11 + 2E12I12 − E22I21), O112 = c1(E12I11 − E22I12),O21 = − A44 + 6c1D44 − 9c2
1F44, O22

= − c1(B11I15 + F11 + B12I25 − c1E11I15 − c1H11 − c1E12I25),O23

= − c1
(
B11I16 + B12I26 + F12 + 2B66I33 + 2F66 − 2c1E66I33 − 2c1H66 − c1E11I16 − c1E12I26 − c1H12

)
,O24

= B11I13 − c1B11I15 + D11 − c1F11 + B12I23 − c1B12I25 − c1E11I13 + c2
1E11I15 − c1F11 + c2

1H11 − c1E12I23 + c2
1E12I25, O25

= B66I32 − c1B66I33 + D66 − c1F66 − c1E66I32 + c2
1E66I33 − c1F66 + c2

1H66,O26

= B11I14 − c1B11I16 + B12I24 − c1B12I26 + D12 − c1F12 + B66I32 − c1B66I33 + D66 − c1F66 − c1E66I32 + c2
1E66I33 − c1F66 + c2

1H66 − c1E11I14

+ c2
1E11I16 − c1E12I24 + c2

1E12I26 − c1F12

+ c2
1H12,O27 = − B11I12 +B12I21 + c1E11I12 − c1E12I21, O28 =B11I11 − B12I12 − B66I31 − c1E11I11 + c1E12I12

+ c1E66I31, O31 = − A55 + 6c1D55 − 9c2
1F55, O32 = − c1

(
2B66I33 + 2F66 +B12I15 +F12 +B22I25  

− 2c1E66I33 − 2c1H66 − c1E12I15 − c1H12 − c1E22I25), O33 = − c1(B12I16 +B22I26 +F22 − c1E12I16

− c1E22I26 − c1H22), O34 =B66I32 − c1B66I33 +D66 − c1F66 +B12I13 − c1B12I15 +D12 − c1F12 +B22I23

− c1B22I25 − c1E66I32 + c2
1E66I33 − c1F66 + c2

1H66 − c1E12I13 +c2
1E12I15 − c1F12 +c2

1H12 − c1E22I23

+c2
1E22I25, O35 =B66I32 − c1B66I33 +D66 − c1F66 − c1E66I32 + c2

1E66I33 − c1F66 + c2
1H66,

O36 =B12I14 − c1B12I16 +B22I24 − c1B22I26 +D22 − c1F22 − c1E12I14 +c2
1E12I16 − c1E22I24 +c2

1E22I26 

− c1F22 + c2
1H22, O37 = − B66I31 − B12I12 +B22I21 + c1E66I31 + c1E12I12 − c1E22I21,

O38 =B12I11 − B22I12 − c1E12I11 + c1E22I12.

Appendix C 

l11 = − k1 − k2
(
λ2

m + δ2
n

)
+ X13λ4

m + X14λ2
mδ2

n + X15δ4
n + X110Q1λ4

m + X111Q1λ2
mδ2

n + X112Q1δ4
n,

l12 = − X11λm + X16λ3
m + X17λmδ2

n + X110Q2λ4
m + X111Q2λ2

mδ2
n + X112Q2δ4

n,

l13 = − X12δn + X18δ3
n + X19λ2

mδn + X110Q3λ4
m + X111Q3λ2

mδ2
n + X112Q3δ4

n,

l14 =
32Q2λmδn

3ab
, l15 =

32Q3λmδn

3ab
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m − X12δ2
n, n2 =
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3ab
,
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λ4
m

16I11
−

δ4
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16
mnπ2,
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Appendix D 

J0=J0 − (l12a14+l13a24),J*
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