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Abstract. A decentralised large-scale network of mobile robots for multi-
target tracking is addressed in this paper. The decentralised control is
originally built up by behavioural control but upgraded with connectiv-
ity maintenance and hierarchical connectivity removal. The multi-target
tracking algorithm guarantees that the mobile robots can reach the tar-
gets at the very high success rate while at least an interconnectivity
network connecting all the mobile robots exists. The Monte-Carlo sim-
ulation results illustrate scalability properties of the large-scale network
of mobile robots in terms of number of robots and types of scenarios.
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1 Introduction

A decentralised large-scale network of mobile robots can be used for various
applications in diverse environments, e.g., surveillance and reconnaissance, pa-
trolling and monitoring, coverage, multiple target tracking in very wide and haz-
ardous areas. To deploy such a system into an environment, the mobile robots
have to manage their connectivities with immediate neighbours for not getting
lost from the network. The mobile robots through interconnectivity of the net-
work can make consensus decisions for their cooperative and coordinative opera-
tions of which multi-target tracking is one of case studies. Multi-target tracking
is a special case of coverage but the mobile robots must track and reach spe-
cific targets in diversity of environments. To ensure that all the tracked targets
are explored, identified, and reported back to the users, the mobile robots have
to establish a communication network using inter-networking connectivities for
data exchange. Hence, a decentralised control for connectivity maintenance and
network preservation is the key factor for large-scale networks of mobile robots
for multi-target tracking applications.

Decentralised control of multi-robot systems for connectivity maintenance
has been grown up with two mainstreams, to our best of knowledge: artificial
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potential field and graph theory. The artificial potential field, which was origi-
nally coined out by [3] for control of mobile robot and manipulator, has been
extended to widely apply for development of the decentralised control of multi-
robot systems for connectivity maintenance. Synthesis of the attractive and re-
pulsive forces generated by the artificial potential fields drives the mobile robots
towards the goals without colliding with obstacles. Artificial potential forces
used for multi-robot systems are typically divided into the three categories: lin-
ear function [4],[5], quadratic form [6],[7],[8], and exponential expression [9],[10],
just to name a few. Graph theory is another approach representing connectivi-
ties of agents interacting and communicating in networked systems. Cooperative
and coordinative operations of networked systems relied on connectives of agents
can be mathematically managed by the graph theory. For examples, stable flock-
ing of mobile agents in both fixed [11], and dynamic topology [12] are proven
by algebraic graph theory. Connectivities of agents used to design co-ordination
and formation control in multi-agent systems[13],[14] [15] are governed by the
graph Laplacian. In [16], connectivities of networked agents is modelled by the
weighted graph.

The authors in [17] introduced a distributed algorithm of a homogenous robot
swarm with limited sensing for tracing moving objects. An extension of the basic
behavioral set with following and circulating behaviors is realised to track and
move around a desired object. In [18], Boyoon Jung, et al. released a behaviour-
based control for tracking targets using multiple mobile robots. This controller
consists of three functionality layers of motor actuation, monitoring, and target
tracking: basic behaviors based motor actuation layer directs the robots towards
targets; the monitoring layer observes the internal status of the controller during
operation; and the target tracking layer detects and estimates the target posi-
tions. Similarly, in [19], authors described a control algorithm for distributed
robotic macro sensors based on the virtual spring mesh to track targets in both
discrete and diffuse nature. Parker in [20] presented a behavior-based method
of developing distributed algorithms for cooperative robot observation of mul-
tiple moving targets. The distributed control was synthesised by force vectors
generated by relative localisation between the robots, and the robots and the
moving targets with specific weights. In [21], the authors presented dynamic tar-
get tracking and observing in a mobile sensor network in two cases: tracking a
moving target with complex environment by adaptive flocking control algorithm
of which robotic sensor nodes cooperatively learn the network’s parameters to
decide the network size in the decentralised fashion, multiple dynamic target
tracking by a Seed Growing Graph Partition (SGGP) algorithm proposed to
solve the problem of splitting/merging the sensor agents from the network. In
[22], a team of robots is used to catch the evader or defend an area. The au-
thors proposed a target tracking algorithm for a robot team using fuzzy cost
function control in the framework of game theory. A scalable and fault-tolerant
framework for distributed multi-robot patrol is presented in [23]. Domagoj et.al
[24] proposed the cooperative multi-target tracking using hybrid modelling and
geometric optimisation.
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To our best of knowledge, the existing decentralised controls have primar-
ily focused on connectivity maintenance/preservation of mobile robots without
considering applications of the robotic systems. As a result, the decentralised
network of the mobile robots is not able to expand to reach the all the farthest
targets. On the other hand, most of previous works of target tracking or mul-
tiple target tracking by mobile robots has not seriously considered scalability
of the network as they have only demonstrated a few case studies with a lot of
predefined conditions of systems and environments.

To overcome shortcomings of existing connectivity maintenance methods for
multiple-target tracking, we propose the new method to design the decentralised
control for large-scale network of mobile robots for multiple target tracking.
The decentralised control is developed by the origin of behavioural control but
upgraded to become the hierarchically structured control of behavioural control,
connectivity maintenance, and hierarchical connectivity removal. The mobile
robots with new control are capable of keeping or removing connectivities with
their nearest neighbours for expansion of the network coverage while retaining
at least one interconnectivity through all the robots. We investigate scalability
of the proposed decentralised control for large-scale network of mobile by the
Monte-Carlo simulation method.

The rest of this paper is organised as follows: the graph-theoretic model and
the hierarchical connectivity removal used to develop the decentralised control
are illustrated in section 2. The algorithm of multi-target tracking is elaborated
in section 3. The Monte-Carlo simulations and statistical results are shown in
section 4. We conclude this paper with essential scalability properties of this
decentralised large-scale network of mobile robots.

2 Decentralized Control

2.1 Graph-theoretic Model

A large-scale network of N mobile robots and E connectivities made among
them is described as an undirected graph G(N,E). A connectivity between two
mobile robots, i and j, is represented by an edge of the connectivity graph,
eij ∈ E. A mobile robot i can perceive and communicate with its neighbouring
robots Ni, if the relative distance between them is within the disk-based sensing
and communication range rc. That is, the connectivity eij between the robots i
and j exists if eji ≤ rc : j ∈ Ni

Connectivity graph can be described by the mean of the adjacency matrix
A ∈ RN∗N Each element eij of the adjacency matrix A is defined as the weight
of the edge between the robot i and the robot j, which is a positive value if
j ∈ Ni, or zero otherwise. In the undirected graph, A is a symmetric matrix
with each element eij represented below:

eij = eji =

{
1 ‖rij‖ ≤ rc
0 ‖rij‖ > rc

(1)
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Fig. 1. Connectivity range and critical robots: (a) the robot j freely move within the
Sfi, move away from Sai, and is considered as a candidate of critical robots for the
robot i if the robot j is within Sci; (b) the robot i has critical robots j, k, m; the robot
j has critical robots i and k; the robot i is not the critical robot of the robot j.

Connectivity property of the mobile robots is identified through the second
smallest eigenvalue λ2 of the Laplacian matrix A. The mobile robots are well
connected if λ2 ≥ 0. Connectivity strength is proportional to the value of λ2.

The network of the mobile robots start moving from an initial location, then
navigate towards the multiple targets. During the movement, the mobile robots
estimate the graph adjacency to check the connectivity property that is propa-
gated to its neighbours.

We release the following definitions used to develop the decentralised control
with network preservation.

Definition 1. (Sub Adjacency Matrix) The robot i has a set of neighbours Ni.
We define Sub Adjacency Matrix, subA, of the robot i as the adjacency matrix
of Ni.

The sensing and communication range of each mobile robot is divided into
three areas: obstacle avoidance area Sa with radii range r1; free area Sf inside
annulus circle between two radii r2 and r1, and critical area Sc inside annulus
circle between two radii rc and r2 as in Figure 2.1.

Definition 2. (Candidates as Critical Neighbours) The jth robot becomes a can-
didate for critical robot of the robot i if it is within the robot i’s critical area.

Ci = j ∈ Sci (2)

where ε is a constant, called as critical error.

Definition 3. (Critical Neighbours and Critical Connectivities) The robot j is
a candidate of critical robots of the robot i, j ∈ Ci. The robot i becomes a critical
robot of the robot j, and the connectivity between the robot i and the robot j is
considered as the critical connectivity, and vice versa if there does not exist any
other robots inside the intersection area between their free areas Sf j ∩ Sf i.
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Cni = {j ∈ Ci, : Sf j ∩ Sf i = ∅} (3)

2.2 Hierarchical Connectivity Removal

In general, we have to take all the neighbours of the robot i into consideration for
designing its decentralised control. However, the robot i’s critical neighbours act
like ”anchors” to present the target reaching of the robot i. To allow the robot i
to move towards the assigned target while preserving the network connectivities,
we have to deal with three connectivity topologies established by the robot i and
its critical neighbours Cni:

Triangle topology: There exists two critical neighbours j and k connected
together in Cni, i.e., checked by subAi = 1. Both the critical connectivities, eij
and eik, cause the robot i impossible to reach the targets out of the coverage by
the neighbours j and k. As illustrated in Figure 2(a), the triangle topology of
three robots n1, n2, n3 prevents the robot n1 to reach the target T1.

K-connected topology: A robot i has two critical neighbours j and k that
are not connected in Cni, i.e., subAi = 0. If the robots j, k have the neighbouring
robots in N ∩Ni connected directly or indirectly through groups of intermediate
robots, denoted Rj , Rk, and the intersection of the two groups is not a empty
set, Rj ∩ Rk 6= ∅, the robots i, j, k establish a k-connected topology (a type of
k-connected graph, where k = 2, in the graph theory). Specifically, k-connected
topology can be in the form of four edges, so-called as quadrangle topology; five
edges, so-called as pentagon topology; six edges, so-called as hexagon topology,
and so forth. Both the critical connectivities eij and eik cause the robot i im-
possible to reach targets out of the coverage area of the robot j and the robot
k. As illustrated in Figure 2(b), the k-connected topology with four robots n5,
n6, n7 and n8 become anchors preventing the node n8 to reach to the target T2.

Algorithm 1 Hierarchical Connectivity Removal
1: Given Cni

2: if subAi = 1 then
3: if eij > eik then
4: eij removed
5: else
6: ejk removed
7: end if
8: end if
9: if subAi = 0 and Rj ∩Rk 6= ∅ then

10: if eij > eik then
11: eij removed
12: else
13: eik removed
14: end if
15: end if
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Fig. 2. Connectivity topologies: a) A triangle topology of the robot n1 - red triangle
- consists of two critical robots n2 and n3 making two critical connectivities e12 and
e13 within Sc1, and the connectivity e23 ≤ rc. b) A k-connect topology (quadrangle
topology) of the robot n8 - green polygon - consists of three critical robots {n5,n6,
n7} in which the intersection of two groups of the robots n6 and n7 is non-empty, i.e.
R6 = {n5}, R7 = {n5}, R6∩R7 = {n5} 6= ∅. c) An one-connected topology of the robot
n5 - blue line - between the robot n5 and the robot n4 is the critical connectivity e45,
i.e. R5 = {n6, n7, n8}, R4 = {n1, n2, n3}, R5 ∩R4 = ∅. d) A k-connected topology vs. a
one-connected topology : any robot in the group {n4, n5, n6, n9, n10, n11, N12} consists
of either one-connected topology or k-connected topology with its neighbours, depending
the neighbourhood level `( ` ≤ 3 for k-connected topology and ` ≥ 4 for one-connected
topology)

.

One-connected topology: A robot i has only one critical neighbour j, and
vice versa the robot j has only one critical neighbour i. If the robots i and j
have the neighbouring robots in N ∩Ni connected directly or indirectly through
intermediate robots, denoted Ri, Rj , and the intersection of the two groups is
a empty set, Ri ∩ Rj = ∅, the robots i and j make a one-connected topology.
The connectivity between the robot i and the robot j must be preserved for the
network intercommunication. If Ri ∩Rj 6= ∅, the critical connectivity eij causes
the robot i impossible to reach its target as illustrated in Figure 2(c).

Hierarchical Connectivity Removal: We propose the hierarchical pro-
cedure for removing connectivities allowing the mobile robots to move towards
the targets while still preserving the network if they fall into one of two cases,
triangle topologies and k-connected topologies. No connectivity is removed if only
one-connected topologies exist:



7

Note that this decision is rather arbitrarily chosen since the neighbours with
the longer connectivity tends to escape from the network preservation. However,
the shorter connectivity can be chosen as well.

2.3 Decentralised Control

Behavioural Control (BC) Inspired from behavioural control in [1][2], veloc-
ity vector of the robot i, vti , is synthesised by cohesion vci , separation vsi , and
alignment vai velocity vectors.

vi = αvci + βvsi + γvai (4)

where α, β, γ are factors to adjust cohesion, separation, and alignment for the
overall behaviour.

Cohesion vci is the vector driving the robot i towards its neighbouring robots
satisfying j ∈ Sfi ∪ Sci. Separation vsi is the vectors that drives the the robot i
away from its neighbours satisfying j ∈ Sai. Alignment vai is the vector guiding
the robot i towards the centre of target cloud when all the robots are moving
toward the the target cloud. Alignment vai becomes the vector for the robot i
towards its assigned target when the first robot of the network reached the first
target.

The factors α, β, γ are normalised (all the robots are assigned with the same
α and γ) in order to guarantee the smooth movement of the whole network of
mobile robots towards the target cloud.

Connectivity Maintenance (CM) The decentralised control for connec-
tivity preservation aims at keeping all the robots connected in the network for
data intercommunication - no robot is disconnected from the network at any
time. This decentralised control is only activated when a robot has critical robots
and critical connectivities. The control is synthesised by the current velocity of
the robot and its critical robots’ relative positioning as in (5):

vt+1
i =

∑
j∈Ci

(vti + vtop ij) (5)

where vti is the current velocity of the robot i, and vtop ij is the projection of vti
on the edge of the robots i and the robot j, eij . At an instance, the modified
velocity of the robot i for preserving connectivity with the critical neighbour

j must satisfy the condition: ‖vt+1
i ‖ < min

j∈Ci

rc−‖rtij‖
2∆t , where rij is the relative

distance between the robot i and the neighbour j. If ‖vt+1
i ‖ ≥ min

j∈Ci

rc−‖rtij‖
2∆t , the

velocity vt+1
i is normalised by a factor ξ <

min
j∈Ci

(
rc−‖rtij‖

2∆t )

‖
∑
j∈Ci

(vti+vtop ij)‖
to ensure that the

robot i cannot disconnect with the robot j, rij ≤ rc. Since then, the velocity of
the robot i is recalculated by the numerical factor ξ:
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Fig. 3. Decentralised control for connectivity preservation

vt+1
i = ξ

∑
j∈Ci

(vti + vtop ij) (6)

Hierarchical Connectivity Removal (HCR) The decentralised control
with connective maintenance guarantees all the robots well connected through
network. However, on one hand, connectivity preservation prevents the mobile
robots to move towards the assigned targets. On the other hand, there might ex-
ist more than one connectivity or inter-connectivity between two mobile robots
so that some of connectivity or interconnectivity are removable to allow the
mobile robots to reach the targets. The hierarchical connectivity removal in Al-
gorithm 1 is only triggered if there exist at least two critical neighbours. That is,
the mobile robot are still working with the connectivity maintenance but intel-
ligent removing unnecessary connectivities to accelerate the process of multiple
target tracking.

3 Multi-Target Tracking

All the targets are unknown to the robots due to their limited sensing range at
the beginning. We assume that the network of mobile robots knows the direction
of the target cloud so the whole network is sent towards that direction for explo-
ration and target tracking. Initially, the network of mobile robots moves towards
the target cloud with the behavioural control. If the first robot detects a target,
the multi-target tracking algorithm is triggered for multiple target tracking.
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Algorithm 2 Multi-Target Tracking

1: for all free robots do
2: search for unoccupied targets
3: if observe unoccupied targets then
4: move to nearest target
5: if can not reach then
6: become local minimal node
7: else
8: become anchor
9: if anchor observe unoccupied targets then

10: call free robots through network communication
11: become landmark attracting free robots
12: end if
13: end if
14: end if
15: search for local minimal nodes
16: if local minimal nodes then
17: move to local minimal node
18: if can not reach then
19: become local minimal node
20: end if
21: end if
22: search for farthest lanmarks
23: if farthest anchor then
24: move to farthest landmark node
25: if can not reach then
26: become local minimal node
27: end if
28: end if

{insert Algorithm 3 here if more robots needed}
29: end for

One robot can only track and hold one target. If a robot observes number of
targets, the target in the shortest distance is selected. The robot moves towards
and occupies the selected target if the distance between them less than the
detecting range, set 0.05rc. Once the robot successfully occupied the target,
the target is marked as occupied target that is no longer occupied by the other
robots. This robot becomes an anchor - a stationary node of the network. If
this anchor sees unoccupied targets within its sensing range, it informs the other
robots about unoccupied targets through the network. This anchor plays the role
as the landmark in the network in order to direct the other free robots to move
towards these free targets through the network intercommunication. If the robot
move towards the selected target but cannot occupy it according to constraints
of connectivity maintenance, it becomes a local minimal node of the network
that expects to receive assistance from their peers to get off this position.

If a robot has been not assigned a target, but it has higher priority to move
towards the nearest local minimal node in order to assist this trapped robot to
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escape this position such that the trapped robot can move towards its assigned
target. If there is no local minimal node in the network, the robot moves towards
the most farthest anchor from the centre of the network, where there might exist
high possibilities of unexplored targets.

Note that when the robot are moving towards the assigned target, it re-
quests a number of its nearest neighbours who have not been assigned tasks to
follow. Thanks to this technique, we can achieve a twofold acceleration of the
multi-target tracking: 1) if the robot becomes an anchor, it has high possibility
of observing new unoccupied targets that can be occupied immediately by the
following robots; 2) if the robot becomes a local minimal node of the network, it
can receive assistance of its peers immediately to get off from this situation.

We also assume that all the robots can communicate with their peers in
order to update the network status in terms of occupied targets, unoccupied
targets, anchors, local minimal nodes, and assigned robots, or free robots if they
are well-connected in the network. All the robots of the network work with the
decentralised control described as in Algorithm 2.

If there exists a number of local minimal nodes in the network, the local
minimal nodes can request to add more robots into the network by Algorithm
3. We assume that the a mother robot of the network can send free robots
into the network. Once the added robots reached the local minimal nodes, the
new synthesis of force vectors for the decentralised control of the local minimal
nodes is changed, allowing the local minimal nodes to escape from the trapped
locations, then towards the assigned targets.

Algorithm 3 Adding Robots

1: if unoccupied targets observed by local minimal nodes or anchors through net-
work communication then

2: repeat
3: mother sends a free robot towards anchors or local minimal nodes
4: until all targets occupied
5: end if

4 Simulations and Discussions

In [25], we have proved that the developed decentralised control is capable of
not only maintaining connectivity of the mobile robots but also intelligently
removing unnecessary connectivities in order to expand coverage of the robot
network and accelerate multi-target tracking process. In this paper we investigate
scalability of the proposed decentralised control of multiple mobile robots for
multiple target tracking while preserving the inter-networking communication
through all the mobile robots. We evaluate the scalability through numerous
different types of scenarios - probability distribution of scenario generation - at
different difficulty levels - probability distribution of targets.
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4.1 Experimental Scenario Generation

Rules for Scenario Generation: M targets are distributed with the Gaussian
random distribution within the mxn area. A generated experiment scenario is
selected if it satisfies the condition: at least a inter-communication link connect-
ing all the targets with relative distance between a target and its immediate
neighbours on the inter-communication link less than rc exists. This is simply
checked by the algebraic connectivity of the target graph. The area m x n is di-
vided into cells with the size dxd. Two cyclic areas, N1 and N2, with the radius,
r1 = 0.125d and r2 = 0.5d−r1, are created in every cell respectively. In both N1
and N2 areas, one target is placed in the N1 and M2 targets are placed in N2
with the Gaussian random distribution, that is, there are Nt = M2 + 1 targets
in one selected cell. To diversify the scenario, we gather a four cells in a group,
and number of cells are selected to fill up with targets, Nc ≤ 4. Distribution of
scenario generation is dependant to the parameters d and Nc while distribution
of targets in a scenario is dependant to the parameters d,Nt, and Nc. We can
create a dense scenario if d decreases and M2 and Nc increase, or a spare sce-
nario if d increases and M2 and Nc decrease as examples illustrated in Figure 4.

Complexity of Scenarios: Complexity of scenarios is an index reflecting the
possibility of the network of mobile robots to reach targets in specific scenarios.
This rate is related to the difficulty of generating scenarios that are qualified for
experiments, measured by the fraction of unsuccessfully generated scenarios and
total generated scenarios.

fdiff (d,Nt, Nc) =
Stol − Ssuc

Stot
(7)

where Stot represents the total generated scenarios and Ssuc represents suc-
cessfully generated scenarios.



12

0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance between two cells

D
iff

ic
ul

ty

Complexity of Scenarios

 

 
10 Targets
20 Targets
30 Targets
40 Targets
50 Targets

(a) Difficulty rate

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Distance between two cells

A
lg

eb
ra

ic
 C

on
ne

ct
iv

ity

Connectivity properties of target distribution graph

 

 
10 Targets
20 Targets
30 Targets
40 Targets
50 Targets

(b) Algebraic connectivity

Fig. 5. Complexity of scenarios (Nc = 4, Nt = 5, 0.5rc − 2.0rc)

Definition 4. Difficulty of scenarios is the rate of generating scenarios unsuc-
cessfully over the total generated scenarios. If N scenarios are created and none
of them is qualified for experiments, the difficulty rate = 1 (100%) and this type
of scenario is extremely difficult. The difficulty increases when the rate increases.

Using the Monte-Carlo method, we measured the difficulty of scenarios by
generating 100 scenarios successfully for a set of parameters d,Nt, and Nc where
Nc : 4, Nt : 5 d: 0.5rc − 2.0rc. We chose five types of scenarios from 10 to
50 targets for statistical data as illustrated in Figure 5a. The difficulty rate is
measured by 100 successfully generated scenarios with the total targets increased
from 10 to 50. We observed the difficulty rate fdiff : close to 0 - most of generated
scenarios usable for experiments - when d is approximately 0.5rc and almost 1 -
most of generated scenarios unusable for experiments - when d is approximately
2.0rc. The difficulty rate is also observed by the property of algebraic connectivity
of the target graph as seen in Figure 5b. Indeed, connectivity property of the
target graph is proportional to the complexity of the scenarios.

4.2 Results and Discussions

We examine the scalability of the decentralised control of large-scale network of
mobile robots in three criteria:

– Systematic scalability (scalable with number of robots): whether the de-
centralised control can deal with different large number of mobile robots in
the network.

– Spatial scalability (scalable with different scenarios): whether the decen-
tralised control can govern the large-scale network of mobile robots in dif-
ferent types of scenarios.



13

0

10

20

30

40

50

60

Distance between two cells
0.5 0.6 0.7 0.8 0.9   1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9   2

Successfully reached targets (number of robots = number of targets)

R
at

e 
of

 s
uc

ce
ss

fu
lly

 r
ea

ch
ed

 ta
rg

et
s

(a) Successfully reached targets vs.
used robots

0

10

20

30

40

50

60

Distance between two cells
0.5 0.6 0.7 0.8 0.9   1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9   2

Number of robots added for all targets reached successfully

N
um

be
r 

of
 r

ob
ot

s 
us

ed

(b) Assistive robots added into the
network

Fig. 6. Statistical results of robots used in the network and successfully reached targets

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

Reached Targets

N
um

be
r 

of
 c

on
ne

ct
iv

ite
s

Standard deviation of connectivites in the network

 

 
 10 Targets
 20 Targets
 30 Targets
 40 Targets
 50 Targets

(a) Nc = 4, Nt = 5, d = 1.0rc

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

Reached Targets

N
um

be
r 

of
 c

on
ne

ct
iv

ite
s

Standard deviation of connectivites in the network

 

 
 10 Targets
 20 Targets
 30 Targets
 40 Targets
 50 Targets

(b) Nc = 4, Nt = 5, d = 2.0rc

Fig. 7. Link reduction over time

– Temporal scalability (scalable in performance time): whether the de-
centralised control can handle the large-scale network of mobile robots in
bounded time consuming w.r.t number of the robots and difficulty levels of
scenarios.

We have collected data from 800 executed simulations (10 simulations for
each of 16 parameter sets of d : 0.5rc − 2.0rc, Nt = 5, Nc = 4 in 5 types of sce-
narios) of 800 different scenarios filtered from hundreds of thousands generated
scenarios by the rules of experimental scenario generation. The statistical results
show that :

– The decentralised network of mobile robots is scalable with the number of
robots as seen in Figure 6.a. The number of mobile robots in the network
increases from 10 to 50 robots but the decentralised control can guarantee the
high rate of successfully reached targets (minimum 90% in the worst cases of
the most difficult scenarios, fdiff ≈ 1). Moreover, the decentralised control
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is also scalable with adding more assistive robots into the network when a
number of local minimal nodes are found. The fact is that using the same
decentralised control a few of assistive robots (maximum 2 assistive robots
in the worst cases) are needed to get all local minimal nodes off the trapped
positions in order to let them to reach their assigned targets successfully as
seen in Figure 6.b.

– The decentralised network of mobile robots is scalable with different sce-
narios at different difficulty levels. The control ensures the absolute rate of
successfully reached targets in the dense scenarios (d ≤ rc) while keeps the
rate more than 90% in the worst cases of the spare scenarios (d = 2rc) as
illustrated in Figure 6. Thanks to the hierarchical connectivity removal intel-
ligently reducing the network connectivities as seen in Figure 7, the network
is capable of spatially expanding to reach the farthest targets that are im-
possibly observed and reached by the mobile robots with the decentralised
control for connectivity maintenance only.

– The decentralised network of mobile robots is scalable with the bounded
time consuming w.r.t number of the robots and difficulty levels of scenarios
as shown in Figure 8. The mobile robots are capable of reaching all the tar-
gets in bounded interval, instead amount of time dramatically increasing to
∞, at any scale of the robots and any difficulty levels of scenarios, allowing
possibilities of optimising usability of the large-scale network of the mobile
robots according to diversity of system requirements and environmental con-
ditions. However, the network is not temporally so consistent with the same
types of scenarios as time consuming highly varies as illustrated Figure 8.
A target cloud exploration strategy added to the multi-target tracking algo-
rithm might be needed to optimise the robots’ trajectories and interactions
in order for consistence of time consuming.
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5 Conclusion

We have presented the decentralised control for scalable large-scale network of
mobile robot for multi-target tracking. Origin of this control is a behavioural
control but upgraded with connectivity maintenance and hierarchical connec-
tivity removal. Thanks to the upgrades, all the mobile robots not only preserve
interconnectivity through the network but also remove unnecessary connectivi-
ties to allow them to reach all the targets. The Monte-Carlo simulation results
demonstrate that the large-scale system is systematically, spatially, and tempo-
rally scalable with assignments of multiple target tracking.

Acknowledgement:
This research was supported in part by the University of Brunei Darrusalam

(UBD/PNC2/2/RG/1(259)) and the Asia Research Centre and the Korea Foun-
dation for Advanced Studies (Developing Swarm Dispersion Algorithms of Multi-
Robot Systems for Multi-Target Tracking research project).

References

1. Reynolds,C. W., Flocks, Herds, and Schools: A Distributed Behavioral Model.
Computer Graphics, 21(4), pp.25-34, 1987.

2. Mataric, M.J., Designing and Understanding adaptive group behaviors. Adap-
tive Behavior, Vol. 4, pp.51-80, 1995.

3. Khatib, O., Real-time Obstacle Avoidance for Manipulators and Mobile
Robots. Int. J. Rob. Res.,1986, 5, 90-99.

4. Elkaim, G.; Siegel, M. A., Lightweight Control Methodology for Formation
Control of Vehicle Swarms. In Proceedings of the 16th IFAC World Congress,
Prague, Czech Republic, 4–8 July 2005.

5. Reif, J.; Wang, H., Social potential fields: A Distributed Behavioral Control
for Autonomous Robots. Rob. Autonomous Syst., 1999, 27, 171-194.

6. Spears, W., Spears, D., Hamann, J. Heil, R. Distributed, Physics-based Control
of Swarms of Vehicles. Autonomous Robot., 2004, 17, 137-162.

7. Ge, S.S., Cui, Y.J., New Potential Functions for Mobile Robot Path Planning.
IEEE Trans. Rob. Autom., 2000, 16, 615-620.

8. Kim, H.D.; Shin, S., Wang, O.H., Decentralized Control of Autonomous Swarm
Systems, Using Artificial Potential Functions: Analytical Design Guidelines.
Int. J. Intell. Rob. Syst., 2006, 45, 369-394.

9. Horward, A., Mataric, M., Sukatme, G., Mobile Sensor Network Deployment
using Potential Fields: A Distributed, Scalable Solution to the Area Coverage
Problem. In Proceedings of the Sixth International Symposium on Distributed
Autonomous Robotics Systems, Fukuoka, Japan, 25–27 June 2002; pp. 229-208.

10. Mikkelsen, B.S., Jespersen, R., Ngo, T.D., Probabilistic Communication based
Potential Force for Robot Formations: A Practical Approach. In Springer
Tracts in Advanced Robotics, Vol 83, 2013, pp 243-253.

11. Tanner, G.H., Jadbabai, A., Pappas, J.G., Stable Flocking of Mobile Agents,
Part I: Fixed Topology. In Proceedings of the 42nd IEEE Conference on Deci-
sion and Control, Maui, HI, USA, 12 December 2003; pp. 2010-2015.



16

12. Tanner, G.H., Jadbabai, A., Pappas, J.G., Stable Flocking of Mobile Agents,
Part II: Dynamic Topology. In Proceedings of the 42nd IEEE Conference on
Decision and Control, Maui, HI, USA, 12 December 2003; pp. 2016-2021.

13. Desai, P.J., A Graph Theoretic Approach for Modelling Mobile Robot Team
Formations. J. Rob. Syst., 2002, 19, 511-525.

14. Dong, W., Guo, Y., Formation Control of Nonholonomic Mobile Robots using
Graph Theoretical Methods. Lect. Notes Econ. Math. Syst., 2007, 588, pp.
369-386.

15. Ji, M., Egerstedt, M.. Distributed Coordination Control of Multi-agent Systems
while Preserving Connectedness. IEEE Trans. Rob., 2007, 23, pp.693-703.

16. Olfati-Saber, R. Murray, M.R., Consensus Problems in Networks of Agents
with Switching Topology and Time-delays. IEEE Trans. Autom. Control, 49,
pp.1520-1533.

17. L. Blazovics, K. Crorba, B. Forstner, and C. Hassan, Target tracking and sur-
rounding with swarm robots, Conference and Workshops on Engineering of
Computer-Based Systems, pp.135-141, 2012.

18. B. Jung, and G. S. Sukhatme, Tracking Targets using Multiple Robots: The
Effect of Environment Occlusion, Autonomous Robots Journal, Vol. 13, No.
3, pp. 191-205, 2002.

19. B. Shucker, and J. K. Bennett, Target Tracking with Distributed Robotic
Macrosensors, Military Communications Conference (MILCOM), Vol. 4,
pp.2617-2623, 2005.

20. L. Parker, Distributed Algorithms for Multiple Observation of Multiple Moving
Targets, Autonomous Robots, Vol.12(3), pp231-255, 2002.

21. La H.M., Sheng W., Dynamic target tracking and observing in a mobile sensor
network, in Robotics and Autonomous Systems 60(2012) 996-2009.

22. Istvan H., Krzysztof S., Robot team coordination for target tracking usig fuzzy
logic controller in game theoretic framework, in Robotics and Autonomous Sys-
tem 57(2009) 75-86.

23. David P., Rui P. Rocha, Distributed multi-robot patrol: A Scalable and fault-
tolerent framework, in Robotics and Autonomous Systems 61(2013) 1572-1587.

24. Domagoj T., Rafael F., and Silvia F., Cooperative Multi-Target Tracking via
Hybrid Modeling and Geometric Optimization, 17th Mediterranean Conference
on Control and Automation, Mekedonia Palace, Thessaloniki, Greece, June 24-
26, 2009.

25. Pham .H.D., Pham .M.T, Tran .Q.V, Ngo. T.D, Accelerating Multi-Target
Tracking by a Swarm of Mobile Robots with Network Preservation, in Proceed-
ings of International Conference of Soft Computing and Pattern Recognition,
2013, December, Hanoi, Vietnam


