Dynamic-GTN: Learning an Node Efficient
Embedding in Dynamic Graph with Transformer

Anonymous

Anonymous
Anonymous

Abstract. Graph Transformer Networks (GTN) use an attention mech-
anism to learn the node representation in a static graph and achieves
state-of-the-art results on several graph learning tasks. However, due to
the computation complexity of the attention operation, GTNs are not ap-
plicable to dynamic graphs. In this paper, we propose the Dynamic-GTN
model which is designed to learn the node embedding in a continous-time
dynamic graph. The Dynamic-GTN extends the attention mechanism
in a standard GTN to include temporal information of recent node in-
teractions. Based on temporal patterns interaction between nodes, the
Dynamic-GTN employs an node sampling step to reduce the number
of attention operations in the dynamic graph. We evaluate our model
on three benchmark datasets for learning node embedding in dynamic
graphs. The results show that the Dynamic-GTN has better accuracy
than the state-of-the-art of graph neural networks on both transductive
and inductive graph learning tasks.

Keywords: Graph Transformer Network - Dynamic Graph - Node Sam-
pling.

1 Introduction

In recent years, Graph Neural Networks (GNNs) have gained a lot of attention for
learning in graph-based data such as social networks, author-papers in citation
networks, user-item interactions in e-commerce and protein-protein interactions.
The main idea of GNNSs is to find a mapping of the nodes in the graph to a latent
space, which preserves several key properties of the graphs. Given that every
single node has a certain influence on its neighbors, node embedding is created
by GNNs based on a message passing mechanism to aggregate information from
the neighborhood nodes, which can be used for downstream tasks such as node
classification, edge prediction, or graph classification.

The embedding learned by traditional GNN methods can describe the local
and global structures on a static graph with the constraint that the graph’s nodes
and edges do not change over time. For online systems such as social networks
or e-commerce, this assumption usually does not hold. In order to deal with
dynamic graphs, one could employ a snapshot-based approach. More specifically,
a GNN model such as Graph Convolution Network (GCN) [1], Graph Attention

2 Anonymous

Network (GAT) [2], or Graph Transformer [3] is trained to learn the graph
representation at a specific timestamp. The drawback of this approach is that
the learned representation at each snapshot ignores the temporal interactions
because each models is trained separately. The trained embedding model in this
case can only capture the graph specific structures at the end of a time interval. In
addition to that, the snapshot-based approach is a time-consuming one because
it has to retrain the model from scratch.

Dynamic-based graph learning methods overcome these issues by learning
both temporal and structural properties of the dynamic graph. Recent works
can be classified into discrete-time approaches and continuous-time approaches.
Discrete-time methods improve the snapshot-based approach by adding the tem-
poral relations to the node representation. Several architectures are proposed
such as DynGEM [4] with regularized weights or DySAT [5] with structural at-
tention layers. Discrete-time methods have issues in learning the fine-grained
temporal structure of the dynamic graph. Continuous-time methods avoid the
issues by seeing the dynamic graph as a sequence of nodes’ interaction with a
timestamp. Then, a sequence learning network is employed to extract the tem-
poral pattern of interactions. For example, RNN is used in DeepCoevolve [6] and
LSTM is used in Temporal Dependency Interaction Graph [7].

Although continuous-time approaches are more natural in learning temporal
information in dynamic graphs than the discrete ones, they still have significant
drawbacks. The usage of RNN-like architectures to aggregate information from
temporal neighbors are unable to capture long-term dependencies. When the
temporal information spreads over a long period of time, the learnt dynamic
representations usually degrade. Secondly, these approaches usually compute
dynamic embeddings of the two target interactions nodes independently without
taking into account the semantic relatedness between their temporal regions (i.e.
historical behaviors), which could be a causal element for the target interactions.

To address the above limitations, in this work, we extend the graph trans-
former network to capture the long-term dependencies of temporal interactions
between nodes in the dynamic graphs. We introduce a Time Projection layer
which is added after the standard transformer layer. Firstly, the multi-head at-
tention layer is used to aggregate both time-based node interactions and local
structures of the graph. Then, the projection layer uses node embedding with
temporal interactions to predict the future node representation of the graph.
In order to reduce the computing complexity of the multi-head attention layer,
a node sampling component is added based on the dynamic embedding of the
projection layer. The attention operation only includes similar nodes which are
defined by a clustering process on the node embedding. We evaluate our model
on three time-dynamic graph datasets: Wikipedia, Reddit, and MOOC [8]. The
experiments show that our proposed Dynamic-GTN could improve the overall
accuracy of downstream tasks, and also reduce the computational time of the
model.

Dynamic-GTN 3

2 Related works

The existing modeling approaches are roughly divided into two categories based
on how the dynamic graph is constructed: discrete-time methods and continuous-
time methods.

Discrete-time Methods: This category of methods deals with a sequence
of discretized graph snapshots that coarsely approximate a time-evolving graph.
DynGEM [4] is an auto-encoding method that minimizes reconstruction loss
and learns incremental node embeddings from previous time steps. DySAT [5]
computes dynamic embeddings by employing structural attention layers on each
snapshot, followed by temporal attention layers to capture temporal variations
among snapshots, as inspired by the self-attention mechanism. EvolveGCN [9]
recently leverages RNNs to regulate the GCN model (i.e., network parameters)
at each time step in order to capture the dynamism in the evolving network
parameters. Regardless of progress, snapshot-based methods will always fail to
capture fine-grained temporal and structural information due to the coarse ap-
proximation of continuous-time graphs. It is also difficult to specify an appro-
priate aggregation granularity.

Continuous-time Methods: Methods in this category operate directly on
time-evolving graphs without time discretization and focus on designing various
temporal aggregators to extract information. The dynamic graphs are repre-
sented as a series of chronological interactions with precise timestamps. Deep-
Coevolve [6] and it’s variant JODIE [8] see two coupled RNNs to update dynamic
node embeddings based on each interaction. They provide an implicit way to con-
struct the dynamic graph in which only the historical interaction information of
the two involved nodes of the interactions at time t is used. TDIG-MPNN [7] pro-
vides a graph creation approach called Temporal Dependency Interaction Graph
(TDIG), which generalizes the above implicit construction and is formed from
a sequence of cascaded interactions to explicitly leverage the topology struc-
ture of the temporal graph. To acquire the dynamic embeddings, they use a
graph-informed Long Short Term Memory (LSTM) [10] based on the topology
of TDIG.

Recent work such as TGAT [12] and TGNs [13] use a different graph creation
technique, namely a time-recorded multi-graph, which allows for more than one
interaction (edge) between two nodes. A single TGAT layer is used to collect
one-hop neighborhoods, similar to the encoding process in static models (e.g..
GraphSAGE [18]). By stacking numerous layers, the TGAT model can capture
high-order topological information. TGNs generalize TGAT’s aggregation and
use a node-wise memory to keep track of long-term dependencies.

Node sampling: Node sampling or graph pooling in GNN is often used to
reduce the computing complexity in the aggregate. The idea to connect between
graph learning and local node structures is not new. In [15], they arrange the
nodes into a binary tree to fast pool adjacent nodes. The GraphSAGE [18]
framework defines a neighborhood set with a fixed number of nodes to reduce
the computational footprint. By exploiting the graph clustering structure, the
authors propose a novel GCN training algorithm, namely Cluster.GCN [16].

4 Anonymous

The Cluster_GCN restricts the neighborhood search into a sub-graph in each
learning batch. The sub-graphs are split from the original graph by a graph
clustering algorithm. Our work is motivated by the work of Cluster_GCN. Instead
of defining the learning batches for updating the graph cluster, we utilize the
time step in a time-dynamic graph to define a learning batch.

3 Continuous-time Dynamic Graph

We define a dynamic continuous graph as G; = (M, &;) consists of node set V;
and an set of edges & ordered by time ¢ € R* and described chronological
interactions up to time ¢. An interaction appearing at time ¢ is denoted as ey 4 ¢,
where nodes u,v € V; are two nodes involved in this interaction, e, ,: has
features extract from the interaction between two nodes. One node can have
multiple interactions at different time points, we let u(t) represent the node u
at time t.

Since t can also indicate the order of interactions between two nodes, by
recording the time or order of each edge, a dynamic graph can capture the
evolution of the relationship between nodes. Given the topology of a graph G,
dynamic graph embedding aims to learn mapping function at time t:

ft:Vt %Rd,

where d is the number of node embedding dimensions. As long as the correctness
of node representation in latent space, the downstream tasks such as node clas-
sification, and link prediction will more benefit from it. With interaction nodes
u(t) and v(t), i.e., hy@), hy) are node embedding of u,v at time .

For example, Fig 1 shows a graph evolve with time, which describes inter-
actions between users and items. Given an ordered sequence of temporal node
interactions at time 0 < ¢; < to < t3 < t, the target is learning embedding of
node u at time ¢: u(t) (square symbol). And uses the previous observed state
u(t) and the elapsed time At to predict the future embedding of the node at
t + At. For each node, its dynamic associated nodes and their neighbor from a
graph structure, which includes more time/order information than conventional
static graphs. It is not trivial to encode the preference of each user from this
dynamic graph.

4 Graph Transformer Network for Continuous-time
Dynamic Graph

Our proposed model, Dynamic-GTN, works on the chronological interactions be-
tween two nodes in the continuous-time dynamic graph. It includes three major
components as illustrated in Fig. 2:

— Node sampling: A sampled subgraph of an original graph G should obtain a
good sample quality. The goal of this component is to find a better way to

Dynamic-GTN 5

Attime
Predict at
i t1/C> "t 4+ AL
Q\ tl > "—::::’(! \\“ ~\\\‘ i_ ______________________ i
i3

2 ' E
Q O Q Q Q Neighbor node:
ty ta b1t i

-2
Temporal graph Temporal graph aggregation

Lo 11 11 tl time

Fig. 1. Illustration of the temporal graph aggregation and label prediction with con-
tinuous time event

evaluate the entire sample clustering process which integrates node sampling
with clustering. Node sampling base on cluster can remove the edges with
high similarity centrality and then optimize the calculation of multi-head
attention steps in Graph Transformer.

— Graph Transformer Network and Time Projection layer: the Graph Trans-
former Network (GTN) layer is used to aggregate both continuous-time em-
bedding and structural information of the graph. Output embedding from
the GTN layer is used to project the self-node to the future embedding by the
Time Projection layer. The resulting embedding are used for improving the
node sampling and representing as dynamic embedding for the Prediction
Layer.

— Qutput layer: it utilizes output embedding from the Time Projection layer
to calculate the target values. In Fig 2, the link prediction task is computed
by concatenating the output of two related nodes. In the node classification
task, we could omit the Concatenation layer and feed the embedding into
the feed-forward layer directly.

4.1 Node sampling

At the first block, we employ a node sampling method based on cluster with
dynamic information to extract relevant nodes based on the latent space of the
graph. This component allows the Graph Transformer to learn different graph
attention kernels for different regions based on a gradient-based self-clustering
assignment such that different regions are treated differently in spatial depen-
dency modeling.

First, a vertex-level soft-assignment to M clusters is learnt from the tempo-
ral pattern of each vertex. To partition the graph, we employ graph clustering
methods. Node sampling component try to build partitions over the vertices
in the graph such that within-cluster ties are significantly more than between-
cluster links in order to better represent the graph’s clustering and community

6 Anonymous

.....................................

v v

Time Projection
Improve the cluster

Concatenation

Tuw(t + At) Prediction at time
' t+ At

Training loss

Target value at time
Yu,o(t + At) t+ At

Fig. 2. Illustration of the architecture of the proposed model

structure. This is precisely what we require because: As previously stated, the
embedding usage for each batch is equal to within-cluster linkages. Intuitively,
each node and its neighbors are usually in the same cluster, hence neighborhood
nodes with a high chance of being in the same cluster after a few hops are still
in the same cluster.

C =0y (or (hiyWy), Wi) , (1)

where C' is the cluster assignment score for each vertex to M clusters. hy
represent embedding of node i at time ¢ and W; is parameters for linear layers
on the feature mode and temporal mode, respectively, and o, and o5 represent
the relu and softmax activation functions. The feature dimension of input tensor
hi) is first squeezed to 1 using Wy, in order to provide a summarized temporal
pattern at each vertex. The W, is further applied to the temporal pattern to
calculate a M-dimensional cluster assignment score.

At the beginning, i.e at time ¢ = 0, the output embedding from the Time
Projection layer is not available. Therefore, the Dynamic-GTN uses the default
node embedding PE for clustering the nodes as the initial clusters.

4.2 Graph Transformer Network

Observing the benefits of the Transformer in capturing long-term dependencies
and in computational effort, we propose to extract temporal and structural infor-

Dynamic-GTN 7

mation of dynamic graph by Transformer type of architecture. Thus, We use the
Graph Transformer to aggregate information from neighbor nodes, and it will
derive information from both spatial as well as temporal features. An importance
of using Transformer in graph is that we need to have position encoding (PE) to
feed as an input in Transformer Encoder layer. Several works introduce PE to
Transformer-based GNNs to help model capture the node position information.
We use Laplacian PE is employed in [23], the authors prove that it performs
better than other PE. To enhance node’s positional information, we also employ
time intervals that usually convey important behavior information.

Dynamic node embedding: Firstly, we update the hidden feature h of
the i th node in a graph from layer [to layer I + 1 at time t when there is a
interaction of node ¢ as follows:

RN = > wi (VIRY) (2)

JEN(3)
where

3)

Rt KRt
w;j = softmax; (Ql]>

Vd

and j € N(i) denotes the set of neighbor nodes of node 4 in graph and Q*, K*, V*
are learnable linear weights (denoting the Query, Key and Value for the attention
computation, respectively). N (i) is neighborhood of node 4 evolve by time and
after node or edge event such as create a new node, delete/edit edge N (i) can
be change, also have many version of interactions, thus we formulate neighbor
of node i at time t as N;(7), which describes in Fig 2. The method uses for sam-
pling neighborhoods is cluster-based sampling as we introduced in the previous
section. The attention mechanism is performed parallelly for each node in the
neighbor nodes to obtain their updated features in one shot—another plus point
for Transformers over RNNs, which update features node-by-node.

Multi-head Attention: Getting this straightforward dot-product atten-
tion mechanism to work proves to be tricky. Bad random initializations of the
learnable weights can destabilize the training process. We can overcome this by
parallelly performing multiple 'heads’ of attention and concatenating the result
(with each head now having separate learnable weights):

oy kv K,
hf“(t) = Ofl”ﬁ:l E Wy v Zhﬁ) (4)
JEN;

where,

k, 5
i \/@ ()
and QF*, K*t Vk¢ are the learnable weights of the kth attention head and O°
is a down-projection to match the dimensions of ¢+ and h¢ across layers. The

. QU g - KM hS
w;, = softmax; | ———=——— |,

8 Anonymous

attention outputs h{T1(t) are then passed to a Feed Forward Network (FFN)
preceded and succeeded by residual connections and normalization layers, as:

241 (t) = Nom (BE(H) + A (1)) (6)
2L (1) = Wi ReLlU (W24 (1), (7)
hf“(t) = Norm (zf“(t) + éfﬂ(t))) (8)

where W{, W¥, 2571 (), 271 (t) denote intermediate representations, and Norm
can either be LayerNorm or BatchNorm.

Time Projection: Our proposed model projects the embedding to capture
temporal information, and predicts the future embedding at a time. After a short

duration A; the node i’s projected embedding is update to as follow:

Rictrar) = (1 +w) * by 9)

where w is time-context vector is converted from At by using a linear layer:
w = W, At. The vector (1+w) works as a temporal attention vector to scale the
past node embedding.

4.3 Output layer

In the link prediction task, The interaction of two nodes u and v at time ¢t + At
for link prediction task represent by:

Guo(t + At) = Wk (hytae) | horan) +0 (10)

To learn model parameters, we optimize the cross entropy loss. The objective
function L is defined follows:

L=- ZYuv IOg (yuv) + (1 - yuv) 10g (1 - yuv) + /\H@”Q (11)
S

where S denotes the training samples, y,, is input interaction of node u and
node v and ¥y, is the predicted interaction of node v and node v from the
classification layer of the model.

In the node classification task, we could directly use the embedding in 9 without
the concatenation layer for predicting the label of a specific node at time ¢t + At.

5 Experiments

5.1 Datasets

For testing our proposed Dynamic-GTN model, we use three popular time-
continous dynamic graph datasets: Wikipedia, Reddit, and MOOC, these datasets

Dynamic-GTN 9

public in [8]. These datasets consist of one month of interaction between user
and item (i.e., MOOC: MOOC online course, Reddit: post, Wekipedia: page).
The detail statistics of each dataset is described in Table 1. We evaluate the
efficiency of our model output embedding on both transductive and inductive
settings. Our experiments follow the setting in [13] in continuous-time graph
learning.

More specifically, we split the data by time for training, validating and test-
ing. We use the first 70% interaction to train, next 15% to evaluate, and the
final 15% to test. For example, on Reddit dataset consist of four weeks of posts
created by users on subreddits, in a week the models take the first 5 days data
of week to train, the next day to evaluate, and the last day to test. The fixed
evaluation period is selected at one week duration. Because our proposed model
can learn continuously, the duration could be changed freely.

Table 1. Statistics of the datasets used in our experiments

Information [MOOC | Reddit |[Wikipedia
#Nodes 7,144 10,984 9,227
#Edges 411,749 672,447 157,474

#Dynamic Nodes 4,066 366 217
Nodes’ Label Type |course dropout|posting ban|editing ban

5.2 Baseline

In the transductive edge prediction and inductive node classification, we use the
state-of-the-art algorithms for representation learning on temporal graphs as
baselines: Discrete-Time Methods: EvolveGCN [9] and DySAT [5]; Continuous-
Time Methods: JODIE [8] , TGAT [12], DyRep [11], and TGN [13] for compar-
ison.

Evaluation metric: With future link prediction task, given an interaction
ey,v,t €ach method outputs calculate the node u’s preference score over node v at
time t in test set. This score is used to classify if there is a connection between
two nodes at time t. To evaluate the performance of the proposed method and
baseline we use average precision for future edge prediction task in transductive
setting. In the node classification task, we aim to represent a node u at time ¢
as u(t), and base on this representation these model prediction status of node u
at time t. Accuracy is used to measure the achievement of methods.

5.3 Performance

We implement our method in PyTorch. For the other methods, we use all the
original papers’ code from their github pages. For all the methods we use the

10 Anonymous
Adam optimizer with learning rate as 0.01, dropout rate as 20%, weight decay
as zero. The mean aggregator proposed by TGN is adopted and the number
of hidden units is the same for all methods. All the results were averaged over
10 runs. For Dynamic-GTN, the number of partitions and clusters per batch
for each dataset are listed in Table 4 and we show that graph clustering only
takes a small portion of preprocessing time. Note that clustering is seen as a
preprocessing step and its running time is not taken into account in training.
Table 2 and Table 3 shows the performance results on dynamic node classifi-
cation task and future link prediction task, respectively. In general, the continuous-
time methods perform better than the discrete-time methods. This can be ex-
plained by the fact that continuous-time methods can access to a more fine-
gained temporal and structural information. Built on continuous-time approach,
our model Dynamic-GTN outperforms all the competitors on all the datasets.
The improvements are stable across the two down stream tasks. The nearest
competitor to our model is the TGN architecture. By combining the time-based
embedding with the self-attention operation, our model likely captures more in-
teraction information than the compared baselines without the need to retrain
the models.

Table 2. The performance of our model and base line on node classification task

Method Model | MOOC [Wikipedia| Reddit
Discrete- EvolveGCN 70.26 + 0.5 [63.41 + 0.3 [81.77 & 1.2
time DySAT 72.11 + 0.5 | 61.79 + 0.3 | 74.82 & 1.2
Jodie 73.39 £ 2.1 61.23 + 2.5 | 84.35 + 1.2
Continuous- TGAT 74.23 £ 1.2 | 65.43 + 0.7 | 83.12 £ 0.7
time DyRep 75.12 + 0.7 | 62.79 + 2.3 | 84.82 & 2.2
TGN 7747 + 0.8 | 67.11 + 0.9 | 87.41 4 0.3
Dynamic-GTN (ours)|78.13 + 0.9(69.74 + 1.389.03 £ 0.3

Table 3. The performance of our model and base line on link prediction task

Method [Model [MOOC [Wikipedia [Reddit
Discrete- EvolveGCN 78.33 £ 0.3 | 89.71 £ 0.5 | 80.79 £ 0.4
time DySAT 74.05 £ 0.4 | 88.13 £ 0.5 | 87.23 £ 0.4
Jodie 76.34 £ 0.5 1 90.74 £ 0.3 | 79.11 £ 0.4
Continuous- TGAT 75.36 £ 0.5 | 92.87 £ 0.3 | 87.42 £+ 0.2
time DyRep 73.45 + 0.4 | 92.21 +£ 0.3 | 86.89 + 0.4
TGN 81.20 £ 0.6 | 92.37 £ 0.2 | 88.17 £ 0.2
Dynamic-GTN (ours)|(84.42 £ 0.5/93.71 + 0.3|89.69 + 0.2

Dynamic-GTN 11
5.4 Discussion

We perform further experiments to highlight different components of our propose
Dynamic-GTN for learning an efficient node representation in dynamic graphs.

Impact of Dynamic-GTN in long period: We test the accuracy of our
proposed model by varying the time projecting window At. The node classifica-
tion task results on Reddit dataset of our model and other baselines are shown
in Table 4. In general, it is more difficult to predict for a long period updating
time At than the short one. While all of the tested models drop accuracy, our
model still achieve the best accuracies. At the longest At = 7, the proposed
Dynamic-GTN achieves around 85.36% accuracy. The second highest accuracy
is the TGN with 82.53% accuracy. This demonstrates that our architectures is
more stable on learning node representation in dynamic graphs.

Table 4. The accuracy of node classification task on Reddit dataset by varying the
time projection At(days) of different models

Model | At=1 [At=3 | At=5 | At=7
EvolveGCN 81.77 £ 1.2 [70.39 £ 0.7 [71.22 + 0.5 | 74.07 £ 0.5
DySAT 82.32 £ 0.7 | 75.13 £ 0.5 | 74.05 + 0.4 | 71.39 & 0.5
Jodie 84.35 £ 1.2 [81.71 £ 0.8 | 81.13 £ 0.5 | 79.38 +£ 0.7
TGAT 83.12 4 0.7 | 84.46 £ 0.5 | 83.18 + 0.7 | 78.59 & 1.2
DyRep 84.82 + 2.2 | 80.33 + 0.5 | 81.05 + 0.5 | 79.77 & 1.1
TGN 87.41 + 0.3 | 87.58 + 0.5 | 86.11 & 0.3 | 82.53 & 0.5
Dynamic-GTN (ours)|89.03 + 0.3|88.11 + 0.2|86.43 & 0.5/85.36 £ 0.7

Impact of node sampling: To evaluate the effects of node sampling step
with temporal information, we iterate the number of clustering components and
compare the accuracy and run time performance against the baseline architec-
ture. Table 5 compares three different node partitioning and model without clus-
tering. The usage of clustering could improve both accuracy and training time.
From our experimental results, the optimal number of clusters depend heavily
on the temporal and local structures of the graph. More investigation should be
done in future works to have a more accurate estimation of the number.

Table 5. The training time and the Accuracy (%) of node sampling component in
Dynamic-GTN, testing on node classification task with Reddit dataset. The average
time is reported per epoch with lower is better.

Model [Avg. time (s)[Accuracy
Dynamic-GTN (10 cluster) 50.23 90.67
Dynamic-GTN (15 clusters) 52.37 90.81
Dynamic-GTN (20 clusters) 52.58 90.08

Dynamic-GTN (w/o node sampling) 75.83 89.72

12 Anonymous

Impact of the number of attention head number: As the number of
attention head plays an important role in projecting between consecutive latent
spaces, we perform further experiments to test how it affects the performance on
down stream tasks. We plot the test accuracy on MOOC dataset with different
number of heads in Fig 3. It follows from [24] that the best performance can be
achieved with 3 layers and 2 heads (6 effective heads). We observe that on MOOC
dataset, the performance improves when the head number increases from 1-4,
which demonstrates the effectiveness of multi-head attention. However, when the
number of head turn over 5, there are downturn in accuracy due to the possible
over-fitting problem.

1 2 3 4 5 B
Mumber of heads

Fig. 3. The comparison of number head attention in Dynamic-GTN on MOOC’s node
classification

6 Conclusion

In this paper, we propose a continuous-time dynamic graph representation learn-
ing method, called Dynamic-GTN. Dynamic-GTN generalizes the Graph Trans-
former Network (GTN) to extract temporal-based local structure information on
dynamic graphs via node embedding projection. Due to the cost computation in
sampling graph in the temporal network, we utilize a cluster-based sampling to
help model to train faster both in inductive and transductive learning. Several ex-
periments are made to evaluate the characteristics of our proposed architecture.
The overall results on three benchmark datasets show that our model achieves
better performance than previous state-of-the-art GCN models on continuous-
time graphs.

Dynamic-GTN 13

References

10.

11.

12.

13.

14.

15.

Hamilton, William L., Rex Ying, and Jure Leskovec. ”Inductive representation
learning on large graphs.” In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 1025-1035. 2017.

. Velickovié¢, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Lio, and Yoshua Bengio. ”Graph attention networks.” arXiv preprint
arXiv:1710.10903 (2017).

Cai, Deng, and Wai Lam. ”Graph transformer for graph-to-sequence learning.” In
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp.
7464-7471. 2020.

Goyal, Palash, Nitin Kamra, Xinran He, and Yan Liu. "Dyngem: Deep embedding
method for dynamic graphs.” arXiv preprint arXiv:1805.11273 (2018).

Sankar, Aravind, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. ”Dysat:
Deep neural representation learning on dynamic graphs via self-attention net-
works.” In Proceedings of the 13th International Conference on Web Search and
Data Mining, pp. 519-527. 2020.

Dai, Hanjun, Yichen Wang, Rakshit Trivedi, and Le Song. ”Deep coevolutionary
network: Embedding user and item features for recommendation.” arXiv preprint
arXiv:1609.03675 (2016).

Chang, Xiaofu, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song, and
Yuan Qi. ” Continuous-Time Dynamic Graph Learning via Neural Interaction Pro-
cesses.” In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, pp. 145-154. 2020.

Kumar, Srijan, Xikun Zhang, and Jure Leskovec. ”Predicting dynamic embedding
trajectory in temporal interaction networks.” In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1269-1278. 2019.

Pareja, Aldo, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. ”Evolvegcn:
Evolving graph convolutional networks for dynamic graphs.” In Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 5363-5370. 2020.
Hochreiter, Sepp, and Jiirgen Schmidhuber. ”"Long short-term memory.” Neural
computation 9, no. 8 (1997): 1735-1780.

Trivedi, Rakshit, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
”Dyrep: Learning representations over dynamic graphs.” In International confer-
ence on learning representations. 2019.

Xu, Da, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. ”Inductive representation learning on temporal graphs.” arXiv preprint
arXiv:2002.07962 (2020).

Rossi, Emanuele, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. ” Temporal graph networks for deep learning on
dynamic graphs.” arXiv preprint arXiv:2006.10637 (2020).

Ying, Rex, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. ”Hierarchical graph representation learning with differentiable
pooling.” arXiv preprint arXiv:1806.08804 (2018).

Defferrard, Michaél, Xavier Bresson, and Pierre Vandergheynst. ” Convolutional
neural networks on graphs with fast localized spectral filtering.” Advances in neural
information processing systems 29 (2016).

14

16.

17.

18.

19.

20.

21.

22.

23.

24.

Anonymous

Chiang, Wei-Lin, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
”Cluster-gen: An efficient algorithm for training deep and large graph convolutional
networks.” In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 257-266. 2019.

Karypis, George, and Vipin Kumar. ”A fast and high quality multilevel scheme
for partitioning irregular graphs.” SIAM Journal on scientific Computing 20, no.
1 (1998): 359-392.

Hamilton, Will, Zhitao Ying, and Jure Leskovec. ”Inductive representation learning
on large graphs.” Advances in neural information processing systems 30 (2017).
He, Xiangnan, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. ”Lightgen: Simplifying and powering graph convolution network for recom-
mendation.” In Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval, pp. 639-648. 2020.

Fan, Wenqi, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei
Yin. ”Graph neural networks for social recommendation.” In The world wide web
conference, pp. 417-426. 2019.

You, Jiaxuan, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. ” Graph
convolutional policy network for goal-directed molecular graph generation.” Ad-
vances in neural information processing systems 31 (2018).

Jiang, Mingjian, Zhen Li, Shugang Zhang, Shuang Wang, Xiaofeng Wang, Qing
Yuan, and Zhigiang Wei. ” Drug—target affinity prediction using graph neural net-
work and contact maps.” RSC Advances 10, no. 35 (2020): 20701-20712.
Dwivedi, Vijay Prakash, and Xavier Bresson. ” A generalization of transformer
networks to graphs.” arXiv preprint arXiv:2012.09699 (2020).

Ma, Xutai, Juan Pino, James Cross, Liezl Puzon, and Jiatao Gu. ”Monotonic
multihead attention.” arXiv preprint arXiv:1909.12406 (2019).

