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Abstract—Mask mandate has been applied in many countries
in the last two years as a simple but effective way to limit the
Covid-19 transmission. Besides the guidance from authorities
regarding mask use in public, numerous vision-based approaches
have been developed to aid with the monitoring of face mask
wearing. Despite promising results have been obtained, several
challenges in vision-based masked face detection still remain,
primarily due to the insufficient of a quality dataset covering
adequate variations in lighting conditions, object scales, mask
types, or occlusion levels. In this paper, we investigate the
effectiveness of a lightweight masked face detection system under
different lighting conditions and the possibility of enhancing its
performance with the employment of an image enhancement
algorithm and an illumination awareness classifier. A dataset of
human subjects with and without face masks in different lighting
conditions is first introduced. An illumination awareness classifier
is then trained on the collected dataset, the labeling of which
is processed automatically based on the difference in detection
accuracy when an image enhancement algorithm is taken into
account. Experimental results have shown that the combination of
the masked face detection system with the illumination awareness
and an image enhancement algorithm can boost the system
performance to up to 8.6%, 7.4%, and 8.5% in terms of Accuracy,
F1-score, and AP-M, respectively.

Index Terms—masked face detection, Covid-19, low-
illumination image enhancement

I. INTRODUCTION

Masked face detection has attracted the attention of re-
searchers over the world in the last two years to aid with
the fight against Covid-19 pandemic. Many vision-based ap-
proaches have been developed, among which the deep learning
ones are more favorable due to the existence of models that can
be transferred to the mask face detection domain. As discussed
in [1], the major difficulties in this area include but are not
limited to face pose, mask type, occlusion, or illumination;
each is also a research challenge in computer vision [2].

Regarding the illumination problem in masked face detec-
tion, an adequate dataset covering all possible variations might
be useful to boost the robustness of a detection model against
the brightness and contrast of the input. However, existing
datasets such as MFDD, RMFRD, SMFRD [3], MAFA [4]
have only addressed the variation in occlusion level, or mask
types. On the other hand, image enhancement algorithms can
be employed to boost the reliability of detectors in difficult

lighting conditions, the applications of which have been veri-
fied on pedestrian [5] and face detection tasks [6].

In this paper, we will investigate the improvement feasibility
of a simple masked face detection system equipped with
some recent effective image enhancement algorithms and an
illumination awareness classifier. A dataset with illumination
variation is built to train the classifier and test the performance
of the system. The contributions of our work are a new masked
face dataset and comprehensive experiments to verify the
effectiveness of the proposed approach. The rest of the paper
is structured as follows: Details of the dataset, the comparative
enhancement algorithms, and the classifier are introduced in
Section II. Experimental results are reported in Section III.
Finally, Section IV concludes the paper.

II. MASKED FACE DETECTION WITH ILLUMINATION
AWARENESS

A. Masked Face Detection

A simple masked face detection (MFD) system is first built
to identify whether a mask is worn and worn properly on
a human subject’s face. The system consists of a webcam
(HKVISION HS-Y02) and an edge AI computer (Jetson
Nano). A light-weight model is then required to implement
on the edge device for masked face detection purposes. For
the implementation, the following pre-trained models from
TensorFlow API are considered: SSD MobileNet-V1 and -
V2, SSD ResNet50-V1, and Faster R-CNN ResNet50-V1.
These models have been trained on the COCO dataset [7] and
customized in this work for the masked face detection task
using transfer learning.

Here, we generated a masked face dataset by combining
three datasets [8]–[10] consisting of 2241 images of human
faces with different types of face coverings. For convenience,
we name this dataset for training and validating a masked
face detection as MFD2241. The images are categorized into
three classes: face with no mask, with properly worn, and
improperly worn mask and split into the train and test sets
with the ratio of 80:20. As the size of the most bounding
boxes are within the [322, 962] range, AP-M [11] is selected
as the evaluation metric for the comparative models.

Table I presents the accuracy and the average processing
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Fig. 1: Processing pipeline of the masked face detection system

TABLE I: PERFORMANCE EVALUATION OF CONSIDERED MODELS
FOR MASKED FACE DETECTION

Model AP-M fps

SSD MobileNet-V1 0.731 7

SSD MobileNet-V2 0.647 9

SSD ResNet50-V1 0.580 0.5

Faster R-CNN ResNet50-V1 0.630 0.2

time of the considered models on a 2.3 GHz Intel Core i7 with
8 GB DDR3. SSD MobileNetV2 is then selected to embed in
the AI computer due to its balance between the accuracy and
processing time. The pipeline of the masked face detection
system is presented in Fig. 1.

B. Image Illumination Enhancement Algorithms

As discussed in [18], [19], the performance of vision-
based approaches using deep learning techniques for social
distancing monitoring or masked face detection is impacted
in challenged scenarios such as changing illumination. This is
critical for monitoring systems installed at locations that are
affected by both sun and indoor lighting such as workplace
entrances. In such environments, the system should be able
to detect masked face subjects not only in good lighting
conditions, but also under challenging conditions such as in
the dark or under exposure.

A possible solution for this challenge is a classifier to detect
”bright” or ”dark” inputs and apply an image enhancement
technique to improve the quality of the ones taken under low
lighting conditions. Image enhancement techniques have been
developed and successfully applied to low lighting condition
scenarios [5], such as nighttime driver face detection [6].
Although promising results have been obtained, the robustness
of those algorithms on changing illumination environments
have yet to be discussed. For instance, an image is classified
as ”enhancement required” in [6] if it is taken after 6pm. Such
setting cannot be applied directly in real-life, especially when

enhancing an input under good lighting condition could lead
to overexposure. Some successful and failure cases of the
combination between the MFD and an image enhancement
algorithm (Low-Illumination Image Enhancement (LIIE) [5])
is illustrated in Fig. 2. Images taken at low lighting conditions
and cannot be detected by MFD (Fig. 2(a) and (b)) are
enhanced, leading to a correct recognition of two subjects
without and with mask in Fig. 2(d) and (e). In contrast, an
enhancement of the input frame taken at a normal lighting
condition could lead to an overexposure after enhancement,
resulting in a change from a correct to a false recognition of
the MFD (Fig. 2(c), (f)).

Here, we collected a dataset of masked face human taken
at different lighting conditions, and coupled the proposed
masked face detection system with an image enhancement
algorithm to build a illumination classifier. Experiments with
other image enhancement techniques will then be conducted
to verify whether the detection accuracy can be boosted with
the classifier. The considered approaches are summarized in
Table II.

C. Masked Face Detection with Illumination Awareness

For the training and evaluation of the Illumination Aware-
ness (IA) classifier, images of participated subjects under
different lighting conditions are collected. Subjects are asked
to stand in front of a camera with different face poses, i.e.
rotated at 45 and 90 degree as well as tilted upward and
downward at a 20 degree angle. In total, 4178 images are
collected, the numbers of which containing subjects wearing
masks properly, improperly, and no masks are respectively
1347, 1439, and 1392. For convenience, we name the dataset
as Masked Face Dataset with Illumination Change (MFDIC).
The categories of MFDIC according to the covering and
illumination level is illustrated in Fig. 3.

These images are then classified into two categories de-
pends on their requirement of an illumination enhancement.
The labeling of each image is processed automatically by
calculating the detection accuracy of the masked face detection
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Fig. 2: Successful and failure cases of a combination between the MFD and LIIE in different lighting conditions:
(a) and (b) low illumination with no detection, (d) and (e) successful combination with correct detection on enhanced images;
(c) correct detection in normal lighting condition changed to (f) false detection after enhancement due to exposure.

TABLE II: CONSIDERED ILLUMINATION ENHANCEMENT ALGORITHMS

Illumination enhancement algorithm Brief description

Low-Illumination Image Enhancement (LIIE)
[5]

An enhancement approach using hyperbolic tangent curve, block-matching and 3D filtering

Adaptive Attenuation Quantification Retinex
(AAQR) [6]

An adaptation of Retinex theory, the quantization range of which is obtained adaptively via attenuation
restriction and attenuation prediction

Image De-hazing for Enhancement purposes
(IDE) [12]

An adaptation of image de-hazing algorithms combined with inverted low-illumination video frames

Multi-scale Fusion for Illumination Adjustment
(MFIA) [13]

A Retinex-inspired method with a fusion of enhanced global luminance and local contrast

Multi Scale Retinex with Color Restoration with
Autolevels (MSRCRAL) [14]

An extension of MSRCR [15] eliminating the impact of outliers in the input histogram

Naturalness Preserved Enhancement algorithm
(NPE) [16]

An enhancement and naturalness preservation technique using a lightness-order-error measure

Simultaneous Reflection and Illumination Esti-
mation (SRIE) [17]

A reflectance and illumination estimation technique where regularization terms are weighted via a
variational model

model on the original input (Aw/oE) and the enhanced one
(AwE). In this paper, the selected illumination enhancement
technique to apply on the input image is LLIE due to its
best performance among other comparative approaches on

low-illumination images as reported in [5]. An image is
classified as ”enhancement required” if AwE ≥ Aw/oE and vice
versa. The automatic labeling process is illustrated in Fig.4.
Out of 4178 collected images, 2507 images are classified as
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Fig. 3: MFDIC categories according to (a) covering level, and
(b) illumination.

”enhancement required” while the remaining ones are labeled
as ”no enhancement required”. The pipeline of the automatic
labeling process is illustrated in Fig. 4.

The collected data is then split into train, validation, and test
sets with the ratio of 70:10:20. Data augmentation techniques
are also employed in the training dataset to expand the image
variations and improve the capability of the trained model.
The selected model for this classification task is ResNet-50
[20] due to its competitive performance on the ImageNet 2012
classification dataset [21] while the training time is faster than
that of other ResNet variants with more layers.

III. RESULTS AND DISCUSSION

Results of the MFD, MFD combined with an image
enhancement algorithm (MFD+E), and MFD+E with the
illumination awareness classifier (MFD+E+IA) on the
MFDIC dataset are reported in Table III. Besides the AP-M,
the Accuracy and F1-score are additionally employed as
evaluation metrics. First, a drop in AP-M of the MFD on
the MFDIC dataset is observed. The reason for this decrease
in detection accuracy is due to the complexity of MFDIC
compared to that of the source domain MFD2241 where
images of participants are taken at different face orientations
and illumination levels.

The results of the combination between MFD and an
enhancement algorithm show an improvement in terms of
AP-M on 5 out of 7 combinations. On a comparison between
MFD+E and MFD+E+IA combinations, it is significant to
see that the detection accuracy in terms of AP-M is increased
with the involvement of the illumination awareness classifier.
Out of 7 combinations, only MFD+SRIE performs better
without the IA, which could be explained by the training of
the classifier on the output of another enhancement algorithm,
the LIIE.

In terms of Accuracy, MFD+E performs better than
the MFD alone with the involvement of 4 enhancement
algorithms, i.e. the MFIA, MSRCRAL, NPE, and SRIE. The
Accuracy metrics of the remaining combinations between
MFD and LIIE, AAQR, IDE, and MSRCRAL are then
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Fig. 4: Illustration of the automatic labeling process.

significantly boosted with the employment of the IA classifier
(3.9% at the lowest and 21.3% at the highest). In contrast, a
slight drop of that is experienced on MFIA, NPE, and SRIE.

Regarding the F1-score, the involvement of the IA
classifier have significantly boosted the performance of 6
out of 7 participated algorithms in this category. Notably,
MFD+MFIA+IA outperforms other combinations in all
evaluation metrics with a gain of 8.6%, 7.4%, and 8.5% in
Accuracy, F1, and AP-M. The application of IA on MFD+E
also shows an increment of 3% while the drop in Accuracy
and F1 score is less than 0.6%. The performance comparison
between MFD+E and MFD+E+IA against MFD is visualized
in Fig. 5.

IV. CONCLUSION

This paper introduced a mask face dataset, the MFDIC,
taking into account the illumination variation and the face-
covering level at a balanced ratio. The dataset is then employed
to train and test the performance of an illumination classifier



TABLE III: ACCURACY EVALUATION OF PARTICIPATED ALGORITHMS ON THE MFDIC DATASET

Algorithms Metrics MFD MFD+E MFD+E+IA

LIIE [5]
Accuracy(%)

Accuracy(%)

31.272 51.4797
F1(%) 50.1437 69.625
AP-M(%) 38.9473 40.6287

AAQR [6]
Accuracy(%) 28.0911 49.4097
F1(%) 48.8850 45.5959 67.6396
AP-M(%) 12.4859 18.3477

IDE [12]
Accuracy(%) 43.2929 47.159
F1(%) 62.5823 65.6793
AP-M(%)

F1(%)

42.6822 44.5011

MFIA [13]
Accuracy(%) 67.3028 57.9273 57.4908
F1(%) 75.2392 74.7147
AP-M(%) 44.4726 47.52

MSRCRAL [14]
Accuracy(%) 52.5832 55.0456
F1(%)

AP-M(%)

70.3542 72.2596
AP-M(%) 47.6458 47.8322

NPE [16]
Accuracy(%) 54.6408 54.4743
F1(%) 72.8824 71.946
AP-M(%) 39.0011 46.2205 46.6336

SRIE [17]
Accuracy(%) 56.1299 56.1334
F1(%) 73.4991 73.3455
AP-M(%) 46.2243 45.216
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Fig. 5: Performance comparison of MFD+E and MFD+E+IA against MFD:
(a) Accuracy, (b) F1 and (c) AP-M



on the combination of the masked face detection system with
some recent effective image enhancement techniques. Results
from the comprehensive experiments have verified the effec-
tiveness of the employment of the enhancement techniques
and the illumination classifier. Compared to the MFD alone,
a gain in Accuracy, F1-score, and AP-M is observed on 6
out of 7 combinations of MFD+E+IA. The performance of
MFD+E+IA is also emphasized compared to that of MFD+E,
showing better detection accuracy in terms of all evaluation
metrics in most cases.
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