
Automated testing reactive systems from Event-B
model

Dieu Huong Vu, Anh Hoang Truong
VNU University of Engineering and Technology, Vietnam

Yuki Chiba, Toshiaki Aoki
Japan Advanced Institute of Science and Technology, Japan

Abstract—We present a model-based testing approach for
reactive systems where both test inputs and expected results
are generated from ‘restricted’ Event-B specifications. We show
that it is possible to automatically build the restricted Event-B
specifications from the original ones base on a knowledge base
of the system under tests. The restricted models are to reduce
the state space of the original Event-B models while preserving
the possible testing paths, so that our model-based generated test
suite can archive equivalent path coverage as using the original
models. We also present a tool and a testing skeleton that are easy
to use so that system developers can effectively test an arbitrary
number of scenarios with reactive systems.

I. INTRODUCTION

Reactive systems, e.g., vending machines, elevators, con-
tinuously response to stimulus from their environments. For
example, vending machines accept customer actions to give
them items or elevators accept input from the passengers
to bring them to their floors. Internally, the stimulus or
events from the environment trigger calls or invocations to
system’s functions or services. Each event may have additional
parameters and may trigger additional events. Each event
usually changes the run-time states of the system. Therefore,
to guarantee some level of correctness of a reactive system,
we need to test it with all many as possible the number of
sequences of events (test scenarios) together with the possible
values of event parameters. However, the number of test cases
grows exponentially by the length of the events and the size
of the parameters’ domains, so testing reactive systems is
challenging [13]. We need an efficient and scalable approach
to reduce the number of test cases.

For critical reactive systems, their requirements are usually
specified using formal notation, e.g. Event-B specifications [1].
In this paper, we propose a model-based testing approach [16]
where models are Event-B specifications. Our approach pro-
vides system developers a skeleton that can generate test
scenarios which contain both input values and expected results.
The skeleton acts as a test environment and a test driver that
exercises the system under test (SUT) and reports bugs if
the actual results are different from the expected ones. Of
course, there are other techniques such as model checking or
formal verification to guarantee some correctness properties of
reactive systems [11]. However, testing is still a widely applied
in practice, because the formal approaches are only applicable
for certain classes of programs and correctness properties.

In particular, our problem statements and approach are
summarized as follows. Given an Event-B specification and
an implementation of a reactive system, also called system
under test (SUT), check if all representative behaviors of the

specification are correctly implemented in the SUT. Here the
representative behaviors are the set of different sequences of
events with their representative input values. To generate these
sequences, we first restrict the original Event-B specification
to make a so called specification for test (SfT). The technique
that we use is based on representative values from equivalence
class partitioning, a popular black-boxed testing technique [3],
which is effective and suitable in our context as we will explain
in more details in the next section. Then we build a labeled
transition system (LTS) of the state spaces from the restricted
specification. The paths of the LTS are used to build test
cases, which contain both test inputs and expected results for
assertions.

The main contributions of the paper are: (i) a technique
to combine model-based testing with equivalence classes par-
titioning to reduce redundant test cases; and (ii) a supporting
tool and a test driver skeleton for system developers to easily
build test driver that automatically tests the reactive systems
for correctness with respect to its Event-B specification.

In the followings, we will present a motivating example
in Section 2. In section 3, we will formalize our approach.
Section 4 introduces our tool and experimental results. Section
5 discusses related works and Section 6 concludes.

II. MOTIVATING EXAMPLE

We will explain our approach via a simplified example.
Suppose we have an Event-B specification S for a bank ATM
system as shown in Figure 1. The bank ATM should provide
services: deposit an amount, withdraw an amount and transfer
an amount from an account to another. Figure 2 is a simplified
implementation of the system. We need to check that all the
behaviors in the specification in Event-B semantics [1] are
correctly respected by the implementation.

A. System specification

The behaviors of the specification in Figure 1 are valid
sequences of the three events with their corresponding pa-
rameters: Deposit x n, Withdraw x n and Transfer x, y, n,
where the parameters x, y and n are implicit in the specifica-
tion. In addition, these sequences should not produce states
(the values of variables Accounts and Balance) that violate
the invariants in the INVARIANT section. The states here are the
values of two variables Accounts and Balance. The variable
Accounts holds the set of all existing bank accounts. Its type is
abstracted in ACCOUNTS, which, for example, be all sequences
of 10 digits. The variable Balance is a map from ACCOUNTS to

the set N of non-negative integer representing the balances of
the accounts.

When the environment sends an event to the system under
test, it triggers the actions in the THEN parts if the corresponding
guard conditions in the WHEN parts hold. The benefit of using
Event-B as the models for testing is that the correctness of
the models specified by the invariants is proved by Event-B
tools [12]. In addition, from the formal model and the clear
semantics of Event-B, we will explore its behaviors using a
labeled transition system whose paths will be test inputs and
assertions to be check with the implementation.

However, the state space of the Event-B specification, i.e.
the set of all possible valid values of Balance and Accounts, is
very large. It is inconvenient to explore the whole state space
for test cases generation, as in testing we want to validate
the system under test with typical inputs. Hence, we need to
build a restricted version of the specification such that it has
as small as possible the state space but, for test effectiveness,
it should preserve as much as possible the behaviors of the
original specification.

CONSTANTS ACCOUNTS, AMOUNTS
VARIABLES Accounts, Balance
INVARIANT

Accounts ⊆ ACCOUNTS,
Balance ∈ Accounts -> AMOUNTS,
∀ x ∈ Accounts: Balance(x) >= 0

INITIALIZATION
Balance := 0
Accounts := ACCOUNTS

EVENT
Deposit = WHEN x ∈ Accounts and n ∈ AMOUNTS
THEN Balance(x) := Balance(x) + n.

Withdraw = WHEN x ∈ Accounts AND n ∈ AMOUNTS AND
n <= Balance(x)

THEN Balance(x) := Balance(x) - n.

Transfer = WHEN x, y ∈ Accounts AND n ∈ AMOUNTS
AND n <= Balance(x)

THEN Balance(x) := Balance(x) - n
AND Balance(y) := Balance(y) + n

Fig. 1. Event-B model of a simplified ATM

B. Restricted Specification and Labeled Transition System

For the specification in Figure 1, if we restrict ACCOUNTS to
{a, b} and AMOUNTS to {0, 50, 100}, the state space is much
smaller and it is feasible to explore all possible behaviors of
the restricted specification to check with the system under test.
For the example specification in Figure 1, we only need to
change the first line to CONSTANTS ACCOUNTS = {’a’, ’b’},

AMOUNTS = {0, 50, 100}. After restricting the domains of
variables in the specification, we use the restricted specification
to generate a labeled transition system (LTS) as in Figure 3 by
the following procedure. First, we create the node a0,b0, which
is the initial state of the test specification. We mark this node as
the entry node. Here we denote xN the account x with balance
N. Then, from this initial state, we scan all events that can be
triggered by checking their guard conditions. Four more valid
states are (a50,b0), (a0,b50), (a100,b0) and (a0, b100) by
Deposit event. So we create the nodes with edge labeled by
the event names. To simplify the presentation, we use Da to

public class Account {
public int balance = 0;
public String name;
public Account(String name){
this.name = name;

}
public void withdraw(int amount) {
if (amount <= balance && amount > 0) {
balance = balance - amount;

} else { throw Ex; }
}
public void deposit(int amount) {
balance = balance + amount;

}
public void transfer(Account to, int amount) {
if (this.balance >= amount && amount > 0) {
this.balance -= amount;
to.balance += amount;

} else { throw Ex; }
} }

public class ATM {
public List<Account> accounts = new

List<Account>();
private Account currentAccount;
public void add(Account a) {
accounts.add(a);

}
public void authorize(String name) {
currentAccount = accounts.find(name);

}
public void withdraw(int amount) {
currentAccount.withdraw(amount);

}
public void deposit(int amount) {
currentAccount.deposit(amount);

}
public void transfer(Account to, int amount) {
currentAccount.transfer(to, amount);

} }

Fig. 2. A simplified implementation of a bank ATM in Java

denote the event Deposit $50 to account a and similarly for
other events and we omit edges with value 100 from a0,b0

to a100,b0 and a0,b100. For each new node, we repeat the
above steps to expand the LTS and we can build a LTS which
is partly shown in Figure 3. In this figure, we only show edges
for the events with 50 in amount.

a0, b0

a50, b0

a100, b0
a50, b50

a50, b100

a0, b50

a0, b100

a100, b50

a100,b100

Da

Wa

Db

Wb

Da
Wa

Wa

Wa

Wa

Da

Da

Da

Wb

Wb

Wb

Db

Db
Db

Db
Wb

Tba

TbaTab

Tba

Tab

Tab

Wa
Da

Enabled Events:
Da: Deposit(a,50)
Db: DepositB(b,50)
Wa: Withdraw(a,50)
Wb: Withdraw(b,50)
Tab: Transfer(a,b,50)
Tba: Transfer(b,a,50)

Reachable States:
(a0, b0)
(a50, b0)
(a0, b50)
(a100, b0)
(a50, b50)
(a0, b100)
(a100, b50)
(a50, b100)
(a100,b100)

Wb
Db

Tba

Tab

Fig. 3. LTS built from Figure 1

Listing 1. LTS data structure
1 //LTS structures
2 public class Node {
3 public Account account1, account2;
4 public List<Edge> edges;
5 }
6 public class Edge {
7 public Node start, end;
8 public String action; //’D’, ’W’, ’T’
9 public Account param1, param2;

10
11 public Account getAccount() { return param1; }
12 public Account getToAccount() { return param2; }
13 }
14 public class LTS {
15 public Node entry;
16 List<Node> nodes;
17 }

From the LTS, now we can generate test cases by searching
all possible paths from the entry node with unlimited length.
Figure 4 shows paths, which are sequences of events, to be
tested with the implementation of the reactive system under
test. In these sequences, Da stands for depositing $50 to
account a. Similarly, Db, Wa, Wb, Tab and Db denote depositing
to account b, withdrawing from a, withdrawing from b, trans-
ferring from a to b and transferring from b to a, respectively,
and all with amount of 50.

Da-Da-Db-Db-Wa-Wb-Tab-Wb-Da-Db-Da-Wb-Wa-Tba-...
Db-Da-Tba-Db-Wb-Wa-Wb-Tab-Wb-Tba-Wa-...
Da-Da-Tab-Db-Da-Wb-Tab-Tba-Da-Wb-Tab-Db-Da-...

Fig. 4. Sample test sequences generated from the LTS in Figure 3

In addition, we can also generate assertions or test or-
acles after each event as the node xn in a node says that
account a has balance n so we can use this to generate
assertions. For example, for node (a50, b50) we can verify
with assert(Balance(a)==50 && Balance(b)== 50).

C. Test Execution

So now we have test sequences with inputs and assertions
after each event, we still need to execute the tests to find if
the system under test conforms to the provided specification.
This module is often called test driver [2]. Its main functions
are: read test inputs, execute the SUT, and compare the actual
results with the expected ones.

We set the initial state of the SUT and send a series of
events to the SUT and observe the new state of the SUT after
each event. In our example, as in Listing 2 we will start with
the entry node of the generated LTS (line 8), set the SUT to the
correct initial state (lines 10-11). Then we randomly select one
of its edges (lines 14-15) that can go from the current node
and send the corresponding event to the SUT (lines 17-21).
After that we check the new state of SUT if it conforms to
the expected state of the model represented by the LTS (lines
24-27).

Listing 2. Test driver for the ATM example
1 //random test code
2 class TestDriver {
3 void runRandomTest (LTS lts) { //main
4 atm = new ATM();
5 atm.add(new Account("a"));
6 atm.add(new Account("b"));
7
8 n = lts.entry;
9 //checking the state with the model

10 assert (atm.accounts["a"].balance ==
n.account1.balance);

11 assert (atm.accounts["b"].balance ==
n.account2.balance);

12 while (true) {
13 //random testing strategy
14 r = random(0, n.edges.length()-1);
15 e = n.edges[r];
16 // send event to SUT
17 atm.authorize(e.getAccount().name);
18 switch (e.action){
19 case ’D’: atm.deposit(50); break;
20 case ’W’: atm.withdraw(50); break;
21 case ’T’: atm.transfer(e.getToAccount(),

50);
22 }
23 //new state
24 n = e.end;
25 //checking the state with the model
26 assert (atm.accounts["a"].balance ==

n.account1.balance);
27 assert (atm.accounts["b"].balance ==

n.account2.balance);
28 } } }

III. FORMALIZATION

A. Event-B models

Event-B models have variables, their domains containing
values for variables, invariants containing expressions and
boolean expressions, and events containing guards and actions.
A guard is a boolean expression. An action is a value assign-
ment, so called substitution.

V is the set of variables. D is the domain, which is the set
of values. Exp is the set of expressions in the specifications.
An expression may contain variables in V , values in D, arith-
metic operators, logical operators, and set operators. BExp is
the set of boolean expressions (BExp ⊂ Exp). A substitution
a : V → Exp is a mapping from V to Exp. ACT is the set
of substitutions. GRD is the set of guards. An event is a pair
〈g, a〉 of a guard g and a substitution a. E is the set of events.
If e = 〈g, a〉 then we write grd(e) = g and act(e) = a. A
state is a value assignment. [exp]σ denotes the interpretation
of the value of an expression exp in a state σ. We say a guard
g holds in a state σ iff [g]σ = tt (truth value). Init is the set
of special initialization events that have no guard. We denote
σ

e−→ σ′ for an event e = 〈g, a〉 and states σ and σ′ if σ(g)
holds and σ′ = {v 7→ [a(v)]σ | v ∈ V }.

We define a specification in Event-B as follows.

Definition 1 (Specification): A specification in Event-B is
a tuple S = 〈VS ,DS ,ΣS , InitS , Inv〉 where VS ⊆ V is the
set of variables used in S, DS ⊆ D is the domain of variables
in VS , ΣS ⊆ E is the set of events, InitS ∈ Init is the
initialization of S, and Inv ∈ BExp is the invariant of S.

B. Restricted models

As mentioned earlier, the state space of the Event-B speci-
fication, i.e. the set of all possible valid values of balance and
accounts in the example, is very large. For test effectiveness,
we need to build a restricted version of the specification such
that it has as small as possible the state space but it should
preserve as much as possible the behaviors of the original
specification. A simple restriction can be made by changing
the domains of the original specification to contain only few
representative values of the domains. This task requires expert
knowledge about the application domain of the system under
test, but it can be done in several steps so that the restricted
domains are still large enough for the intermediate computed
values to be contained in the domains.

Given a specification S, we restrict the specification by us-
ing a knowledge base of the system under test. The knowledge
base contains a set of representative values for each variable
in VS . In particular, the representative values can be selected
using equivalence class partitioning, a black-boxed testing
techniques. From these representative values, e.g. 0 and 50 in
the motivating example, we may need to extend the restricted
domain with additional values so that the system under test
and the model can be executed other computation operations,
e.g. 100 in the motivating example. Formally, the knowledge
base is a mapping G : 2DS → 2DS . For the model in Figure 1,
G(ACCOUNTS) can be {a, b} where a, b are two distinguish
sequences of ten digits and G(BALANCES) can be {0, 50}.
We build a restricted version of the specification, called
specification for test (SfT), by replacing range of values for
each variable in VS , DS with the smaller range, 2DS . For the
model in Figure 1, we replace ACCOUNTS with {a, b} and
replace BALANCES with {0,50}. SfT is obtained from S by
applying G is a a tuple SfT = 〈VS ,DSfT ,ΣSfT , InitS , Inv〉
where DSFT = G(DS) and ΣSFT is a set of events e in ΣS
that satisfy the restriction defined by G.

C. Building LTS from restricted specification

A labeled transition system (LTS) explored from the re-
stricted specification is a finite LTS. It contains a set of states
Q. States of the LTS are computed by assigning all possible
values for variables within range of values in the SfT. The set
of reachable states is a subset of Q.

Definition 2: (LTS). An LTS M is a quadruple 〈Q,Σ, δ, I〉
where Q = {σ | σ : VS → DSfT } is a non-empty set of states,
Σ = ΣSfT is a set of actions, δ ⊆ Q× Σ×Q is a transition
relation, we write (p, a, p′) ∈ δ as p a→ p′ ∈ δ, and I ⊆ Q is
a set of initial states.

We present an algorithm to generate an LTS from SfT in
Algorithm 1. This is an extension of an algorithm to generate
an LTS from an Event-B model in which every ranges of values
for variables is finite presented in [17].

D. Test sequences and test oracle explored from LTS

Test sequences are unlimited chains of invocations which
call services of SUT. Test sequences are explored from the
LTS by traversing edges from the initial states. Supposing LTS
M = 〈Q,Σ, δ, I〉 be generated from SfT and E(σ) be used to
denote a set of applicable invocations in state σ, we define test

Algorithm 1 Generating LTS M = 〈Q,Σ, δ, I〉 from specifica-
tion for test in Event-B SfT = 〈VS ,DSfT ,ΣSfT , InitS , Inv〉.
E(σ) is used to denote the set of events which are applicable
to state σ and in ΣSfT .

1: QUEUE = empty
2: V ISITED = empty
3: Q = Σ = δ = I = empty
4: for each σ0 ∈ {act(e) | e ∈ InitS} do
5: if ∀v ∈ VS , σ0(v) ∈ DSfT then
6: Push(QUEUE, 〈σ0〉)
7: Q = Q ∪ {σ0}
8: I = I ∪ {σ0}
9: end if

10: end for
11: i=0
12: while QUEUE 6= empty do
13: 〈σ〉 = Pop(QUEUE)
14: V ISITED = V ISITED ∪ {σ}
15: Ê = {e | e ∈ E(σ)}
16: if Ê 6= empty then
17: WRITEFILE state label(σ)
18: for each v ∈ VS do
19: WRITEFILE σ(v)
20: end for
21: for each event e = (g, a) ∈ Ê do
22: σ′ = {v 7→ [(act(e))(v)]σ|v ∈ VS}
23: WRITEFILE transition label {σ e→ σ′}
24: WRITEFILE from state σ
25: WRITEFILE to state σ′
26: if σ′ 6∈ V ISITED then
27: Push(QUEUE,〈σ′〉)
28: Q = Q ∪ {σ′}
29: end if
30: Σ = Σ ∪ {e}
31: δ = δ ∪ {σ e→ σ′}
32: end for
33: end if
34: end while
35: return M

sequences as follows: TS = [σ0]e1; [σ1]e2; ...; [σk−1]ek; ...,
where σ0 ∈ I , and ek ∈ E(σk−1).

Test oracles are assertions used to check whether actual
results of methods in SUT are the same as results of events in
SfT. The results of events in SfT are represented in reachable
states following edges in the LTS. As we mention earlier, states
are value assignments. For each variable v ∈ VS and for each
corresponding variable u in SUT, we expect that value of u is
the same as value of v in states before and after each method
of SUT is invoked. We use AcV (u) to denote the actual value
for variable u observed in a state of SUT. Supposing LTS
M = 〈Q,Σ, δ, I〉 be generated from SfT, assertions are defined
as follows:

• In the initial states: For each variable v ∈ VS and
for each corresponding variable u in SUT, AcV (u) =
σ0(v), where σ0 ∈ I (see line 10-11 of Listing 2 for
an example of these assertions)

• After each invocation e in TS is applied where σ e−→

Listing 3. LTS of the ATM example in JSON format
1 "states": [{
2 "id": "a0b0",
3 "a": "0",
4 "b": "0"
5 },...]
6 "transitions": [{
7 "name": "Da",
8 "from": "a0b0",
9 "to": "a50b0",

10 "params": "50"
11 },...]

σ′ ∈ δ, we check the value of variables in reachable
states of SUT: For each variable v ∈ VS , and for each
corresponding variable u in SUT, AcV (u) = σ′(v)
(see line 26-27 of Listing 2 for an example of these
assertions)

Actual values of variables in SUT are tested in states
following chains of invocations by assertions. A test cases fails
when an assertion is violated.

IV. TOOL AND EXPERIMENT

A. Test Driver Skeleton

We developed a tool to generate LTS from the SfT de-
scribed in the previous section. The result LTS generated
by the module in Algorithm 1 is stored in JSON format. A
simplified JSON of the ATM example is in Listing 3. To test
the implementation, we provide a test driver skeleton that can
be easily used by system developers to build a test driver to
check their implementation with the LTS as one of the input
(see Listing 2 for an example). The skeleton is mainly the lines
8-15 and 23-28 in Listing 2. It travels the LTS randomly and
checks the system under test before and after each event. The
events are generated randomly in lines 14. With this skeleton,
system developers can easily modify it for other models and
systems. We used this tool and skeleton in our case studies.
Target systems used in our case studies are vending machines
and ATMs. All of these systems are implemented in Java.

B. Case studies

We build two models, for the ATM example and for a
vending machine. A vending machine is a machine which
dispenses items such as snacks, beverages, cigarettes, lottery
tickets, etc. to customers automatically, after the customer
inserts currency into the machine. The specification of vending
machines describes their external behaviors including inserting
credit into the machine, returning credit, restocking an item,
and dispensing an item. Each of them is a so-called service.
Figure 5 demonstrates a specification of the vending machine
in Event-B. Variable stock defines a set of items that are
currently available to be dispensed. It has an abstract data
type namely PRODUCT. Variable cred defines the total of money
deposited so far and available to make a purchase. Variable
state defines the state of the vending machine. Variable card

defines the size of stock. The knowledge base for the vending
machine is also straightforward.

Supposing that a domain knowledge database of vending
machines shows 3 kinds of items available for customers to

VARIABLES
stock
cred
state
card

INVARIANTS
stock PRODUCT
credN
state{0,1}
cardN

INITIALISATION
stock:= {}
cred:=0
state:=0
card:=0

restock= any item
when itemPRODUCT

state=0
card<MAX

then stock:=stock{item}
card:=card+1

dispense= any item
when itemstock

state=1
then stock:=stock\{item}

cred:=cred-PRICE
card:=card-1

insert= any cr
where state=1
then cred:=cred+cr

Fig. 5. Specification of Vending Machines

be bought such as water, tea, coffee, and 20 for each. Such
kind of vending machines should accept quarter, dollar as
input before selecting any item. Based on this domain knowl-
edge database, we restrict PRODUCT to {w(water), t(tea),

c(coffee)}, PRICE in {$1}, COIN could be Q(QUARTER) and
D(DOLLAR), cred in {$0.25, $0.5, $1}, and card in [0..60].
These ranges of values are appropriate in practical applications
of vending machines.

All experiments are conducted on Intel (R) Core (TM)
i5 Processor at 2.67GHz running Windows 10. Experiment
results are shown in Table I. In all cases of our experiment,
memory usage is minimal (M). Traces of the test show that
about 800 invocations are tested per second and every state
and invocation are covered in the test. The test is executed
infinitely if no error is detected. This is due to unlimited nature
of reactive system, which is caused by unbounded length of
the test sequences. The test is interrupted immediately after the
first error is detected and the test returns a violation assertion.

TABLE I. EXPERIMENT RESULTS

Systems Mem (Mb) State Cover. Arc Cover. Result
1 ATM-Ver1 M 100% 100 % no error
2 ATM-Ver2 M 100% 100% no error
3 VM-Ver1 M N/A N/A 1 error
4 VM-Ver2 M 100% 100% no error

The experiment #1, #2, and #4 are executed infinitely.
The experiment #3 returns a violation assertion. Following the
trace shown with the error, we could easily detect bugs in
implementation of service select item for Vending Machines.
Memory usage and performance are very good to decrease cost
of the test.

We asked the engineers to intentionally add some bugs into
versions of ATM and Vending Machine. Then, we test these
versions using the same test code. All bugs are detected in a
short time. Types of bugs could be detected by our test code
as below:

• Conditions enabling services and result of individual
services of SUT is not corrected with respect to its
specification. For example, one version of ATM allows
the customers to withdraw money when the balance
of their accounts is smaller than the amount.

• Combination of services does not operate correctly
with respect to its specification. For example, the
results of insert money and select item to be

bought are not appropriate inputs for dispense item.

V. DISCUSSION

In approach, we can test not only individual services of
SUT but also a series of service calls. This is a strong point

because in order to check essential properties of SUT, we
should exercise sequences of different services of SUT. Our
strategy to test the SUT with random sequence of events is
natural in practice, but we can replace random strategy by
more systematic approaches, using different path exploration
for the LTS. We can also easily track the coverage of the test
with respect to the model by marking edges and nodes that test
sequences have traversed. So our approach is extensible for
more advanced test strategies that developers may need. With
our test driver skeleton, memory and performance are not a
problem as the traversal of the LTS does not incur additional
cost for memory after each loop.

VI. RELATED WORKS

There exists many approaches to model -based testing. In
[5] and [8], the authors focus on negative test cases rather than
positive ones. Full combination of services is not considered.
In our approach, we focus on positive test cases, test oracles
and sequences of them. Approaches presented in [15], [9], [14]
aim at generating test cases from UML diagrams. UML is
semi-formal language, so test oracles are not easy to make
them right. In [4], the authors present how test sequences and
test oracles are generated from a design in Promela which
describes internal behaviors of the system. In contrast, we
focus on external behavior of reactive systems. In [13],
an approach to generate test case chains is focused. In this
context, test case covers a property if it triggers the transition
the property relates to. A test case that covers a sequence of
properties is regarded as a test case chain. This work focuses
on safety properties. Our work present an approach to generate
test cases and test oracle that cover all possible behavior
with unlimited length of invocation sequences coming from
reactive system’s environment. An MBT plug-in for Rodin
which generates test suites from Event-B models is presented
in [7]. A test case is defined as a sequence of actions (or
events, or triggers) together with corresponding test data that
can be executed against a SUT. In order to generate test
cases, the users of this plug-in need to set a constant value
for the maximum sequence length of test cases. In our work,
we do not limit the length of test cases. This is appropriate
for infinite behavior of reactive systems. Event-B is adopted
in [10] to construct a model of SUT from abstract level to
implementation level and uses CSP to formalize test scenarios.
These test scenarios are refined step by step and conform
to the model of SUT in Event-B. Test cases are generated
from the refined scenarios. In our work, we generate test cases
from requirement specification of SUT described in Event-B.
Our test cases could exercise all possible behaviors of SUT.
A test generation approach from user-defined scenarios, for
behavioral models expressed as B machines, is presented in
[6]. In our work, we focus on reactive systems; therefore,
we consider the infinite behavior of reactive systems and the
nondeterminism to select an invocation applicable in each state
of SUT. In our approach, the length of test cases is infinite and
test cases cover full combination of services.

VII. CONCLUSION

We have presented a model-based approach for testing
reactive systems, in which the key challenge is the state space
explosion problem of the model. We proposed an approach

to modify the original models by restricting the domain of
variables in the model to only some representative values
base on the domain knowledge of the application. The domain
knowledge should be easily built by experts or the customers
of the system under test and they can be reused, enriched
if needed to make the automated testing suitable to the test
goals. From the restricted model, it is feasible to explore its
state space to test with the implementation for conformance
between the model and the implementation. We have built a
test framework that takes a model, a knowledge base and a
system under test as input and system developers can easily
build a test driver to check the conformance between the model
and the implementation. For future work, we plan to build a
plug-in for Rodin platform so that our approach can work with
more generic Event-B models.

ACKNOWLEDGMENTS

This work is supported by the project No. 102.03–2015.25
granted by Vietnam National Foundation for Science and
Technology Development (Nafosted).

REFERENCES

[1] Jean-Raymond Abrial. Modeling in Event-B: system and software
engineering. Cambridge University Press, 2010.

[2] Fairouz Tchier Ali Mili. Software Testing: Concepts and Operations.
John Wiley & Sons, Inc., Hoboken, New Jersey, 2015.

[3] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
Cambridge University Press, New York, NY, USA, 1 edition, 2008.

[4] Jiang Chen and Toshiaki Aoki. Conformance testing for osek/vdx
operating system using model checking. APSEC ’11, pages 274–281.

[5] Yunja Choi. Constraint Specification and Test Generation for
OSEK/VDX-Based Operating Systems, pages 305–319. Springer, 2013.

[6] Frederic Dadeau, Kalou Cabrera Castillos, and Regis Tissot. Scenario
based testing using symbolic animation of b models. Software Testing,
Verification and Reliability, 22(6):407–434, 2012.

[7] Ionut Dinca, Florentin Ipate, Laurentiu Mierla, and Alin Stefanescu.
Learn and Test for Event-B – A Rodin Plugin, pages 361–364. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[8] L. Fang, T. Kitamura, T. B. N. Do, and H. Ohsaki. Formal model-based
test for autosar multicore rtos. In 2012 IEEE 15th International Conf.
on Software Testing, Verification and Validation, pages 251–259.

[9] Peter Fröhlich and Johannes Link. Automated test case generation from
dynamic models. In Proceedings of the 14th European Conference on
Object-Oriented Programming, pages 472–492, 2000.

[10] Qaisar A. Malik, Johan Lilius, and Linas Laibinis. Fast abstract:
Generating test cases from scenario-based formal development.

[11] Martin Ouimet and Kristina Lundqvist. Formal software verification:
Model checking and theorem proving. Technical report, March 2007.

[12] RODIN and DEPLOY group. Event-B and the RODIN platform,
http://www.event-b.org/.

[13] Peter Schrammel, Tom Melham, and Daniel Kroening. Generating test
case chains for reactive systems. International Journal on Software
Tools for Technology Transfer, 18(3):319–334, 2016.

[14] Dirk Seifert. Conformance testing based on uml state machines. In
Proceedings of the 10th International Conference on Formal Methods
and Software Engineering, pages 45–65. Springer-Verlag, 2008.

[15] Dirk Seifert, Steffen Helke, and Thomas Santen. Test case generation
for UML statecharts. In Perspectives of Systems Informatics, 5th
International Andrei Ershov Memorial Conf., pages 462–468, 2003.

[16] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2007.

[17] Dieu-Huong Vu, Yuki Chiba, Kenro Yatake, and Toshiaki Aoki. A
framework for verifying the conformance of design to its formal
specifications. IEICE Transactions, 98-D(6):1137–1149, 2015.

