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Abstract—This article presents an adaptive hardware archi-
tecture for high-performance object detection using Histogram
of Oriented Gradient (HOG) features in combination with
Supported Vector Machines (SVM). This architecture can adapt
to various bit-width representations of HOG features by using the
quantization technique. The HOG features can be represented
from 8 bits to 4 bits to remove the bubble in the processing
pipeline and reduce the memory footprint. As a result, the overall
throughput is robustly increased as the number of bits decreases.
Moreover, we propose a new cell-reused strategy to speed up the
system throughput and reduce memory footprint. The proposed
architecture has been implemented in TSMC 65nm technology
with a maximum operating frequency of 500MHz and throughput
of 3.98Gbps. The total hardware area cost is about 167KGEs and
212kb SRAMs.

Index Terms—Artificial Intelligence, Histogram of Oriented
Gradient, Support Vector Machine, HOG, SVM

I. INTRODUCTION

Object detection has been a key technology in computer
vision applications such as video surveillance, automobile
systems and so on [1]. Generally, object detection could be
solved by two main methods, including hand-crafted feature
extractions and machine learning feature extraction combined
with classification algorithms. For the former, numerous hand-
crafted feature descriptors have been proposed, such as HOG
[2], Scale-Invariant Feature Transform, Haar Transform. For
the latter, machine learning feature extraction and classification
has been booming with deep Convolution Neural Network
(CNN), Spiking Neural Network, Recurrent Neural Network
and so on. Between the two methods, the machine learning
one, especially CNN, has higher accuracy, but it needs a
large number of operations with millions of parameters. In
contrast, hand-crafted descriptors such as HOG, combined
with SVM classification, have fewer operations and fewer
data dependencies [3]. Therefore, it has higher throughput
and lower power consumption than the pure machine-learning-
based solution.

However, for high-throughput object-detection applications,
detection algorithms may be implemented into hardware to
maximize the system throughput. In this case, the machine-
learning feature extraction and classification cost a large
amount of hardware resource and energy, which is not suitable
for the lightweight embedded systems. On the other hand,
HOG, represented the hand-crafted feature descriptor, along
with SVM classification provides small hardware implementa-
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Fig. 1: HOG-SVM algorithm for object detection [4].

tion with its well-balanced trade-off among detection accuracy,
system throughput and complexity [5]. As a result, many
researches have been devoted to improve the efficiency of the
HOG-SVM algorithm further. The steps to detect an object,
for examples a human, using the HOG-SVM algorithm are
described briefly in Fig. 1. The works in [4], [6] were trying
to reduce the computational complexity of extracting the HOG
features and the normalization process in order to increase
the overall throughput. The other work in [7] show that
the reusing strategy can improve the performance sharply.
However, in these works, the HOG feature generation and
SVM classification are still optimized separately. Our previous
work in [8] overcomes this separation by proposing a hardware
architecture composing of a fast, highly-parallel and low-cost
HOG feature extraction combined with a parallel computation
of SVM and HOG feature normalization. However, our pre-
vious work still has the bubble in the processing pipeline and
does not cope with the varible bit-width for HOG features.

In this paper, we improved our work in [8] to push the
throughput further by optimizing the datapath with the variable
bit-width of HOG features to remove the bubble in the
processing pipeline and propose a new reusing strategy. Our
main contributions are listed as follows:

• This hardware architecture can support multiple-bit-width
computations of the quantized HOG features by us-
ing a variable bit-width Sequential Multiply-Accumulate
(SMAC).

• A new data-reuse strategy for window strides is proposed
to save memory footprint and fasten SVM classification.

• This accelerator can perform at a maximum frequency of
500MHz and throughput of 240fps for Full-HD resolution
with 4-bit quantized HOG features using TSMC 65nm



technology. The hardware area is only about 167KGEs
and 212Kb SRAMs in a 4-bit HOG feature configuration.

The rest of this paper is organized as follows. Section II
presents the related works. Section III describes our proposed
hardware architecture to boost the throughput of HOG-SVM.
Then, Section IV presents our hardware implementation re-
sults. Finally, there are some conclusions and perspectives in
Section V.

II. STATE OF THE ART

The HOG-SVM algorithm essentially describes the detec-
tion windows using HOG feature descriptors and then applies
SVM classification to detect the object. However, the original
feature extraction contains many complicated arithmetic func-
tions such as inverse tangent in histogram generation, square
root, and division in the normalization step. As a result, HOG-
SVM hardware implementations cost many logic gates for
these functions and require huge memory for storing HOG
features.

To overcome these challenges, many studies have focused
on optimizing HOG feature extraction and SVM classification
for hardware implementation for object detection. For instance,
An et al. in [6] applied the approximation of trigonometric
functions by converting them into the comparison among
angles to avoid inverse tangent calculation for faster feature
extractions. Another approximate method is to modify the
square and square root computations implemented in the fea-
ture normalization step, as Mizuno et al. in [7]. Although those
approximate computations can effectively boost the throughput
and reduce hardware complexity, it reduces the accuracy of the
extracted HOG features.

Another approach to improve the throughput is to apply
a data reuse strategy as in [7]. By avoiding the repeated
computations of the overlapped cells, the total number of
operations in one detection window sharply reduces. Besides,
parallelism can be applied for high-speed applications. For
example, Suleiman et al. in [4] utilized 3 HOG-SVM detectors
for multi-scale support. Our previous work in [8] also used
multiple MAC modules to fasten SVM calculation.

Furthermore, some researches, as in [4], [9], proposed a new
approach that performs pre-processing at the pixel level, which
reduces a large number of operations and power consumption
but still maintains acceptable accuracy. For example, Suleiman
et al. in [4] presented a pre-processing technique, which uses
the gradient function as a filter to reduce the input bit width
before calculating the histogram. Furthermore, Young et al.
in [9] used a converter to change the linear gradients into
logarithmic gradients, which only need 2.75 bits on average to
represent the HOG features. Consequently, many complicated
calculations can be simplified. For instance, multiplication,
division, and square in the original HOG feature extraction can
turn into addition and subtraction in the logarithmic domain.

Although the previous works have investigated various
aspects of hardware implementations of the HOG-SVM algo-
rithm, the SVM classification can only start when it obtains all
the normalized HOG features. This means that the throughput

of the hardware system is limited by its data dependency. Our
previous work in [8] could calculate HOG features and SVM
classification in parallel. However, it still has some drawbacks.
The previously proposed architecture contains the bubbles in
the processing pipeline, which can be further improved. In
addition, it does not consider the possibility of applying the
reduced-bit-width HOG feature extraction and the following
processing. In this work, we reuse our previous proposed
architecture in [8] and apply quantization to the HOG feature
to further boost the system throughput. We also propose a
new data-reuse strategy for non-square window detection.
The details of our proposed architecture are explained in the
following section.

III. PROPOSED HARDWARE ARCHITECTURE

Our hardware architecture can support multiple object de-
tection by modifying the size of the detection window and the
SVM-trained weights. However, for easier explantation and
evaluation, we chose the pedestrian as the object detection
with two datasets, including the INRIA dataset [2] and the
TUD dataset [10]. The overview of our proposed architecture
is described in Fig. 2.

Fig. 2 shows eight pix2bin modules are utilized in parallel to
generate bin histograms before quantization. After accumulat-
ing all the bins into one cell histogram containing 9 orientation
bins, our design performs quantization by keeping only the
most signification bits of the cell histogram. The number
of bits representing the cell histogram can be configurable
at design time. The quantized cell histograms are used for
accelerating the SVM classification and normalization process.

A. Quantization of Non-Normalized HOG Feature

To reduce the hardware area and increase the throughput,
the HOG features can be quantized by discarding the least
significant bits. Consequently, only the most significant bits
are kept for further processing. In our previous work, we used
the non-quantized HOG features. In this work, we use the
quantized HOG features to increase the system throughput
in L2 normalization and SVM classification. Quantized HOG
features help remove the bubble in the processing pipeline
leading to a 1.7× improvement in throughput compared with
our previous work. Fig. 3 shows the new data pipeline process-
ing for 8-bit and 4-bit HOG features. Obviously, the bubble
in the data processing pipeline is completely removed, which
increases the system throughput.

B. Data Reuse and Pipeline Strategy

Data reuse strategy and pipeline architecture are important
for high-speed designs. In this work, we firstly reuse the
generated cell histograms by storing 128×9 quantized features
in a buffer. At this point, quantized cell features are arranged
into two data paths: new-cell calculations and overlapped-cell
calculations [8].

As shown in Fig. 4, the detection window could move
in four directions: up, down, right and left. 8 new cells
and 120 overlapped cells need calculating in the up/down
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Fig. 2: Proposed Hardware architecture.
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Fig. 3: Data pipeline of the proposed architecture for quantized
cell histogram.
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Fig. 4: The cell organization of the detection window at the
frame level.

movement instead of 16 new cells and 112 overlapped cells
in the right/left movement. Therefore, our architecture uses
the majority of up/down movement and avoids the right/left

TABLE I: Hardware Implementation Result using 65nm
TSMC Technology.

This work
[4] [6] [8]

4-bit 8-bit

Technology 65nm TSMC 45nm SOI 65nm SOTB 65nm TSMC

Feature HOG HOG HOG-Haar HOG

Resolution Full HD Full HD Full HD Full HD

Hardware
Area

167KGEs 195KGEs 490KGEs 500KGEs* 145KGEs

Memory 0.212Mbits 0.538Mbit 0.602Mbits 0.242Mbits

Frequency 500MHz 270MHz 200MHz 500MHz

Power
Consumption

151mW 195mW 45.3mW 75.48mW -

Frame Rate 240fps 139fps 60fps 30fps 139fps

Energy
Efficiency

304pJ/pix. 677pJ/pix. 364pJ/pix. 1521pJ/pix. -

* The HOG core area is calculated from the original paper based on the best of our knowledge.

movement to maximize the data reuse and increase the system
throughput. For example, to completely scan a Full-HD image
containing 233×120 windows of 128×64 pixels, it will need
232× 120 right/left movements along with 120 movements in
the down direction. In contrast, it needs 233×119 movements
in the up and down direction with 233 movements in the right
direction. Consequently, our design can improve the data reuse
by saving about 27, 000× n cycles by choosing the up/down
movements and minimizing the right/left movement.

IV. EVALUATION

Our proposed architecture has been implemented in the
TSMC 65nm standard cell library, SRAM model from ARM
and it has been verified by the dataset from [2] and [10]. Our
trained weights are constructed based on over 3,000 images of
96× 160 pixels from [2]. We create multiple trained weights
to achieve the best accuracy of each quantized HOG feature.
They are then tested on three different scales of 288 images
from [2] and 250 images from [10].

A. Throughput

As shown in Table I, the maximum throughput of this
proposed hardware implementation is about 240 fps at Full
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Fig. 5: Performance comparison between multiple bit width
of HOG features on the INRIA and TUD dataset.

HD (3.98Gbps) when the number of quantized cell histograms
is 4 bits. Compared with other works, our design achieves
the highest frequency at 500MHz and the highest framerate
at 240fps for Full-HD images. The proposed architecture
can perform 1.7× times faster at the same frequency when
compared with our previous work in [8], which does not apply
these optimization techniques. On the other hand, our design
throughput is 4× and 10× faster than the previous works in
[4] and [6], respectively.

B. Hardware Resource

As shown in Table I, our hardware area for 4-bit quantized
HOG features costs around 167KGEs and has an average
power consumption of 151mW with 212Kb SRAMs. Com-
pared with our previous work, we have improved the system
throughput at the cost of storing more features in registers
leading to an increase of 50KGEs in the 8-bit version. Our
proposed design is the second smallest design with the highest
energy efficiency among the other works.

C. Accuracy

To evaluate the accuracy of the proposed architecture, we
first obtain the suitable trained weights with over 3,000 images
from the dataset in [2] by modifying the loss factor in the
loss function of the SVM algorithm. This process is operated
repeatedly for each version of quantized-HOG-feature bit
width. Those trained weights are then loaded into our hardware
design along with the positive and negative images of the two

datasets with different scales. As a result, the detections of
our hardware implementation with multiple versions of the
quantized feature’s bit width are shown in Fig. 5a and Fig.
5b.

In Fig. 5, the miss rate of the implementation results among
multiple versions of HOG features steadily increases as the
degradation of HOG features. For both datasets, the miss rate
of our hardware architecture with 8-bit HOG features is close
to the software one at a False Positive Per Image (FPPI) of 20.
At the same FPPI, the 4-bit version has a 5.55× increase in the
miss rate with an error rate of about 1.5% for the Inria dataset
and a 1.29× increase in the miss rate with TUD dataset. The
proposed architecture can adapt to different throughputs at the
cost of an increase in the classification error.

V. CONCLUSIONS

Object detection has a wide range of applications such
as robotics, automobile, and video surveillance. One of the
efficient methods to perform object detection for lightweight
embedded systems is HOG-SVM. However, HOG-SVM, with
its complexity and data dependencies, limits its throughput
for high-speed hardware implementation. In this paper, we
proposed a hardware architecture supporting quantized HOG
features to remove the bubble in the previous design combined
with a new data-reused strategy. The proposed hardware
architecture can run at the maximum frequency of 500MHz
in TSMC 65nm technology with a throughput of 240fps for
Full-HD resolution using 4-bit HOG features.
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