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Abstract — The increasing amount of digital video with 

supreme quality requires more efficient compression. As the 

complexity of video coding algorithm is rising, there are more 

demands for hardware accelerators and customized hardware. 

Context-based Adaptive Binary Arithmetic Coding (CABAC) is 

the only entropy coding method adopted in the latest video 

compression standard, High Efficiency Video Coding (HEVC). 

Binary Arithmetic Encoder (BAE) is an essential component in 

CABAC, where the compression process happens. Because of the 

high data dependency and sequential coding characteristic, it is 

challenging to parallelize BAE. In this work, we proposed a low-

cost and high-throughput hardware architecture for one core of 

BAE in HEVC. Our 4-stage pipelined BAE architecture is 

capable of processing one regular bin and up to 4 bypass bins per 

clock cycle with 30% reduction in terms of area when compared 

with the designs for one-core CABAC architecture. The design 

can compress an average of 1.4 bins per cycle. It achieves a 

throughput of 1 Gbin/s at the maximum operating frequency of 

810 MHz with the area of 2.2 kGEs and the power consumption 

of 2.0 mW in Nangate 45nm technology. 

Keywords — HEVC, CABAC, entropy coding, Binary 

Arithmetic Encoder 

I.  INTRODUCTION 

Digital video has occupied a large share of digital content. 
In a recent report [1], Cisco forecasted that online video would 
be responsible for four-fifths of global Internet traffic. This 
drives the academia and industries to raise the effectiveness of 
video compression. In this effort, High Efficiency Video 
Coding (HEVC), introduced by Joint Collaborative Team on 
Video Coding (JCT-VC), promises 50% bit rate savings 
compared to the previous standard of H.264/AVC for the same 
video quality. The standard particularly focuses on two key 
issues: higher video resolution and increased use of parallel 
processing architectures [2]. 

Context-based Adaptive Binary Arithmetic Coding 
(CABAC) [3] is responsible for entropy coding in HEVC. Each 
type of its input accompanies with contexts and these contexts 
need to be updated frequently to adapt to the coding process. 
CABAC is the slowest part in HEVC because it contains strong 
data dependency and serial bit processing. Parallelism has been 
explored to improve the throughput of CABAC in HEVC. 
HEVC introduced parallelism on frames, slices, or waveform 
levels to realize high speed in the software version. However, 

in hardware implementation, using several entropy encoders 
leads to high hardware cost and high memory footprint. 
Furthermore, Binary Arithmetic Encoder (BAE) is the main 
bottleneck in CABAC because it contains bit serial processing 
of binary data. In this paper, we focus on optimizing this 
critical module to reduce the hardware cost and improving the 
throughput. 

Recently, there is a large number of works focusing on 
optimizing the performance of BAE in HEVC. Most of works 
use the 4-stage pipeline architecture to break BAE into multiple 
steps with local data dependencies. One way to speed up 
CABAC is to use many pipelined BAE cores to process 
multiple bins such as in [13], [12] and [15]; however, this leads 
to high occupied area and long critical path. It is also possible 
to use 3 custom cores for 3 types of bins as in [11], but this 
increases gate count due to the lack of hardware sharing. 

In this paper, we propose a 4-stage pipelined architecture 
for one unified core BAE which is able to process all types of 
bins at high throughput. In addition, our proposed architecture 
can process a packet of 4 bypass bins in one clock cycle with 
the same datapath. Data processing order is reorganized to 
reduce the critical path for both regular bin and bypass bin. To 
save the hardware area, we merge the processing of multiple 
bypass bins with the common path of the regular bins. 
Implementation results show that our architecture can achieve 
the speed of 1Gbin/s at the working frequency of 810 MHz 
with the hardware cost of 2.2 KGEs. At this speed, it is 
possible to process an 8k videos at high profile in HEVC. 

The rest of the paper is organized as followed. Section II 
introduces briefly about the CABAC algorithm. Section III 
discusses the multiple-bypass-bin processing technique. 
Section IV gives details about our proposed hardware 
architecture for BAE. The implementation result is presented in 
Section V. Finally, Section VI concludes the paper. 

II. CABAC OVERVIEW 

Context-based Adaptive Binary Arithmetic Coding is a 

tool for entropy coding first adopted in H.264/AVC and 

continuously used in the latest standard HEVC [6]. It is 

utilized at the last step of video encoding when it will encode 

the outputs of the previous stages such as quantized transform 

coefficients, prediction modes, motion vectors, intra prediction 



direction, which are called syntax elements (SEs). SE 

describes how the video can be reconstructed at the decoder. 

CABAC encoding process includes three main steps: 
binarization, context modeling, and binary arithmetic encoding 
as described in Fig. 1. In the first step, syntax elements are 
mapped to binary symbols (bins). Context modeler provides 
the estimated probability of bins. Finally, binary arithmetic 
encoder compresses bins to bits based on the context model 
using the provided probability. 

 

Fig. 1. CABAC encoder block diagram.  

Binary arithmetic coding is an extension of arithmetic 
coding [5] that is used for binary data. As the source data 
contains only two symbols, there is no need of a statistical 
structure for the data. The frequency of appearance is recorded 
after a symbol is coded. The symbol with the probability of at 
least 0.5 is called Most Probable Symbol (MPS) and the other 
one is Least Probable Symbol (LPS). 

The input of BAE is categorized into three types: regular 
bin, bypass bin, and terminate bin. Each has a different coding 
process. While encoding process for regular bin is rather 
standard, there is no need for a probability model when coding 
bypass bin and context model is non-adaptive in the case of 
terminate bin. 

A. Binary Arithmetic Encoder 

Regular bin coding is the main activity of BAE. Therefore, 
for hardware implementation, we made some rearrangements 
to the bypass bin and terminate bin encoding process so that 
they fit in the main process. 

The internal state of arithmetic coding is expressed by two 
parameters: Range (the current interval range) and Low (the 
lower bound of this range). The provided context information 
includes the probability state index pState and the value of 
MPS valMPS. 

The process has four main steps and its flow chart is 
presented in Fig. 2. In the first step, the current interval is 
divided according to the given probability estimation. The 
interval subdivision is performed in a multiplier-free fashion, 
as the range of LPS is selected from a look-up table. MPS 
range is the result of a subtraction of LPS range from Range. 
Then, Low and Range are updated according to the type of 
symbol, MPS or LPS. MPS corresponds to the lower part of the 
interval range part of the interval range while LPS corresponds 
to the higher one. The update of probability state is performed 
in the third step. The last step is the renormalization of Range 
and Low. 

Since there is a limited number of bits to represent Range 
and Low, they need to be scaled up to guarantee the precision. 
Most significant bits (MSBs) of Low will be outputted during 
the renormalization process. Renormalization happens when 
Range is below the threshold value, 256. After each round, a 
bit can be generated or accumulated. Accumulated outstanding 
bits will be resolved when a bit is produced next time. The loop 
will be iterated until Range exceeds 256. 

 

Fig. 2. Flow chart of encoding a regular bin [6].  

As context update can be delegated to Context Modeler, the 
binary arithmetic encoding process can be arranged in four 
stages according to the order of the updates of Range, Low and 
outstanding bit count. 

B. State-of-the-art 

The trend of designing hardware for CABAC started in 
2003 when it was first introduced for H.264 standard by Marpe 
et al. [3]. Most of the works were focus on architecture for 
Binary Arithmetic Encoder (BAE) because this is the 
bottleneck of the whole CABAC module. 

One of the first to attempt to process multiple bins is Osorio 
et al. in [7]. They implemented 2-stage pipelined BAE with 
dual-symbol encoding and optimized processing for bypass 
bin, which resulted in 1.9 – 2.3 bins/cycle. Zheng et al. in [8] 
proposed 4-stage pipelined CABAC with 3-stage pipelined 
BAE that yielded throughput of 1 bin/cycle. Tian et al. in [9] 
presented three-stage pipelined BAE, one stage for 
renormalization and two for bit packing. There were three 
customized submodules used to encode regular bin, bypass bin 
and terminate bin. Chen et al. in [10] designed a dual-core 6-
stage pipelined BAE, which gave an average throughput of 
2.37 bins/cycle. 

As new advanced semiconductor technologies have 
significantly reduced latency and enabled higher clock rate, 

Binary Arith. Encoder

Binarizer

Context
Modeler

Regular coding 
engine

Bypass coding 
engine

regular

bypass

bin, pState Coded 
bitstream

Bin value for context model update

Syntax 
element

bins

rLPS=LUT(pState, range[7:6])
rMPS = Range - rLPS

valBin != valMPS?

Range = rLPS
Low = Low + rMPS

pState!= 0?

valMPS = !valMPS

pState = LUT(pState)

Renormalization

Range = rMPS

pState = LUT(pState)

Renormalization

YES No

No

YES



more designs for BAE in HEVC utilized many-core 
architectures to maximize BAE’s throughput. Pham et al. in 
[11] used each custom core to encode each type of bins, which 
processes 1 bin per cycle. Jo et al. in [12] presented 2 parallel 
4-stage pipelined BAE cores to boost the performance. They 
adopted a LUT for generating bitstream to reduce the 
operational time involved. Zhou’s work in [13] is considered as 
the state-of-the-art architecture for BAE. They implemented 4 
parallel pipelined multi-bin BAE cores, which can encode up to 
4 regular bins per cycle. The proposed optimizations including 
bypass bin splitting, pre-normalization, hybrid path coverage, 
and look-ahead rLPS remarkably reduced the critical path 
delay of BAE. However, the usage of many BAE cores can 
lead to high occupied area. In this work, we propose a low-cost 
solution that balances performance, power and cost. 

III. MULTIPLE-BYPASS-BIN PROCESSING 

For bypass bins, the two bin values, 0 and 1, are 
equiprobable. Thus, there is no need of a context model to 
encode bypass bin. Without using probability models, bypass 
coding engine considerably reduces the coding complexity 
compared to the regular coding engine. It can be extended to 
process multiple bins at the same time. 

The procedure to encode bypass bins is shown in Fig. 3. 
The bin with value binVal = 1 is assigned to the upper part of 
the range, binVal = 0 to the lower one. Contrary to regular bin 
coding, in bypass mode, Low is first rescaled. Then it is added 
by the value of Range when a ‘1’ is coded, equivalent to the 
update of Low in case of MPS in regular mode. Because the 
ranges of LPS and MPS are equalized and are half of Range, 
the updated Range equals to the old one and renormalization 
happens for just one round. Range is kept unchanged and Low 
is increase by a constant amount of Range only when bit ‘1’ is 
being coded. This leads to the possibility to implement a 
multiple-bypass-bin coding engine. 

As stated in [4], one of the techniques used to improve the 
throughput of CABAC in HEVC is grouping bypass coded 
bins. Bins are reorganized in the fashion that bypass bins are 
grouped together in order to increase the possibility that 
multiple bins are processed per cycle. Thus, the ability to 
encoding several bypass bins in a cycle would yield a 
significant rise in throughput. In addition, bypass bins occupy a 
noticeable share in the total number of bins, ranging from 20% 
to 30% of all bins [13]. Our architecture supports encoding of a 
group of 4 bypass bins in one clock cycle. The group of bypass 
bins is described using EPbits and EPlen. EPbits is a string of 
up to 4 bypass bins and EPlen indicates the number of bins in 
EPbits. 

In bypass mode, renormalized Low when coding one 
bypass bin is computed as follows: 

renormLow = Range × binVal + oldLow << 1 

The first term is Range when the bin is ‘1’ and 0 when it is 
‘0’. For the next bypass bin, Range remains the same and Low 
is doubled. Therefore, to encode a group of bypass bins, the 
term is the multiplication of Range and EPbits. In our design, 
the formula for multiple-bypass-bin processing is: 

renormLow = Range × EPbits + oldLow << EPlen 

With the ability to encode many bypass bins, our BAE core 
only takes an additional multiplier compared to the normal 
core. Furthermore, we also unified the datapath for processing 
regular bins and bypass bins to calculate the Low value. 

 

Fig. 3. Flow chart of encoding bypass bin[6].  

IV. PROPOSED ARCHITECTURE 

At Binary Arithmetic Encoder (BAE), bins are encoded 
serially. Since the probability model and the internal state of 
arithmetic coding (Range and Low) should be maintained and 
updated before coding the next bin, a strong correlation exists 
between adjacent bins. Therefore, the incoming bin could not 
be correctly coded until all the necessary computing and 
updating process for the previous one is completed. This makes 
BAE rather challenging to parallelize. However, it is possible 
to break the process down into separate steps which could be 
pipelined to speed up the coding process. In our proposed 
architecture, we propose a four-stage pipelined architecture 
with considerations to maximize the performance and also 
reduce the occupied area. The area is reduced by passing 
minimum data through each pipeline stage while the 
performance is maximized by retiming in different stages. Our 
proposed architecture also supports to process multiple bypass 
bins in one clock cycle.  

Figure 4 shows our proposed 4-stage pipelined architecture 
for BAE. To enable multiple-bypass-bin processing, the inputs 
to our architecture are encapsulated into packets. Each packet 
could be a regular/terminate bin or a group of bypass bins. The 
functions of each stage are: 
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• Stage 1: Packet information extraction and rLPS look-
up 

• Stage 2: Range renormalization and pre-multiple 
bypass bin multiplication. 

• Stage 3: Low renormalization and outstanding bit 
look-up 

• Stage 4: Coded bit construction and calculation of the 
number of valid coded bits 

The detailed implementation of these stages is described in 
the following subsections. 

 

Fig. 4. Our proposed BAE architecture. 

A. Packaet information extraction and rLPS look-up 

The input of this stage is a 10-bit packet from the context 
modeler with a specific format for each type of bins. There are 
3 types of bins: regular bin, terminate bin, and bypass bin. In 
our architecture, regular bins and terminate bins have the same 
data path and they are considered as one type of bins (regular 
bin). To enable the possibility to process multiple bypass bins, 
we grouped up to 4 bypass bins together. Therefore, each input 
packet can be encapsulated as a regular bin or a group of 
bypass bins as illustrated in Fig. 5. A bypass packet can contain 
up to 4 bypass bins, while a normal packet carries only one bin. 
Depending on 2-bit mode, the packet analyzer will extract the 
corresponding signals to pass through the rest of the coding 
process.  

For regular/terminal bin processing, some previous works 
such as in [13] and [15] proposed to do rLPS and rLPS 
renormalization in this stage. However, to reduce the number 
of pipelined registers, we chose to pass only control signals and 
look up four LPS ranges (rLPS) in this stage. rLPS 
renormalization and the number of shifted bits will be pushed 

to the second stage to reduce the total number of registers and 
to save the combinational logics because at the second stage, 
we have enough information to decide which rLPS will be used 
for the coding process.  

 

Fig. 5. Packet format for different bin types supported in our architecture. 

B. Range renormalization and pre-multiple bypass bin 

multiplication 

Fig. 6 shows the datapath for stage 2. Stage 2 contains two 
main steps: range renormalization and pre-multiple bypass 
multiplication for bypass bin processing in stage 3. The input to 
range normalization process is an rLPS value selected from 
four rLPSs look-up in stage 1. This value is selected based on 
two bits of the previously renormalized range. The area is 
saved by doing renormalization for only one correct LPS. If 
renormalization is done in stage 1, it is hard to know which 
LPS will be used, and all four renormalized LPSs have to be 
passed through the stage 2. rLPS is renormalized by using a 
shifter with the number of bit shifted is looked-up using the 
correct rLPS. The correct rLPS is also used for calculating the 
rangeMPS. The output to stage 3 is the value of rMPS which is 
the pre-multiplication results (incEP) for a bypass packet; zero 
for a most probable symbol bin; or rangeMPS in case of a least 
probable symbol bin. The range register is updated with the 
renormalized value of MPS or LPS for regular bins, while it 
keeps its value in case of bypass bins. 

 

Fig. 6. Range renormalization and pre-multiple bypass bin multiplication 

architecture. 

In our proposed architecture, in this stage, we chose to 
unify the datapath for bypass bins and regular bins so that the 
next stage does not need to have two different datapath for two 
different types of bins. The pre-multiplied value for bypass bin 
processing is sent to stage 3 through the rMPS. In stage 3, the 
normalization of Low value is done using a single adder.  
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C. Low rernormalization and oustanding bit look-up 

Low renormalization and outstanding bit look-up are done 
in stage 3. In this stage, the area is saved by unifying the 
datapath for bypass bins and regular bin; sending only 7-bit of 
the renormalized low which are necessary for the coded bit 
construction; and by preparing the outstanding bit value in 
stage 3.  Instead of sending all 17 bits of renormalized Low 
value to the next stage, we only have to send 7-bits of then 
shifted Low value and 3 bits of outstanding bit counter 
(OSCnt).  

 

Fig. 7. Low rernormalization and oustanding bit look-up. 

The datapath for stage 3 is presented in Fig. 7. In the bypass 
bin processing, Low value is shifted before being added with 
rMPS, while in regular bin processing, the results of the 
addition of Low value and rMPS is shifted to form the 
renormalized Low. The Low register is updated with 10 bit out 
of 17-bit of renormalized Low. 7 upper bits of renormalized 
Low are used to decide the most significant bit (MSB) of Low.  

In conventional BAE architecture, the outstanding bit 
counter is often calculated in the last stage, however, in our 
architecture, to send only 7-bit of the renormalized low to the 
next stage, we chose to look up the outstanding bit counter in 
advance. This path is the critical path in our design. 

D. Coded bit construction and calculation of the number of 

valid coded bits 

The last stage in our proposed architecture is shown in Fig. 
8. Based on the normalized Low value, the coded bits are 
constructed using inversion, mask with padding zero using 
barrel shifters. The first bit of renormalized Low value is 
concatenated with its inversion to form a 38-bit value. It is then 
ANDed with a mask to keep only the resolved outstanding bits. 
Finally, the resolved bits are ORed with the remaining bits 
constructed from the last 6 bits of the renormalized Low value. 

The number of resolved outstanding bits is calculated based 
on the number of confirmed output bits bitCnt and the number 
of the resolved outstanding bits. If there are no determined 
output bits, no outstanding bits are resolved and all of them are 
accumulated into AccOSCnt register. Otherwise, outstanding 
bits from the previous cycle are confirmed and the number of 
accumulated outstanding bits equals to OSCnt. 

 

Fig. 8. Stage 4 (Bitstream Generator) architecture. 

V. IMPLEMENTATION RESULT 

Our hardware design was implemented in VHDL. We 
tested our BAE architecture under several test cases. All-intra 
or low-delay configurations with the quantization parameter of 
22 and 37 were configured in the reference software HEVC 
Test Model version 16.12 as described in TABLE I. With the 
ability to process at most 4 bypass bins in a clock cycle, our 
design achieved the performance of 1.4 bins per cycle in 
average depending on the number of grouped bypass bins. Our 
proposed architecture was synthesized with Synopsys Design 
Compiler using NANGATE 45 nm technology. Our 
architecture has the total gate count of 2.2 kGEs at 810 MHz 
with power dissipation of 2.0 mW. 

TABLE I.  PERFORMANCE UNDER DIFFERENT TEST CASES 

Configuration QP Bins per cycle 

All intra 
22 1.56 

37 1.25 

Low delay 
22 1.56 

37 1.24 

Average 1.4 

 

A comparison of our work with others’ works is shown in 
TABLE II. It is clear from this table that our work achieves 
the smallest occupied area when compared with the other 
designs with one-core BAE architecture in [11], [12], [16]. 
Our proposed architecture has about 30% reduction in area 
even with multiple bypass bin processing. Furthermore, our 
design has 20% less power consumption in comparison with 
4-core BAE architecture designed for low power in [15] at the 
same throughput. In terms of throughput, our design at its 
maximum working frequency achieves 1Gbin/s. This means 
that our design is capable of encoding in real-time a video 
conforming to the main profile level 6.2 of high tier [6], which 
equivalent to an 8K video. 

VI. CONCLUSION 

Binary Arithmetic Encoder is the most crucial component 
of CABAC because of its serial bit-based processing and its 
internal data dependencies. In this work, we proposed a low-
cost and high throughput 4-stage pipelined Binary Arithmetic 
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Encoder for HEVC CABAC using one-core architecture with 
multiple-bypass-bin processing. Our architecture can process 
one regular bin or up to 4 bypass bins in one clock cycle. Our 
proposed design was successfully implemented using Nangate 
45nm technology library with the maximum operating 
frequency of 810MHz. At this frequency, our design can 
process 1 Gbins/s, which met the requirement of real-time 
processing of 8K resolution video. By reorganizing different 
steps in the pipeline and by retiming technique, our architecture 
can save 30% of area in comparison with other one-core 
architectures; and 20% improvement in power consumption 
even when compared with 4-core architectures designed for 
low-power consumption.  
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TABLE II.  COMPARISON WITH OTHER WORKS 

 Peng2013 [16] Zhou2014 [13] Pham2014 [11] Jo2016 [12] Ramos2016 [15] Our work 

Bins per cycle 1.18 4.37 1 1 1.99 4 1.4 

Clock frequency (MHz) 357 420 180 1530 1110 280 810 

Technology process (nm) 130 90 180 65 65 45 45 

Throughput (Mbin/s) 421 1836 180 1530 2219 1120 1134 

Gate count  (K gates) 24.95 7.98 3.96 3.17 5.68 9.95 2.2 

Power consumption (mW) - - 2.88 - - 2.49 2.0 

 


